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Introduction

Definitions

Visualization: Definition

Visualization is a branch of computer science involving the processing,
analysis and graphical representation of data from diverse fields: social
sciences, finance, medicine, entertainment, etc.

One goal of visualization is to visually represent data that does not
necessarily have a natural geometric interpretation.

Data visualization relies on two main fields:

Statistics

Computer graphics
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Introduction

Definitions

It is important to distinguish between the areas of image processing,
computer graphics and visualization.

Image processing VS Computer graphics VS Visualization

Image processing is the study of 2D images to extract information or
to modify their characteristics.

Computer graphics allows to create, draw and render images (2D or
3D), or videos of almost anything using a computer.

Visualization allows the exploration of data represented in a visual
form that helps our understanding of a shown phenomenon.
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Introduction Motivations

Why visualizing data ?

A better visualization leads to a better understanding.

Graphical visualization is an efficient way to communicate information
clearly and efficiently.

A lot of data are high dimensional and difficult to grasp without a
lower dimensionality projection.

Many Machine Learning techniques can benefit from data
visualization:

Regression and time series analysis: to visualize the data and guess the
model
Clustering: To guess the number of clusters and their shape, or to
detect anomalies/outliers.
Classification: To assess classes’ separability.
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Introduction Motivations

Why visualizing data ?

The number of features can be very large:

Genomic data: thousands of variables

Image data: a 64x64 image contains 4096 3D variables

Text data: frequency of words or phrases in a web page

more than ten thousand features
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Introduction Motivations

When visualizing data ?

When performing an exploratory task on new data.

When the data are inhomogeneous or noisy.

When the data are high dimensional and unseasy to grasp.

To visualize and assess the result of a Machine Learning task in low
dimension and see if it visually makes sense.

To see if the data need to be transformed (rotation, dimension
reduction, compression, etc.) before using a Machine Learning or data
analysis task.
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Introduction Examples

Univariate data

Represents the distribution of a variable

Represents categorical variable distribution

Represents trends and error margins

(a) Histogram (b) Pie Plot
(camembert)

(c) Box plot (bôıte à mous-
taches)
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Introduction Examples

Bivariate data (1/2)

Representation, correlation analysis, trend analysis

(d) Representation (e) Time series trends
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Introduction Examples

Bivariate data (2/2)

Representation, correlation analysis, trend analysis

(f) Time series (g) Correlation & Regression
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Introduction Examples

Cross-bivariate data

J. Sublime Data Analysis - Lecture 4 ISEP 2021/2022 12 / 77



Introduction Examples

Multivariate data

Representing multi-dimensional data in 2D (or 3D) is more complex but
can help understand them.

Multi-variate data visualization techniques

Dimension reduction and/or projection on 2 variables

Icon-based, text-based, or color-based representations for the missing
dimensions.
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Introduction Examples

Multivariate data

Weather forecast: City coordinates (2 variables), weather, temperature.
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Introduction The curse of dimensionality

The curse of dimensionality

The “curse of dimensionality” is a term introduced in 1961 by Bellman
refering to the problem of the explosive increase in data volume associated
with adding extra dimensions in a mathematical space.

Why the curse of dimensionality matters

High dimensional data are difficult to efficiently visualize in 2D
without loosing meaningful information.

While computer algorithms can grasp information in higher
dimensional spaces than humans, past some point, they too have
trouble extracting the meaningful information.

We will illustrate this problem with a simple example.
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Introduction The curse of dimensionality

The Toy problem

We consider a Pattern Recognition problem with 3 classes. We have 9
available observation represented in 1 dimension.

A simple approach would be to do the following:

Divide the feature space into uniform bins.

Compute the class ratio in each bin and use a majority vote to classify
the bin.

When a new example comes, put it in its closest bin.
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Introduction The curse of dimensionality

The Toy problem

In this first example with one feature, we observe that when dividing
the space into 3 segments we get 3 homogeneous regions each with a
similar density of 3 examples per bin.

We also see that there is too much overlap between the classes, so we
decide to add a second feature to try to improve the class separability.
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Introduction The curse of dimensionality

The Toy problem 2D

If we add a 2nd dimension we pass from 3 cases in 1D to 32 = 9 in 2D.

We have an another problem: do we maintain the density of examples per
bin or do we keep the same number of example than in 1D?

If we want to maintain the density, we now need 27 examples instead of 9.

Choosing to maintain the number of examples to 9 will result in a very
sparse 2D scatter plot.
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Introduction The curse of dimensionality

The Toy problem 3D

Adding a 3rd dimension makes the problem worse:

We move to 33 = 27 bins.

Keeping a constant density now requires 81 observations.

Keeping the same number of observation gives us an almost empty
3D plot.
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Introduction The curse of dimensionality

The curse of dimensionality

The curse of dimensionality generates several phenomenons such as:

The concentration of observations in given space areas

The desertification of the data space

The depopulation of the center of hyper-volumes

In practice, the curse of dimensionality means
that, for a given sample size, there is a
maximum number of variables beyond which
a classifier performance will degrade rather
than improve.

The approach used on the toy example is mostly ineffective:

There are other approaches less affected by the curse of dimensionality, but
the problem will still exist and will always re-surface at some point.
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Introduction The curse of dimensionality

Consequences of the curse of dimensionality

Exponential growth of the number of examples required to maintain a
given sample density: For a density of N examples/bin in D
dimensions, ND examples are required.

Exponential growth of the complexity of the target function (which
estimates the density). To learn well, the target function requires a
dense enough learning space.

For one dimension, we have plenty of different density functions.
However, for high dimension, we only have the Gaussian multivariate
density. For large values of D, the density can only be treated in
Gaussian simplified forms (due to the inverse covariance matrix in the
Gaussian mixture model).

J. Sublime Data Analysis - Lecture 4 ISEP 2021/2022 21 / 77



Introduction The curse of dimensionality

How to deal with the curse of dimensionality ?

These findings suggest that we need special treatment to manipulate high
dimensional data:

Incorporating prior knowledge to reduce the search space.

Providing smoother and more generic target functions.

Reducing dimensionality.

Reducing dimensionality

The reduction of dimensionality by the mean of space transformations,
projections, or feature selection is usually the prefered solution in
combination with the two others.

Prior knowledge is not always available, and may alone result in
over-fitting.

Smoother target functions alone may result in a global decrease of
performances and are cumbersome to design.
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Introduction Selection vs Extraction

Dimension Reduction

Dimension reduction is based on the hypothesis that high dimensional data
are not uniformly distributed:

There are high density and low density areas.

Dimension reduction looks for structures that define these high and
low density areas to tackle the curse of dimensionality.

There are many techniques of dimension reduction:

Linear and non-linear

Deterministic and probabilistic

Supervised and unsupervised
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Introduction Selection vs Extraction

Selection vs Extraction

There are two main methodology for dimension reduction:

Feature selection: Choosing a subset of all the features.

Feature extraction: Creating a small set of new features by
combinations of the original ones.
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Feature selection methods

Feature selection

Definition

Variable selection is a process to choose an optimal subset of relevant
variables from a set of variables, according to a performance criterion.

We can ask three basic questions:

Q1 How to measure the relevance of the variables ?

Q2 How to obtain the optimal subset ?

Q3 Which optimality criterion to use ?
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Feature selection methods

Feature selection

Q1 How to measure the relevance of the variables ?

We need to find a measure of relevance, or evaluation criterion J(X ), to
quantify the importance of one variable or a combination of variables.

Q2 How to obtain the optimal subset ?

To answer this question, we need to define a procedure, or algorithm,
that will determine the optimal subset of relevant variables based on
the evaluation criterion.

Q3 Which optimality criterion to use ?

With the answer to Q2 being an optimization algorithm, we need to
define a stopping criterion for this optimization process.
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Feature selection methods

Choosing a criterion for feature selection: Examples

For a Classification problem, we can test the discriminant quality of
the system in the presence presence or absence of a variable.

For a Regression problem, we can test the quality of the prediction
with respect to the other variables.
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Feature selection methods

Feature selection: Branch & Bound based methods

Branch & Bound based methods use an optimization strategy that finds
the optimal subset of variable based on a minimal bound to reach on the
evaluation criterion.

1 The algorithm starts with all features and removes one at each step.

2 If the evaluation criterion scores below the bound, the algorithm
backtracks and tries to remove another feature.

3 Groups of features below the bound are remembered so that sub-sets
of these groups are never tested later in the process.

4 When there is no feature left to try removing, the algorithm
remembers the best score and backtracks to another branch.

5 The algorithm stops when all branches with valid subsets have been
tested.
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Feature selection methods

Monotonic VS non-monotonic feature selection criteria

Branch & Bound methods can only work if the selection criterion J(X ) is
monotonic.

Monotonic criterion: Definition

Let us consider two subsets of features A1 and A2. Then, J(·) is
monotonic if and only if A1 ⊂ A2 =⇒ J(A1) ≤ J(A2).

Problem: Most effective evaluation criteria are not monotonic ...

The use of sub-optimal methods is then required:

Sequential Forward Selection (SFS)

Sequential Backward Selection (SBS)

Bidirectional Selection (BS)
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Feature selection methods

Sequential Forward Selection

Let X = {X1, · · · ,XD} be a set of variables. The SFS procedure is the
following:

Initially set the selected set of variables A0 as empty.

At each step k , select the variable Xi that maximizes the following
criterion of evaluation J(Ak):

J(Ak) = max
Xi∈(X\Ak−1)

J(Ak−1 ∪ Xi )

This will result in a list of variables ordered by their importance. The
procedure can be stopped at any step when a given criterion (e.g.
acceptable loss of information) has reached an acceptable value.
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Feature selection methods

Sequential Backward Selection

Let X = {X1, · · · ,XD} be a set of variables. The SBS procedure is the
following:

Initially start with a set AD = X containing all the variables.

At each step for k ∈ [D − 1 · · · 1], remove the variable Xi of the least
importance according to:

J(Ak) = max
Xi∈Ak+1

J(Ak+1\Xi )

This will also result in a list of variables ordered by their importance, with
the most important being at the end of the list. The procedure can also be
stopped has soon as the remaining set is below an acceptable lower bound
of accuracy on a given criterion.
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Feature selection methods

Bidirectional Selection

The Bidirectional Selection procedure performs the search in both Forward
and Backward direction in a competitive manner:

The procedure stops when one of the following case occurs:

One of the two direction has found the best subset of variables before
reaching the middle of the search space.

The two branches are reaching the middle.

This method reduces the search time as the search is performed in both
directions and stops when there is a solution regardless of the direction.

Remark

The sets of best selected variables found respectively by SFS and SBS are
not equal and rarely identical because of their different principles of
selection.
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Linear Feature extraction methods Introduction

Feature Extraction: Principle

Feature extraction consists in building new features from the original ones
with one or several of the following goals:

Having a lower number of features while keeping a maximum of
information

Having better features with which the data are easier to process

Having feature with which the data are easier to visualize
X1
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XD

 feature extraction−−−−−−−−−−→
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Linear Feature extraction methods Introduction

Types of feature extraction methods

Linear Methods

Principal components Analysis (PCA)

Linear Discriminant Analysis (LDA)

Multi-Dimensional Scaling (MDS)

...

Non-linear methods

Isometric feature mapping (Isomap)

Locally Linear Embedding (LLE)

Kernel PCA

Spectral clustering

Supervised methods (S-Isomap)

...
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Linear Feature extraction methods Principal Component Analysis

Reducing the dimensionality: goals

The Principal Component Analysis (PCA) is a method of data analysis
and dimensionality reduction that seeks the directions of space that best
represent the correlations between D random variables.

Goals

1 Obtaining an approximation of a scatter of K objects in a subspace of
low dimension (2 or 3).

2 Summarizing a data set represented by a matrix X of N rows and D
columns.

3 Getting a simple and reliable visualization of the information
contained in the data.
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Linear Feature extraction methods Principal Component Analysis

Reducing the dimensionality: Principle of PCA

The Principal Component Analysis (PCA) is a method of data analysis
and dimensionality reduction that seeks the directions of space that best
represent the correlations between D random variables.

Principle

1 Compute the covariances or correlations between variables.
2 Use this indexes to create new variables:

The original variables are replaced with the new variables.
Each new variable is a linear combination of the original variables.
These new variables must be as independent (uncorrelated) from each
other as possible.

3 Select among the new variables the ones that best represent the
distribution of the data and eliminate the others.
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Linear Feature extraction methods Principal Component Analysis

PCA : Principle

Figure: From 21 variables to 2 variables using PCA. Note that the 3 clusters are
still visible.
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Linear Feature extraction methods Principal Component Analysis

PCA and Normalizing the data: Centering and reducing

Prior to a Principal Component Analysis, centering the variables around
their means and scaling them may be necessary.

Centered variables

M =

 x1,1 − µ1 · · · x1,D − µD
...

. . .
...

xN,1 − µ1 · · · xN,D − µD


Centered Reduced variables

M̃ =


x1,1−µ1
σ1

· · · x1,D−µD
σD

...
. . .

...
xN,1−µ1)

σ1
· · · xN,D−µD

σD
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Linear Feature extraction methods Principal Component Analysis

PCA and the Variance-Covariance Matrix

Once the data have been normalized, computing the variance-covariance
matrix is the next step in order to assess the potential relationships
between the different variables.

Variance-Covariance

C =

 VAR(X1) · · · COV (X1,XD)
...

. . .
...

COV (XD ,X1) · · · VAR(XD)
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Linear Feature extraction methods Principal Component Analysis

Calculation of new PCA variables

Now that we know the covariance relationships between all variables, we
seek to create new variables using linear combinations of the old ones:

A first new variable represented by a single axis u1 so that the
projection of u1 has a maximum variance.

Then we seek for a second axis u2 independent of u1 (i.e. orthogonal
to u1) that best explains the remaining variance.

And so on.

Note that for visualization purposes, 2 or max 3 axes are usually enough.
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Linear Feature extraction methods Principal Component Analysis

PCA : Example 1

Figure: A possible projection on a new single axis
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Linear Feature extraction methods Principal Component Analysis

PCA : Example 2

Figure: Changing the axis for more convenient variables
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Linear Feature extraction methods Principal Component Analysis

PCA : Example 3

Figure: A possible projection on two new axis
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (1/6)

Let us denote M the centered version of the data set X of n rows and d
columns, u1 the first loading vector, and πu1(M) = M · u1 the projection of
the data set on this component.

We seek u1 of norm 1 so that the projection of the data on u1 has a
maximum variance.

Computing u1

u1 = argmax
||u||=1

(
p∑

i=1

(πu(Mi ))2

)

u1 = argmax
||u||=1

(
||M · u||2

)
= argmax
||u||=1

(
uT ·MTM · u

)
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (2/6)

We seek u1 of norm 1 so that the projection of the data on u1 has a
maximum variance.

Computing u1

Let us note Vπ the variance of πu(M):

Vπ =
1

N − 1
πu(M)T · πu(M) = uT · MTM

N − 1︸ ︷︷ ︸
C

·u = uT · C · u

With C the variance-covariance matrix of the original dataset X .

Note that it only works because all variables Mi are centered !
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (3/6)

Computing u1

From Vπ = uT · C · u, maximizing Vπ is equivalent to solve:

C · u = Vπ · u

By definition, the solution of this equation is the set of couples :
eigenvectors / eigenvalues of C .

The largest eigenvalue λ1 is the variance Vπ, the maximum reachable.

The associated eigenvector is the projection axis u1 along which Vπ is
maximum.
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (4/6)

The above reasoning has allowed us to conclude that the vector which
explains the more inertia (i.e. the variance) of the data points is the first
eigenvector. Similarly, the second vector which explains most of the
remaining inertia is the second eigenvector, etc.

We also saw that the variance of the data projected onto the nth

eigenvector (also called - variance explained by this axis) is λn.

Remark

In Matrix form, we have: C ∝ UΛUT where Λ is a diagonal matrix
containing all single values.
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (5/6)

Computing uk

To find the kth component, the data are updated:

X̃k = X−
k−1∑
s=1

X · us · uT
s

The process that we have just presented is repeated by finding the new
maximal eigenvectors of the variance-covariance matrix of the new data.

It turns out that this process gives the remaining eigenvectors of the
original variance-covariance matrix.

Therefore, in practice the kth component is picked by choosing the
kth largest eigenvalue and the associated eigenvector.
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables (6/6)

Algorithm

1 Choose p the number of dimensions that you want to keep.

2 Select the eigenvectors (u1, · · · , up) associated with the p largest
eigenvalues.

3 Project the data on the new axes in order to obtain a description of
these data according to the new variables (called principal
components): πu(M) = M · u.

4 If the number of dimensions is ≤ 3, it is possible to represent the data
in the new space.
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Linear Feature extraction methods Principal Component Analysis

PCA : Calculating the new variables

Another possible algorithm

1 Choose P the proportion of information (also called inertia) that we
want to keep.

2 Select y eigenvectors so that:

y = argmin
y

∑y
i=1 λi∑
λ
≥ P

3 Project the data on the new axes.

4 If the number of dimensions is ≤ 3, it is possible to represent the data
in the new space.
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Linear Feature extraction methods Principal Component Analysis

PCA : choosing the number of components

We typically decide on the number of principal components required by examining
a scree plot. Look for a point at which the proportion of variance explained by
each subsequent principal component drops off, this is often referred to as an
elbow in the scree plot.
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Linear Feature extraction methods Principal Component Analysis

Reminders

Reminder: eigenvalues

The eigenvalues of a matrix X are determined by the vector λ so that:

|X − λI | = 0

Where | · | is the determinant operator.

Reminder: eigenvectors

The eigenvector vi linked to a eigenvalue λi solves the following equation:

X · vi = λi · vi
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Linear Feature extraction methods Computing the correlations

Computing the correlations

We know that the new variables represent linear combinations of the old
ones. It is therefore interesting to analyze the correlation between the old
and new variables to interpret the results.

Correlations between an old variable and a new variable

r(Mi , πj) =
1

N

TMi · πj
σi
√
λj

This expression follows directly the original formula for the correlation
coefficient, recalling that λj is the variance of the projection of the data on
the new uj axis.
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Linear Feature extraction methods Visualization

Circle of correlations (1/3)

Now that we know the correlation between the old and new variables,
we can simply visualize a circle of correlations.

This allows to both characterize the new variables (which makes it
possible to visually interpret the data) and to visualize the correlation
between the old variables.
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Linear Feature extraction methods Visualization

Circle of correlations (2/3)

Figure: How to project on a circle of correlations
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Linear Feature extraction methods Visualization

Circle of correlations (3/3)

A circle of correlations makes it possible to see how the old variables relate
with the new ones, but also how they relate to each other.
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Linear Feature extraction methods Visualization

Circle of correlations: Example

J. Sublime Data Analysis - Lecture 4 ISEP 2021/2022 59 / 77



Linear Feature extraction methods Visualization

Circle of correlations: Example
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Linear Feature extraction methods Singular Value Decomposition

Limits of PCA

The problem with PCA

Using PCA for large data sets with many attributes ?

Examples: genetic data, text data
The covariance matrix is of size d × d . If there are too many
attributes, computing the eigenvalues is too computationaly expensive
because the matrix is too big.

Solution: Singular Value Decomposition (SVD)

Powerful algorithms exist in Python, R, matlab and SAS to compute it.

When to use SVD ?

More attributes than data: N < D
When the centered data matrix M contains mostly 0 (sparse data).
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Linear Feature extraction methods Singular Value Decomposition

Principle

SVD

Given a centered data matrix M, the goal of the SVD is to find the
matrices U, S and V to achieve the following decomposition:

M = USVT

M The data centered data matrix of size N × D

U The matrix containing the left singular vectors (eigenassay), of size
N × D.

S The diagonal matrix containing the singular values, of size D × D

VT The matrix containing the right singular vectors (eigengenes), of
size D × D

J. Sublime Data Analysis - Lecture 4 ISEP 2021/2022 62 / 77



Linear Feature extraction methods Singular Value Decomposition

Principle

SVD

Given a centered data matrix M, the goal of the SVD is to find the
matrices U, S and V to achieve the following decomposition:

M = USVT

J. Sublime Data Analysis - Lecture 4 ISEP 2021/2022 63 / 77



Linear Feature extraction methods Singular Value Decomposition

Relation to PCA

Let C be the variance-covariance matrix of M. Then:

C =
MTM

N − 1

With the SVD, we have M = USVT , therefore:

C =
VSUTUSVT

N − 1
= V

S2

N − 1
VT

Thus:

The eigenvalues can be computed from the singular values λi =
s2i

N−1

V stores the eigenvectors of MTM.
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling

Multi-dimensional scaling (MDS) originally proposed by Borg and Groenen
in 1997:

MDS encompasses a collection of reduction techniques that maps the
distances between observations in a high dimensional space into a
lower dimensional one.

It aims at finding a configuration of the points in the low dimensional
space so that the inter-point distances remain mostly proportional to
the one in higher dimension.
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling

Besides dimension reduction, MDS is well suited for applications or
algorithms based on the distances between the data, rather than the data
themselves:

Re-building the map of a country based on the distance between the
cities.

Building a 2D map from 3D coordinates (e.g. star constellation map).

etc.

Remarks

With N(N−1)
2 distances, it is always possible to generate the position

of N points in a N dimension space.

MDS computes an approximation for a lower dimensional space.
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Problem formulation

We have

The points x1, · · · , xN in D
dimensions

Any distance δij between
points xi and xj

We want to find

The points y1, · · · , yN in 2 or
3 dimensions

The distance dij between any
yi and yj so that it is close to
δij
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Cost function

We must search dij so that it minimizes an objective function.

We can define such function in a general manner:

Cost =
∑
i<j

(dij − δij)2

δij = ||xi − xj ||2

dij = ||yi − yj ||2
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Stress functions

Given that dij is a function of yi and yj (the δij are constant), thereafter
are a few possible objective functions:

Jaa =

∑
i<j(dij − δij)2∑

i<j δ
2
ij

penalizes large absolute errors

Jrr =
∑
i<j

(
dij − δij
δij

)2

penalizes large relative errors

Jar =
1∑

i<j δij

∑
i<j

(dij − δij)2

δij
A compromise between the two

The last one, Jar , is also referred as Sammon Criterion.
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Algorithm

Choose an objective function J and a step parameter 0 < η < 1.

Compute the distances δij if they are not provided.

Initialize the points y1, · · · , yN randomly and compute the
corresponding dij .

Repeat until convergence:

∀i yi ← yi − η∇J(yi )
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Update Rule

∇Jaa(yk) =
2∑

i<j δ
2
ij

∑
j 6=k

(dkj − δkj)
yk − yj
dkj

∇Jrr (yk) = 2
∑
j 6=k

dkj − δkj
δ2kj

yk − yj
dkj

∇Jar (yk) =
2∑

i<j δij

∑
j 6=k

dkj − δkj
δkj

yk − yj
dkj
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Example 1

Figure: From 3D to 2D using MDS
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Example 2

The dataset ”Eurodist” represents the distance in kilometers between
21 European cities.

The source data set is a square matrix containing the distances
between the cities:
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Example 2

Figure: Reconstructed map of Europe using MDS
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Linear Feature extraction methods Multi-dimensional scaling

Multi-dimensional scaling: Conclusions

The different MDS algorithms differ in the following points:

The distance used in the source space.

The Stress (objective) functions: Using a different stress function will
lead to a different result.

The optimization procedure: Linear MDS can be solved analytically
but cannot model complex (non-linear) low dimensional manifolds
well. However, non-linear MDS requires a more complex and iterative
algorithm.
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