
HAL Id: hal-03845227
https://hal.science/hal-03845227

Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ultra-Fast Machine Learning Inference through C Code
Generation for Tangled Program Graphs

Karol Desnos, Thomas Bourgoin, Mickael Dardaillon, Nicolas Sourbier,
Olivier Gesny, Maxime Pelcat

To cite this version:
Karol Desnos, Thomas Bourgoin, Mickael Dardaillon, Nicolas Sourbier, Olivier Gesny, et al..
Ultra-Fast Machine Learning Inference through C Code Generation for Tangled Program Graphs.
2022 IEEE Workshop on Signal Processing Systems (SiPS), Nov 2022, Rennes, France. pp.1-6,
�10.1109/SiPS55645.2022.9919237�. �hal-03845227�

https://hal.science/hal-03845227
https://hal.archives-ouvertes.fr

Ultra-Fast Machine Learning Inference through
C Code Generation for Tangled Program Graphs

Karol Desnos∗, Thomas Bourgoin∗, Mickaël Dardaillon∗, Nicolas Sourbier∗, Olivier Gesny† and Maxime Pelcat∗
∗Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, 35000 Rennes, France. first.last@insa-rennes.fr

†Silicom, 35000 Rennes, France. ogesny@silicom.fr

Abstract— Tangled Program Graph (TPG) is a Reinforce-
ment Learning (RL) technique based on genetic programming
concepts. On state-of-the-art learning environments, TPGs have
been shown to offer comparable competence with Deep Neural
Networks (DNNs), for a fraction of their computational and
storage cost.

The contribution of this paper focuses on accelerating the infer-
ence of pre-trained TPGs, through the generation of standalone
C code. While the training process of TPGs, based on genetic
evolution principles, requires the use of flexible data structures
supporting random mutations, this flexibility is no longer needed
when focusing on the inference process.

Evaluation of the proposed approach on four computing
platforms, including embedded CPUs, produces an acceleration
of the TPG inference by a factor 50 compared to state-of-
the-art implementations. The inference performance obtained
within a complex RL environment range between hundreds of
nano-seconds to micro-seconds, making this approach highly
competitive for edge Artificial Intelligence (AI).

Index Terms—machine learning, Tangled Program Graph,
embedded systems

I. INTRODUCTION

In a decade, Artificial Intelligences (AIs) powered by Deep
Neural Networks (DNNs) have superseded conventional al-
gorithms in many domains, from computer vision [4] to
robotics [8]. While the capabilities of DNNs are impressive,
their huge computational complexity is an obstacle to their
integration in edge computing platforms, where computing,
memory, and energy resources are scarce. To embed AIs
in edge computing platform, an alternative approach is to
develop new machine learning techniques that rely on light-by-
construction models, such as the TPG Reinforcement Learning
(RL) model studied in this paper.

TPG, which stands for Tangled Program Graph, is a RL
model proposed by Kelly and Heywood in [10]. Building
on state-of-the-art genetic programming techniques, Tangled
Program Graphs (TPGs) are grown from scratch for each
learning environment in which they are trained. Hence, the
topology and the complexity of the TPG adapt themselves
to the complexity of the learned task, without requiring an
expert to select an appropriate network structure. In recent
works [7], [9]–[11], TPGs have proven to be a very promising
model for building AIs, being competitive with state-of-the-art
DNNs for a fraction of their computation and memory cost,
both for training and inference.

This paper introduces a new design flow to enable ultra-fast
and lightweight inference RL agent based on the TPG model.

The core of this contribution consists of translating pre-trained
TPG graphs into standalone and standard C code, compilable
without depending on any third-party library. Resulting in-
ference times measured with the generated code are 24 to 85
times faster than inference within a state-of-the-art framework
for TPGs, executed on identical hardware.

The TPG model and motivations behind this work are
introduced in Section II. Related works on the acceleration of
machine learning techniques are reviewed in Section III. Then,
Section IV details the code generation process at the core of
this paper. Section V evaluates and discusses the inference
performance obtained on four different general purpose and
embedded platforms with a state-of-the-art RL environment.
Finally, Section VI concludes this paper.

II. CONTEXT & MOTIVATIONS

A. Tangled Program Graph (TPG)

The semantics of the Tangled Program Graph (TPG)
model, depicted in Figure 1, consists of three elements com-
posing a direct graph: programs, teams and actions. The teams
and the actions are the vertices of the graph, teams being
internal vertices, and actions being the leaves of the graph.
The programs, associated to the edges of the graph that each
connects a source team to a destination team or action vertex.
Self-loops, that is an edge connecting a team to itself, are not
allowed in TPGs.

A B+>

B

(a) TPG example

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

(b) TPG semantics

Fig. 1: Semantics of the Tangled Program Graphs (TPGs)

From afar, a program can be seen as a black box that
takes the current state of the learning environment as an
input, processes it, and produces a real number, called a
bid, as a result. In more detail, a program is a sequence
of arithmetic instructions, like additions or exponents. As

depicted in Figure 2, each instruction takes as an operand
either data coming from the observed learning environment,
or the value stored in a register by a previous instruction. The
last value stored in a specific register, generally called R0, is
the result bid produced by the program.

42.0e

Fig. 2: Program from a TPG. On the left, the learning
environment state fed to the program. In the middle, the
sequence of instructions of the program. On the right, the
result produced by the program.

The execution of a TPG starts from its unique root team,
when a new state of the environment becomes available. All
programs associated to outgoing edges of the root team are
executed with the current state of the environment as their
input. Once all programs have completed their execution,
the edge associated to the largest bid is identified, and the
execution of the TPG continues following this edge. If another
team is pointed by this edge, its outgoing programs are
executed, still with the same input state, and the execution
continues along the edge with the largest bid1. Eventually, the
edge with the largest bid leads to an action vertex. In this case,
the action is executed by the learning agent, a new resulting
state of the environment is received, and the TPG execution
restarts from its root team.

The genetic evolution process of a TPG relies on a
graph with several root teams. At a given generation of the
learning process, each root team of the TPG represents a
different policy whose fitness is evaluated. Worst-fitting root
teams, which obtained the lowest rewards, are deleted from
the TPG. To create new root teams for the next generation
of the evolution process, randomly selected remaining teams
from the TPG are duplicated with all their outgoing edges.
Then, these new edges undergo a random mutation process.
A detailed description of this evolution process can be found
in [9].

B. Motivations and Opportunities for Inference Acceleration

The main motivation behind this work is to accelerate the
inference of AIs based on the TPG model by decreasing the
computational complexity of the inference process. A first
benefit of accelerating the inference of TPGs is to obtain better
response time for AI agent implemented with this model,
which may be a strong asset for integration in tightly con-
strained real-time systems. A second benefit of faster inference
time is energy savings. Indeed, reducing the computation time
needed to obtain the same result will lighten the computational

1If a team is visited several times, previously taken edges are ignored to
avoid infinite loops.

load of the processor used, which generally translates into
power savings. A third benefit of decreasing the computational
complexity of TPG inference is that it may allow developers
to fulfill their time constraints while using a less powerful,
less expensive, and less environmentally impacting hardware
for their systems.

In this paper, we focus on accelerating the inference TPG,
that is, the execution of a TPG whose graph topology and
programs have been fixed during a training process. The
consideration of a TPG with a fixed topology creates many
opportunities for accelerations:
• Removing overhead for dynamic TPG structures. During the

training process, the topology of the TPG teams, its number
of programs, and the instruction list of each program may
change as a result of the genetic mutation process. In order
to support these constant mutations, flexible data structures
must be used to support the creation and the destruction of
random teams, programs and instructions.

• Removing TPG instruction decoding and learning environ-
ment data fetching overhead. Because during training, TPG
programs contain a dynamic list of instructions, referencing
operands that can also be mutated during the genetic evo-
lution process, execution of these programs requires a soft-
ware instruction decoding and data fetching mechanisms.
Even in their simplest forms, these decoding and fetching
mechanisms introduce an indirection overhead during the
program execution.

• Benefiting from compiler optimization. By translating pre-
trained TPG into standalone standard C code, the inner
working of the TPG and its programs are directly exposed
to C compilers, making it possible to benefit from their
powerful optimization passes.

III. RELATED WORK

The need for fast and low-power AIs is the subject of many
studies in the scientific literature [8], [13], [17]. A common
way to create lightweight and frugal AIs is to exploit the
resilience of DNNs to approximations, using techniques such
as pruning, low-precision, and approximate computing [13],
[17]. By using such techniques, it is possible to simplify
the trained DNN model while retaining most of its accuracy,
with typical gains up to 1 order of magnitude in terms of
computational complexity and 2 orders of magnitude in terms
of memory usage [13], [17]. Even with these techniques, only
relatively small and less powerful DNNs, such as MobileNet or
EfficientNet [16], can be embedded in tight memory-, energy-,
and time-constrained systems.

Creating dedicated design flow for inferring pre-trained AI
agent has also been explored in the scientific literature. For
example, PyTorch, a popular DNN framework, offers the pos-
sibility to generate so-called TorchScript, which is a standalone
C++ code for inferring the DNN. A similar approach is the use
of the ONNX format and associated inference runtime that can
be exported from TensorFlow. These techniques considerably
reduce the complexity of DNNs inference, especially when
batch sizes are small, with typical acceleration by a factor 2×

to 10× on various DNN models and hardware [1], [12]. Other
C++ code-generation frameworks have also been proposed,
notably to remove all dependences of the generated code to
third-party library, which is not the case with TorchScript or
ONNX [2], or to target specific many-core hardware through
the generation of OpenCL code [5].

Although DNN currently dominates the world of machine
learning, many other techniques have proven their worth in the
past, and continue to be useful today, such as random forest,
support vector machines, or principal component analysis.
As for DNN, while powerful frameworks exist to train these
models, like the scikit-learn Python module, code generation
technique have also been created to create inference code of
pre-trained models. MicroML Gen, which supports a wide
variety of non-DNN model, is an example of framework
generating standalone C code for embedded devices with
very limited resources, such as ARM Cortex M3 microcon-
trollers [14].

The TPG model was created half a decade ago, and most
scientific publication focus on extending the capabilities of the
model [11], [15], but not on accelerating its performance on
modern hardware. Hence, available open-source frameworks
for TPGs are mostly coded in standard Python, Java, and
C++ [7], [10]. This paper introduces the first effort to
translate the topology and programs of a pre-trained TPG
into standalone C code. As in [2], to maximize the portability
and lightness of generated code, the generated C code can be
compiled without any dependency to third-party library.

IV. CODE GENERATION FOR TPG INFERENCE

The C language was selected as the target language for
the TPG code generation as it is the de facto reference for
programming embedded systems. Hence, this choice ensures
the portability of generated code on a wide variety of target
hardware, ranging for ultra-low power microcontrollers, to
high-end CPUs. The following subsections describe how the
different parts of a pre-trained TPG are translated into standard
C code.

A. Code Generation for Programs

In a TPG, a program is a list of instructions using data from
the learning environment or results of previous instructions as
operands. As presented in [7], training a TPG with different
instruction sets results in RL agent with different complexity
and fitness. For this reason, it is interesting for TPG frame-
works to allow developers to customize the instruction set for
each training with dedicated instructions.

auto addInst = LambdaInstruction<int, int>(
[](int a, int b)->double {return a + b;},
"$0 = $1 + $2");

auto accuInst = LambdaInstruction<double[2][1]>(
[](double[2][1] t)->double {

return t[0][0] + t[1][0];},
"$0 = $1[0][0] + $2[1][0]")

Listing 1: LambdaInstruction usage examples

In a C++ framework, this customization can be supported
using lambda functions to specify instructions with their
operand number and types, and the lambda function to execute
when this instruction is called. Listing 1 presents two examples
of C++ code declaring such custom instuctions where template
arguments define the number and data types of operands
accepted by this instruction, and the lambda function is the
code to execute.

To generate the C code corresponding to a program, each
instruction must be translated into C code. For this reason, as
shown in Listing 1, a template string is used when declaring
the instruction. This template string, which adopts the syntax
of regular expressions, uses the $0 placeholder for the register
storing the result returned by the instruction, and the $n
placeholder for the name of the nth operand of the instruction.

1 double P0(int* in0 /* 1D array */,
2 double* in1 /* 4x4 2D-array */)
3 {
4 double reg[8] = { 0 };
5 { /* 1st Instruction: addInst */
6 int op0 = in0[0];
7 int op1 = reg[2];
8 reg[7] = op0 + op1;
9 }

10 { /* 2nd Instruction: accuInst */
11 double[2][1] op0 = {{in1[5]}, {in1[9]}};
12 reg[0] = op0[0][0] + op0[1][0];
13 }
14 ... // Following instructions
15 return reg[0];
16 }

Listing 2: Program P0() generated code

For each program of the TPG, a dedicated C function
is printed, as shown in Listing 2. At lines 1-2, the printed
function receives as arguments, the pointers to the data sources
used to observe the current state of the environment. At lines 4,
it declares the registers used to store the results of instructions
throughout the program. Then, at lines 4-14, the instructions of
the programs are printed one by one. For each instruction, the
operands are first retrieved from the environment data source.
For simple data types, this is achieved through simple pointer
dereferencing, as done at line 6-7. For complex operand
types, the container class managing the environment data may
provide more complex code generation schemes for fetching
the operands, as shown at line 11 where a 2D subregion of a
2D array of double is extracted automatically. Finally, the
value held in the first register is returned as the bid for the
program at line 15.

B. Code Generation of TPG Structure

In this work, we choose to represent the traversal of the
TPG graph directly in the generated code, exposing the graph
structure to the compiler to perform additional optimizations.

The TPG is encoded as an Finite State Machine (FSM) using
a switch structure. An extract of the TPG switch structure
is represented on Procedure 1. Each case represents a team,
containing program executions, as Team1 at line 5. Transitions

in the FSM represent the edges of the graph. The traversal of
teams is saved in a specific array initialized at line 2 to avoid
executing programs multiple times. Scores are set to −∞ (e.g.
line 13) to record edge traversals during graph execution in
order to avoid falling in an infinite loop. The traversal of a leaf
team, returns the integer value of the corresponding action, as
in line 18.

Procedure 1: ExecuteTPG
Input: Data sources: data
Output: Action

1 team = rootTeam
2 visited[] = { False }
3 while True do
4 switch team do
5 case Team1 do
6 if !visited[team] then
7 visited[team] = True
8 T1Scores[0] = P0(data)
9 T1Scores[1] = P1(data)

10 ... // Outgoing programs of the team
11 end
12 best = bestProgram(T1Scores)
13 T1Scores[best] = −∞
14 team = T1Next[best]
15 end
16 ... // Other teams of the TPG
17 case Action0 do
18 return 1
19 end
20 ... // Other actions of the TPG
21 end
22 end

A stack based structure has also been explored and is
evaluated in Section V. With the stack structure, each team
is represented as a function, itself containing an array with
all program pointers and edges. An execution function called
within each team is in charge of executing the programs and
selecting the next team to execute according to the winning
bid. The team calls recursively their next team, hence the stack
structure. Once reaching an action, the value of the action is
returned to the caller. The main limitation of this method is
the potential maximum stack size, which can be as large as
the number of edges in the TPG.

V. EVALUATION OF GENERATED INFERENCE CODE

To assess the benefits of the proposed code-generation strat-
egy for inferring TPGs, the contribution was evaluated on a
diverse set of computing platforms and learning environments,
all presented in Section V-A. Analyses of the results of these
experiments are then discussed in Section V-B. To ensure
the reproducibility of the presented results, all library code,
pre-trained TPGs, execution traces and analysis code is made
available as open-source artifacts [6].

A. Experimental Setup
1) Training and Learning Environments:

The proposed code generation strategy has been implemented
as part of the open-source C++ GEGELATI framework for
TPGs [7]. Generic Evolvable Graphs for Efficient Learning of
Artificial Tangled Intelligence (GEGELATI) was proven to give
similar performance, on a single CPU core, for the training and
inference of TPGs as the reference C++ code from Kelly [9].
Version 1.1.0 of GEGELATI was used for all experiments
described in this paper, notably to provide the reference time
for inference without code generation.

The Arcade Learning Environment (ALE)
(version 0.6.1+d3f2b25) was chosen as the learning
environment for training TPG [3]. The Arcade Learning
Environment (ALE) is a collection of 55 Atari 2600 video
games, with diverse complexity. In these experiments,
5 games with diverse degrees of difficulty were chosen
to compare assess the performance of generated code:
alien, asteroids, centipede, fishing_derby,
and frostbite.

For the following experiments, 10 trainings with different
seeds for the pseudo-random evolution process were run for
each of the 5 selected games. Each of the 50 TPG graphs
was trained during 400 generations, using the meta-parameters
described in [9]. The characteristics of the trained TPGs are
summarized in Table I. These TPGs cover a wide range of
use cases, with the smallest TPG consisting of only 3 teams
and 8 programs, and the largest one consisting of 25 teams
and 50 programs. It is important to note that all teams that
were never visited during a game, and all programs that never
produced a winning bid were all removed from the TPG at
the end of the training process.

2) Platforms:
The performance of the 50 pre-trained TPGs has been eval-
uated on 4 different platforms, including both low-end, em-
bedded and high-end CPUs. Characteristics of the 4 CPUs are
summarized in Table II.

Id Platform Core type Frequency GCC
rpi2 Raspberry Pi 2 ARM A7 32bit 0.9 GHz v11.2.0
jetson Jetson Nano TX2 ARM A57 64bit 1.2 GHz v7.5.0
laptop i7-8650U Intel x64 1.9 GHz v9.3.0
xeon Xeon E5-2690 Intel x64 2.9 GHz v7.5.0

TABLE II: Characteristics of the 4 target CPUs.

B. Experimental Results
On each target platform, the inference time of each of

the 50 TPGs summarized in Table I was measured 5 times
with GEGELATI, 5 times with switch-based code gener-
ation inference, and 5 times with the stack-based code
generation. All measures were done using standard C++
std::chrono::high_resolution_clock timer. For
each {game, platform, TPG, inference mode} configuration,
only the average inference time is kept, as the observed relative
standard deviation for the 5 runs of each configuration are very
low, with an average of 0.06% with the library, and 0.004%
with generated code.

Game Teams Programs Instr. / prog. Actions / game Teams / action Prog. / action
alien 15.40 ± 30% 34.10 ± 23% 4.73 ± 46% 4747.60 ± 22% 6.38 ± 18% 19.78 ± 19%
asteroids 12.20 ± 27% 31.70 ± 21% 4.81 ± 19% 11848.60 ± 25% 5.91 ± 28% 20.99 ± 26%
centipede 14.00 ± 42% 28.70 ± 37% 4.80 ± 18% 17992.00 ± 0% 6.03 ± 41% 18.02 ± 37%
fishing_derby 9.70 ± 58% 20.80 ± 57% 4.14 ± 17% 8477.00 ± 11% 5.00 ± 47% 12.87 ± 35%
frostbite 9.90 ± 39% 24.20 ± 32% 4.56 ± 34% 8534.60 ± 41% 4.87 ± 39% 13.74 ± 30%

TABLE I: Characteristics of TPGs used in experiments. For each characteristic (columns), the table contains the average value
and the relative standard deviation for the 10 TPGs trained on each game (rows).

When measuring the inference time, only the time spent
executing the TPG is measured. The time taken to compute
the evolution of the environment state following an action of
the TPG is not part of the measured inference time. Although
the time taken to parse the TPG file and build the TPG into
the library could also be measured, and compared with the
time needed to load the compiled generated code, this time
strongly depends on the chosen file format which, in our case,
would be unfairly to the detriment of the library.

1) Stack- vs Switch-based code generation:
To assess which of the switch- and stack-based code gener-

ation produces the best performance, the measured inference
time were compared for the 50 TPG inferred on all platforms.
Figure 3 presents the speedup in inference time of the switch-
based code generation with respect to the stack-based code
generation. On average, inference time with the switch-based
code generation is 8.87% faster than with the stack-based
structure, and is faster in 95% of the configurations. This
result can be explained by the function calls and stack memory
usage overheads of the stack-based structure. Moreover, the
switch-based structure is compiled to a jump table, creating
an efficient code for the TPG inference execution.

In the reminder of this section, all code generation results
are obtained with the switch-based code generation.

2) Inference performance with generated code and library:
The speedups in inference time of the generated switch-based
code with respect to the library is presented in Figure 4. They
are based on the total TPG inference time during a game,
and are presented as a ratio between the library and generated
code. On average on all games, the observed speedups are 44×
on xeon, 24× on laptop, 45× on jetson, and 85× on
rpi2. There are many possible causes to these difference in
average speedup between platforms, notably: different hard-
ware complexity (in-order vs out-of-order pipeline, bitwidth,
instruction & data cache sizes), different compiler versions,
etc. Nevertheless, the obtained results are very good, especially

−10% 0% 10% 20% 30% 40%
Speedup Switch vs Stack

Fig. 3: Speedup in inference time of the switch-based gener-
ated code with respect to the stack-based generated code. The
box-plot represents the statistics obtained over 200 speedups
(5 games×4 platforms×10 TPGs).

xeon laptop jetson rpi2

20x

40x

60x

80x

100x

120x

alien
asteroids
centipede
fishing_derby
frostbite

Platforms
S
pe

ed
up

Fig. 4: Speedup in inference time of the generated code with
respect to the library. Each box-plot represents the statistics
for the 10 TPGs trained for a given game, and inferred on a
specific platform.

for the rpi2 which is the most lightweight CPU and benefits
the most from the acceleration brought by the code generation.

Interestingly, the per-game variations of the speedups ob-
served on every platform are very similar. For example,
speedups obtained on all platforms for the asteroids
game are on average 56% larger than speedups for the
fishing_derby game. This results seems to indicate that
the measured speedup per-TPG depends on the intrinsic com-
plexity of the TPG itself, which derives from its number of
teams or programs.

xeon laptop jetson rpi2
100ns

2

5

1μs
2

5

10μs
2

5

100μs
2

5

0.001s
2

Codegen
Lib

Platforms

Ti
m

e
pe

r
ac

tio
n

(l
og

 s
ca

le
)

Fig. 5: Average time per TPG inference with the generated
code and with the library. Each box-plot represents the statis-
tics for the 50 TPGs (5 games×10 TPGs) run on a platform.

The average times per inference of the TPG, that is per
action, for the different platforms are presented in Figure 5.
These results show the impressive absolute performance of
the generated code, which on average performs an inference
of the TPG within 782ns on xeon, 1.36µs on laptop,
2.41µs on jetson, and 8.60µs on rpi2. While these result
confirm the benefit of using generated code for infering TPGs,
they also reveal the important spread of inference time on
most platforms, with an average relative standard deviation of
34% for generated code (excluding laptop), and 42% for
inference within the library.

xeon laptop jetson rpi2
5

10ns

2

5

100ns

2

5

1μs

2

5

10μs

2

Codegen
Lib

Platforms

Ti
m

e
pe

r
in

st
ru

ct
io

n
(l

og
 s

ca
le

)

Fig. 6: Average time per instruction execution with the gen-
erated code and with the library. Each box-plot represents
the statistics for the 50 TPGs (5 games×10 TPGs) run on
a platform.

Figure 6 depicts the average execution time taken per line
of programs of the TPG on the different platforms. With
the library, these results show that the inference time of a
TPG strongly correlates with the number of lines of program
to execute, with a relative standard deviation of only 12%.
Except on the laptop platform, for yet unknown reasons,
these results also reveal the correlation between the average
number of program lines executed and the inference time with
generated code, with a relative standard deviation of 21%.
The larger spread of per-line execution time for generated
code can be explain by the finer granularity of the measured
time, and the stronger dependency on the nature of executed
instructions and potential compiler optimizations. Indeed, with
the library, the time spent decoding instructions and fetching
operands in software most likely dominates the time actually
spent executing a program line, which hides the complexity
difference between different instructions.

VI. CONCLUSION & FUTURE WORK

This paper introduces a code generation workflow to ac-
celerate the inference of pre-trained Reinforcement Learnings
(RLs) agent based on the Tangled Program Graph (TPG)
model. Acceleration of the TPG inference is achieved by
getting rid of the algorithmic and software overhead that is
unavoidable for training TPGs but dependable when focusing
on TPG inference. Experiments on four computing platforms,
ranging from embedded processors to high-end CPUs, result

in an acceleration by a factor 50, on average, of the inference
time, compared to a traditional framework. For a state-of-
the-art visual RL environment and for performance equivalent
to DNNs, the obtained inference times range from 782ns to
8.60µs on single-core CPUs, making this approach a very
promising one for embedding RL agent in ultra-low power
edge AI systems. Potential directions for future work includes
the generation of code matching the instruction set of the
target computing platform in order to further improve the
complexity-performance tradeoff offered by this technique.

REFERENCES

[1] M. Alluin, “An empirical approach to speedup your bert
inference with onnx/torchscript,” Feb. 2021. [Online]. Avail-
able: https://towardsdatascience.com/an-empirical-approach-to-speedup-
your-bert-inference-with-onnx-torchscript-91da336b3a41

[2] S. An and L. Moneta, “C++ code generation for fast inference of deep
learning models in root/tmva,” in EPJ Web of Conferences, vol. 251.
EDP Sciences, 2021, p. 03040.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
CoRR, 2012. [Online]. Available: http://arxiv.org/abs/1207.4708

[4] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint, 2016.
[Online]. Available: https://arxiv.org/pdf/1605.07678.pdf

[5] B. de Dinechin, J. Hascoët, J. Le Maire, and N. Brunie, “Deep learning
inference on the mppa3 manycore processor,” in Embedded World
Confernce 2020, 2020.

[6] K. Desnos, T. Bourgoin, N. Sourbier, M. Dardaillon, O. Gesny,
and M. Pelcat, “Sips22 artifacts,” Nov. 2022. [Online]. Available:
https://github.com/gegelati/SiPS22-Artifacts

[7] K. Desnos, N. Sourbier, P.-Y. Raumer, O. Gesny, and M. Pelcat, “Gege-
lati: Lightweight artificial intelligence through generic and evolvable
tangled program graphs,” in Workshop on Design and Architectures for
Signal and Image Processing (DASIP), ser. International Conference
Proceedings Series (ICPS). Budapest, Hungary: ACM, 2021.

[8] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning can
accelerate grasp-optimized motion planning,” Science Robotics, vol. 5,
no. 48, 2020.

[9] S. Kelly, “Scaling genetic programming to challenging reinforcement
tasks through emergent modularity,” Ph.D. dissertation, Dalhousie Uni-
versity, Halifax, Nova Scotia, Canada, 2018.

[10] S. Kelly and M. I. Heywood, “Emergent tangled graph representations
for atari game playing agents,” in European Conference on Genetic
Programming. Springer, 2017, pp. 64–79. [Online]. Available:
https://web.cs.dal.ca/ mheywood/OpenAccess/open-kelly17a.pdf

[11] S. Kelly, J. Newsted, W. Banzhaf, and C. Gondro, “A modular memory
framework for time series prediction,” in Genetic and Evolutionary
Computation Conference, ser. GECCO ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 949–957. [Online].
Available: https://doi.org/10.1145/3377930.3390216

[12] M. Levental and E. Orlova, “Comparing the costs of abstraction for dl
frameworks,” arXiv preprint arXiv:2012.07163, 2020.

[13] K. Ota, M. S. Dao, V. Mezaris, and F. G. D. Natale, “Deep learning
for mobile multimedia: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 3s,
pp. 1–22, 2017.

[14] S. Salerno, “Introducing microml generator,” Online, Nov. 2019.
[Online]. Available: https://eloquentarduino.github.io/2019/11/you-can-
run-machine-learning-on-arduino/

[15] R. J. Smith, R. Amaral, and M. I. Heywood, “Evolving simple solutions
to the cifar-10 benchmark using tangled program graphs,” in 2021 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2021, pp. 2061–
2068.

[16] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[17] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep con-
volutional networks using low-precision and sparsity,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2861–2865.

