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Proteins exist for more than 3 billion years: proof of a sustainable design. They

have mechanisms coping with internal perturbations (e.g., amino acid

mutations), which tie genetic backgrounds to diseases or drug therapy

failure. One difficulty to grasp these mechanisms is the asymmetry of amino

acidmutational impact: amutation at position i in the sequence, which impact a

position j does not imply that the mutation at position j impacts the position i.

Thus, to distinguish the influence of the mutation of i on j from the influence of

the mutation of j on i, position mutational influences must be represented with

directions. Using the X ray structure of the third PDZ domain of PDS-95 (Protein

Data Bank 1BE9) and in silico mutations, we build a directed network called

GCAT that models position mutational influences. In the GCAT, a position is a

node with edges that leave the node (out-edges) for the influences of the

mutation of the position on other positions and edges that enter the position

(in-edges) for the influences of the mutation of other positions on the position.

1BE9 positions split into four influence categories called G, C, A and T going

from positions influencing on average less other positions and influenced on

average by less other positions (category C) to positions influencing on average

more others positions and influenced on average by more other positions

(category T). The four categories depict position neighborhoods in the protein

structure with different tolerance to mutations.
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Introduction

Proteins exist for more than 3 billion years, testimony of a sustainable design that

allows them to cope with internal perturbations (amino acid mutations) and external

perturbations (environmental conditions) through time (Woolfson et al., 2012; Parisi

et al., 2015). The protein sustainable design is one key to link individual genetic

backgrounds to individual health and drug-therapy efficiency because genetic

backgrounds modulate protein sequences (sequence variants, mutations), which in

turn modulate the biological function of proteins which if faulty can lead to diseases.

There are three functional consequences to mutations: 1) functional reproducibility

(robustness), 2) functional innovation (adaptation) and 3) functional failure (e.g.,
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pathologies). If the mutation of an amino acid type a to an amino

acid type b at a position i in the protein sequence leads to

functional innovation or functional failure, it means that the

changes due to the mutation at position i functionally influence

the system. Here the system consists of the other {j} amino acid

positions in the protein sequence. On the contrary, if the same

mutation from type a to type b at position i leads to functional

reproducibility, it means that the changes due to the mutation at

position i have no functional influence on the system: the protein

sequence with type a at position i and the protein sequence with

type b at position i are functional alternatives. In other words, in

the case of functional reproducibility the function is still encoded

despite one sequence-error, contributing to the system

sustainability.

Now, amino acid mutations can influence the protein

structure and/or its dynamics prior influencing its function

such that understanding how proteins cope with mutations

requires to monitor changes not only on the function but on

the structure and the dynamics. From there, the issue is to

distinguish changes tolerated by the structure which yield

structural alternative and structurally robust solutions from

changes not tolerated, which identify potential needs for

“corrections” to accommodate the mutations. Likewise, this

applies to dynamical and functional changes. Computational

biology and learning methods, which can screen large dataset,

offer several efficient tools and methods to analyze protein

tolerance to mutations, more generally to analyze the

mutational fate of amino acid positions (Vuillon and Lesieur,

2015; Ponzoni and Bahar, 2018; Poelwijk et al., 2019; Liang et al.,

2020; Pacini et al., 2020; Demir et al., 2021; Pacini et al., 2021;

Wingert et al., 2021; Xavier et al., 2021; Sen et al., 2022).

The features of amino acid positions (e.g., rASA, amino acid

types, secondary structures, etc.) are involved in the mutational

fate of positions as revealed by the higher tolerance to mutations

of surface exposed positions (Halabi et al., 2009) or the high

frequency of Trp or Cys (involved in disulfide bridge) mutations

in diseases (Iqbal et al., 2020). Now Trp and Cys features are

rather unique among the twenty most common amino acids,

which means reproducing their features with alternative amino

acid types is unlikely. That may be why they are intolerant to

mutation and often involved in diseases when mutated.

There are also evidences that the mutational fate of a position

depends on amino acid types at other positions. Pairwise position

interdependency is shown by co-evolution analysis and

identification of sector positions (Halabi et al., 2009;

McLaughlin et al., 2012). Rescue mechanisms where the

impact of individual mutations involved in cancers are

prevented by mutations elsewhere are other examples of

amino acid pairwise position interdependency (Demir et al.,

2011). Functional innovation and adaptation mechanisms

where coupled mutations introduce a new function while

individually each mutation reproduce the original function is

also showing the role of another position in the mutational fate of

a position (Amitai et al., 2007). The functional tolerance to

double mutations means that the function remains

decipherable despite the two errors in the protein sequence,

improving the system sustainability compared to a system

tolerating only single errors. Moreover, the system is capable

of correcting errors by introducing errors elsewhere, improving

even more the system sustainability by increasing the diversity of

functional sequence alternatives compared to systems with

unique functional solutions.

Finally, there are evidences of the role of amino acid

neighbors and hence of the influence of more than one other

position on a positionmutational fate. For example, experimental

results show that the mutation of one amino acid type by another

type does not systematically have the same effect, indicating that

the type at the position is not embedding all the information of

the mutational fate, the position neighborhood matters as well.

Computational biology also contributes in investigating the

impact of multiple mutations on protein fate showing the role

of neighborhoods (Pires et al., 2014; Achoch et al., 2016;

Dorantes-Gilardi et al., 2018; Liu et al., 2021). In summary,

the mutational fate of a position i is encoded by a set of amino

acid types at the position i given a set of {j} amino acid type

neighbors. Said otherwise, there exist position neighborhoods

that encode structural robustness, others that encode structural

innovation and yet others, structural failure. Likewise, this

applies to dynamics and functions.

Here we propose to investigate the mutational fate of position

by classifying position neighborhoods according to their

tolerance to mutations and thus identifying positions robust

to mutations and positions potentially needing corrections to

tolerate mutations. To tackle the complexity related to changes

on structure, dynamics and function, we simplify the problem by

three means. Firstly, we use in silico mutations such that the

structural integrity is maintained upon mutations and the

problem is now limited to identifying neighborhoods

maintaining structural integrity upon mutations from

neighborhoods introducing changes and hence potentially

requiring corrections to avoid downstream effects. Secondly,

we use Fold X so only the side chain at the site of mutation is

changed and neighbors are not allowed to move to prevent

accommodation of the mutation through motions, deemed a

correction. Thirdly, the tolerance of a position to its own

mutation and the tolerance of a position to mutations at other

positions are considered. This is to take into account the fact that

a position may influence positions upon mutation and be

influenced by the mutations at other positions.

We developed a directed network, called the GCAT network

that models the direction of changes upon mutation with edges

directed from i to j to represent the influence of the mutation at

position i on other positions j (out-edges) and with edges directed

from j to i (in-edges) to represent the influence of the mutations

at positions j on i. Influences are measured by a change in

position neighborhoods upon mutations, and the objective is to
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split positions according to mutation tolerance with one class

where the neighborhoods have less than average changes and a

class that have more than average changes, considered intolerant

and in need of corrections to accommodate the mutations.

Our model of study is the third PDZ domain of the

synaptic protein PDS-95 (PSD95pdz3, PDB 1BE9) because

the position functional sensitivity is known as well as the

sector positions which are coevolving amino acid positions

(Halabi et al., 2009; McLaughlin et al., 2012).

The 1BE9 GCAT network is built from the comparison of

the neighborhoods of every position in the WT PDB and in

the 19N PDB mutants generated with Fold X (N is the

number of amino acids in the 1BE9 PDB). The

neighborhood information is extracted from each amino

acid network built from each PDB (Methods).

1BE9 positions distribute into four categories of influences

consistent with the capacity of the protein system to generate

changes (G category), connect positions (C category), absorb

changes (A category) and transmit changes (T category).

Positions in the C and A categories modify on average the

neighborhood of less other positions than the positions in the

G and T categories and hence the former are considered

tolerant to mutations while the latter are not and need

adjustment of neighbors to accommodate mutations at the

positions.

Methods

Case of study- The third PDZ domain of the synaptic protein

PDS-95 (PSD95pdz3) is our case of study and we use its PDB

1BE9 (Doyle et al., 1996).

rASA- The relative Accessible Surface Area (rASA) of each

amino acid of 1BE9 is computed using the DSSP method

implemented in BioPython (Cock et al., 2009) and amino

acids are classified as surface exposed if rASA >0.2 and buried

otherwise. Over the 115 amino acids of PSD95pdz3, 64 are

surface exposed (SE) and 51 are buried.

Amino acid network (AAN)- Starting from the Protein

Data Bank (PDB) (Berman et al., 2000) data, protein

structures are modeled using the Amino Acid Network

(AAN) (Dorantes-Gilardi et al., 2018), an established model

in Computational Biology. The AAN is a graph G = (V; E),

with V the set of the N nodes of the network and E the set of

links of the network. Nodes and links are also called vertices

and edges of the graph, respectively. The edges constitute the

pairs of the nodes (v, w) connected in the graph. The AAN is

an undirected graph where the edges are unordered pairs of

nodes.

Nodes of the AAN. Each node in the AAN corresponds to

one amino acid of the protein’s sequence:

V � {i | i is an amino acid}

Links of the AAN. A link is an atomic interaction defined by

atomic proximity: two amino acids i and j are connected if there

exists at least one couple of atoms, one belonging to i and one

belonging to j, at a distance one from the other lower or equal to a

given threshold. The threshold is fixed to 5 Å:

E � {(i, j)
∣∣∣∣i, j ∈ Vwith i ≠ j and ∃(atom i ∈ i, atom j ∈ j)with dist(atom i, atomj)≤ 5Å}

The AAN is built using Rodrigo Dorantes-Gilardi’s

implementation in the Biographs module available at https://

github.com/rodogi/biographs.

Node degree. The node degree ki is defined as the number of

neighbors of a node i. In the AAN, the node degree corresponds

to the number of chemical/first neighbors of a node i, i.e., amino

acids whose atoms are located at a distance ≤ 5Å of atoms of i.

Position neighborhood. The position neighborhood is the list

of amino acid neighbors of a position, namely all the neighbors

with at least one atom located within ≤ 5Å of at least one

atoms of i.

In silico mutants- All the 19 possible mutations of all the

amino acids of a protein are produced in silico using FoldX

(Schymkowitz et al., 2005) version 5, producing 19 single-amino

acid mutants per amino acid position. First, the PDB structure of

the protein is repaired using the FoldX command RepairPDB.

Then, the in silico mutations are performed on the repaired

structure using the BuildModel command. All parameters were

set at their default values. The RepairPDB procedure is advised in

FoldX before making the in silicomutation because it makes sure

that the WT protein structure on which the mutations are

performed does not contain steric clashes, bad torsion angles

and side-chains orientations that do not correspond to energy

minima. The details can be found in the FoldX documentation

(http://foldxsuite.crg.eu/command/RepairPDB).

GCAT network- The GCAT network is built to model the

directions of changes caused by in-silico amino-acid mutations in

a protein structure in the form of a directed network. A directed

network is a network where the edges are ordered pairs (v, w) of

nodes; v is the tail and w is the head of the edge. In contrast to the

AAN, the GCAT network is directed because it models changes

on j positions when a position i is mutated with an edge from i to j

(out-edges) and it models changes on i when j positions are

mutated with an edge going from j to i (in edges). The mutation

of an amino acid a at position i may change a position j, it does

not imply that the mutation of j changes the position i, hence the

need of modeling the direction of mutational changes.

First, we create all the AANs of the WT protein and of the

protein mutants, i.e., the 19 times the length of the amino acid

sequence possible single-amino acid mutants with Fold X, and

extract the amino acid neighborhoods of all the amino acid

positions in the in-silico mutants and in the WT structure from

their respective AANs. We then compare the neighborhood of

each node in each mutant AANwith respect to theWTAAN and

use this information to measure a change (Figures 1A–C). If there

exists a mutation of i that changes the list of neighbors of a node j
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in the mutant AAN with respect to the WT AAN, we say that i

influences the amino acid j. We recall that in the GCAT network,

the influence of i on j is represented by an arc eij that leaves i; we

call it an out-edge (i → j) (Figure 1C, nodes 2 and 3). Now from

the point of view of j, the arc eij is coming into j and is called an

in-edge which represents that j is influenced by i (the mutation of

i modifies the neighborhood of j, Figure 1C, nodes 2 and 3).

The procedure aggregates the information on the changes

caused by all the nineteen mutations of an amino-acid position

(Figures 1B,C). Namely, positions are mutated by the

19 remaining possible amino acid types, and in- and out-

edges are aggregated for each position. This choice is made to

reduce the complexity of the GCAT network in terms of number

of links but also to synthesize the set of influences a position is

visiting over its mutation by the 19 possible amino acid types.

Positions that do not influence the system or are not influenced

by the system are not represented in the GCAT network.

Because position amino acid neighborhoods and hence

changes in position amino acid neighborhoods upon mutation

are based on AANs built for a cutoff distance of 5 Å, the effect of

the distance cutoff parameter on the GCAT network will deserve

further investigation.

It should be noted that because mutations can change

neighborhoods of amino acids that are not the chemical

neighbors of the site of mutation, an edge in the GCAT

network may connect nodes that are not chemical neighbors

(they are neighbors neither in the WT AAN nor in the mutant’s

AAN). In the toy-case of Figures 1A–C, the 1 →1′ mutation has

caused a change in the neighborhood of nodes 2, 3 and 4 (B)

compared to theWTAAN (A), and thus the edges from node 1 to

FIGURE 1
Schematics of the construction of the GCAT network. (A). The Amino Acid Network (AAN) of thewild-type protein is created. Nodes correspond
to amino acids and are named by the position in the amino-acid sequence of the protein. (B). The AAN of mutants are created. For each amino acid
(i.e., each node of the AAN), the AANof all its 19mutants is created. For eachmutation i- > i’, if an amino acid j has changed amino-acid neighborhood
in themutant’s AAN compared to theWT AAN, then an edge from themutation site i to j is added in the GCAT network. Here, only onemutation
per amino acid is represented, for simplicity. (C). The resulting GCAT network. (D). Schematic of the strongly connected component (SCC) of a
directed graph. (E). Classification of nodes as G (Generate), C (Connect), A (Absorb) and T (Transmit) in the GCAT network, based on the in- and out-
degree. (F). Schematics of neighborhood changes upon in silico mutation. (G). The GCAT network of 1BE9.
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nodes 2, 3, and 4 are added in the GCAT network (C). Please note

that we do not add self-edges (e.g., the change of the

neighborhood of node 1 caused by the mutation of itself) in

the GCAT network. Similarly, the edges from node 2 to nodes

1 and 4 and from node 3 to nodes 1 and 2 are added in the GCAT

network because the 2 → 2′ mutation causes a change in the

neighborhoods of nodes 1 and 4 and the 3→ 3′mutation causes a

change in the neighborhoods of nodes 1 and 2. The 4 → 4’

mutation does not cause any change in neighborhoods compared

to the WT. AAN, and thus no edges leave node 4 in the GCAT

network (Figure 1C).

Node degree in directed network. In a directed network, the in-

degree kin of i is the number of neighbors of i connected to i by in-

links (the link comes into 1) and the out-degree kout is the number

of neighbors of i connected to i by out-links (the link leaves i).

GCAT classes- We classify the nodes (amino acid positions)

in the GCAT network into four categories of influences based on

their in- and out-degree (Figure 1E):

• Generate (G) category: nodes with kin ≤ �kin and kout > �kout;

• Connect (C) category: nodes with kin ≤ �kin and kout ≤ �kout;

• Absorb (A) category: nodes with kin > �kin and kout ≤ �kout;

• Transmit (T) category: nodes with kin > �kin and kout > �kout.

With �kin the average of kin over all the nodes of the GCAT

network and �kout the average of kout over all the nodes of the

GCAT network. It must be noted that by definition �kin = �kout =
�k = |E|/N with |E| the number of edges and N the number of

nodes, for any directed network.

Gephi- The Gephi software is used to visualize networks and

compute network measures (Bastian et al., 2009). Gephi can be

downloaded at https://gephi.org/users/download/. It has three

windows: one working windows (overview) where the network

can be manipulated and network measures computed, one data

laboratory windowwhere the data are available in a table format and

a preview windows to look at the network. In Gephi, we used filters

and statistics available on the upper right corner of the overview and

node aspects, available on the upper left corner of the overview, to

color the nodes according to attributes (sectors, functionally

sensitive positions (FSP), surface exposed positions, etc.). The

GCAT data and other information on the positions are available

from the data laboratory (sectors, FSP, kin, kout, etc.). For more

details on Gephy please see (Bastian et al., 2009). Below, we provide

the definition of connected components, clustering coefficient and

bidirectional edges, measures available in Gephi and used to analyze

the GCAT network.

Connected component. Given a graph G = (V, E), a path p

from v to w in G (v and w are vertices) is a sequence of vertices

and edges leading from v to w. A connected component is a set of

nodes connected to each other by paths. Given a directed graph, a

strongly connected component (SCC) is a sub-graph of the

original graph where all nodes are connected to each other by

some path taking into account that some links can be followed in

just one direction (Figure 1D). Gephi uses the Tarjan algorithm

to compute connected components (Tarjan, 1972).

Clustering coefficient and triangular influences. The

clustering coefficient (Watts-Strogatz), when applied to a

single node, is a measure of how complete the neighborhood

of a node is. That is the fraction of realized edges between

neighbors of i and all possible edges between the neighbors of

i. For a directed network, all possible edges, referred to as the

theoretical number of edges between the neighbors of i, is

computed as:

kix(ki − 1) (1)

When applied to an entire network (Global CC), it is the

average clustering coefficient over all of the nodes in the network.

When an edge between two neighbors j and k of i is present, a

triangle between i, j and k exists. The closer the CC is to 1, the

more connected the neighbors of i are, the larger the number of

triangles made between its neighbors and i. When there are no

triangles between its neighbors and i, the CC is equaled to 0. We

use CC to assess triangular influences between amino acids.

Bidirectional mutual influences. When the mutation of i

changes the neighborhood of j and the mutation of j changes

the neighborhood of i, it creates a bidirectional edge between the i

and j positions, indicating mutual influences between the two

positions and symmetrical mutational changes.

Results

Our objective is to show the role of neighborhoods in the

mutational response of amino acid positions. To do so, we build a

tool thatmodels themutational influences between the amino acids of

a protein from the impact of in silico mutations on the protein

structure. This tool is then used to classify the amino acid positions

according to categories of influences synonymous of position distinct

mutation tolerances and hence of different position neighborhoods.

We chose 1PDZ 1BE9 as a case of study and generate using

Fold X, the 2,185 PDB mutants that correspond to the

19 mutations of the 115 amino acids of 1BE9 (19 × 115 =

2,185), to have the complete mutational landscape of the

1BE9 protein structure. Each single mutation is produced

changing only the side chain atoms at the site of mutation

and keeping mutated structures with energy minima, hence

viable and close to the WT structure. Precisely, neighbors of

the mutation site are not allowed to move such that the

differences between positions in the wild-type and in the

mutated structures, are reduced to having new neighbors (e.g.,

side chain is longer), losing neighbors (e.g., side chain is shorter)

and swapping neighbors (e.g., side chain has different spatial

reach) (Figure 1F, upper and middle panels). This is to classify

positions into positions with neighborhoods tolerating

mutations, namely leading to less changes in the neighbors of

positions upon mutations (Figure 1F, upper panel) and positions
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with neighborhoods not tolerating mutations, namely leading to

more changes in the neighbors of positions upon mutation

(Figure 1F, middle panel). If the neighbors are allowed to

move, we cannot distinguish the class of positions that

tolerates mutations without neighbor motions (Figure 1F,

upper panel) from the class that tolerate mutations with

neighbor motions (Figure 1F, lower panel). Yet the two classes

are different because in the second case to accommodate the

mutation the position of neighbors needs to be corrected. At this

stage, we simply aim at determining two classes: one tolerating,

one needing corrections.

The 1BE9 and its mutated version PDBs are modeled by

amino acid networks (AAN) from which the neighbors of every

position in the structures are computed based on the proximity of

the atoms of the amino acids (Methods). The position

neighborhoods of the WT AAN (Figure 1A) and of the

2,185 mutants AANs are compared to monitor neighborhood

changes (Figure 1B). To model the neighborhood changes over

the 19N mutation for each position, a network called GCAT is

built with the following procedure (Detailed in Method)

(Figure 1C). Amino acid positions are the nodes of the

GCAT. When the mutation of an amino acid of type a at

position i in the sequence modifies the neighborhood of a

position j, an edge leaving i and coming to j is added between

the two node positions (Figure 1B). This is an out-edge that

represents the mutational influence of position i on position j.

When the neighborhood of the position i is modified by

mutations at position j, an edge leaving j and coming to i is

added between the two positions (Figure 1B). This is an in-edge

that represents the sensitivity of position i to mutation elsewhere

(position j here). Arrows are added to a position i based on all the

positions js that change neighborhoods due to the 19 mutations

at position i (all out-edges) and based on the changes in the

position i neighborhood due to the 19 mutations of all the other

positions (all in-edges) (Figures 1A–C). As a result, the nodes of

the GCAT network are all the amino acid positions that change

neighborhoods upon mutations and/or have their own

neighborhood changed upon mutations elsewhere.

The GCAT nodes classify into four categories of influences

based on their in-and out-degree, that is the number of in- and

out-neighbors (Figure 1E) (Methods). The G category is for

nodes with less in-edges than average but more out-edges

than average, representing thus nodes which influence the

system but are not much influenced by mutation elsewhere.

The C category is for nodes with less in-edges and less out-edges

than average, representing thus nodes with little influence on the

system and seldom influenced by mutation elsewhere. The A

category is for nodes with more in-edges and less out-edges than

average, representing thus nodes with little influence on the

system but often influenced by mutation elsewhere. The T

category is for nodes with more in-edges and out-edges than

average, representing thus nodes strongly influencing the system

and strongly influenced by mutation elsewhere. The average

degree used to sort nodes into GCAT categories is k = 7. The

GCAT network for the 1BE9 protein is shown on Figure 1G with

the amino acid nodes colored according to the four categories of

position influences G, C, A and T and with the links colored

based on the color of the node they leave.

The 1BE9 has 115 amino acids from positions 301 to 415,

however the 1BE9 GCAT network has only 113 amino acid nodes

because the positions 351 and 403 do not appear in the GCAT

network. Neither position influences the system (their mutations

modify no amino acid neighborhoods) or is influenced by the

system (no change in their neighborhood upon mutation

elsewhere). These are the only positions exhibiting mutational

independency with all the other positions and complete tolerance

to mutations at their positions and elsewhere. The 1BE9 GCAT

has 21 nodes in the G category (18%), 56 in the C category (50%),

17 in the A category (15%) and 19 in the T category (17%)

(Figure 1F).

Thus analyzing differences in the AAN neighborhoods

resulting from in silico mutations while keeping a 1BE9 WT

environment (js are not moved or mutated), reveals 4 position

influence categories and establishes the role of neighborhoods in

embedding the mutational response of amino acid positions. It

also enables the classification of position neighborhoods

according to mutation tolerance. The C and A positions have

neighborhoods more tolerant tomutations at their positions (and

elsewhere for the C positions) since mutations impact on average

less position. In contrast, G and T positions have neighborhoods

less tolerant to mutations at their positions (and elsewhere for the

T positions) as mutations impact on average more position. G

and T are categories where corrections through neighbor

motions or neighbor mutations are needed for

accommodating mutations.

Among the 17 amino acid types present in the 1BE9 sequence

(there is no CYS, MET or TRP in 1BE9), some are not observed in

the four mutational influence categories but most probably

because the statistics is too small rather than because some

amino acid types are unable to adopt some category. In fact,

even with only 113 positions, the 4 topologies are reasonably

distributed over the 17 types: three amino acid types appear in

4 categories (Gly, Pro and Arg), 10 in 3 topologies (Ala, Asp, Glu,

Phe, Ile, Leu, Asn, Gln, Ser and Val), 3 in 2 (Lys, Thr and Tyr) and

2 in 1 category (Phe and His). The four topologies are adopted

regardless amino acid sizes, chemical properties or spatial

properties (Surface exposed versus buried positions). This

signifies that no amino acid types, no amino acid properties

or spatial positioning exclude an influence category and this

agrees with a design of position mutational influences based on

matching the amino acid position and neighborhoods features.

We will have to investigate many more protein cases to look for

the neighborhood features that associate with influence

categories.

For now, we propose to determine whether the GCAT classes

are related to three position properties, namely spatiality,
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functional sensitivity and sectors using Gephi to visualize the

GCAT network and its features and to compute networkmeasures.

We start by comparing the GCAT of surface exposed and

buried positions (rASA property) because the response of surface

exposed (SE) and buried positions to mutations are often found

different (Halabi et al., 2009). But also because 76% of SE

positions have less than 10 neighbors in the AAN against 6%

of buried positions which could make SE positions more prompt

to C influence category regardless neighborhood features, simply

because the probability of influence is reduced due to having less

neighbors. It is therefore important to check for potential bias

related to the position spatiality before comparing the GCAT of

functionally sensitive positions (FSP) with the GCAT of non-

functionally sensitive positions and the GCAT of sectors with

non-sector positions.

Surface exposed and buried positions

The first analysis compares surface exposed (SE) and buried

positions (Figure 2). The GCAT is composed of 62 surface

exposed amino acid nodes (55%) and 51 buried amino acid

nodes (45%), numbers sufficiently similar to compare them

without using percentages. The SE nodes partition in 3 G

(5%), 42 C (68%), 12 A (19%) and 5 T (8%) while the buried

nodes partition in 18 G (35%), 14 C (27%), 5 A (10%) and 14 T

(27%) (Figure 2, left column). The first remark is on the

percentage of the C category, which is not the percentage of

positions with less than 10 neighbors in the AAN: 68%C category

for SE positions against 76% with less than 10 neighbors and 27%

C category for buried positions against 6% with less than

10 neighbors. Moreover, 50% of the SE positions in G, A and

FIGURE 2
1BE9 GCAT network features of buried (Bu) and surface exposed (SE) sub-networks. The whole GCAT network, the buried and SE GCAT sub-
networks are shown on the upper,middle and lower panels, respectively. The left, middle and right columns are theGCAT classification, all influences
and bidirectional mutual influences, respectively. The square boxes indicate nodes that are involved in homogeneous influences only (i.e., edges SE
to SE or edges Bu to Bu), the circles indicate nodes that are involved in heterogeneous influences only (i.e., edges SE to Bu or edges Bu to SE).
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T categories, have less than 10 neighbors in the AAN. This means

the number of neighbors in the AAN does not alone encodes the

influence category. The SE and buried nodes appear in the four

topologies, albeit to different percentages, indicating that the

spatiality of a position in the protein structure does not encode a

specific influence category either. Nevertheless, SE and buried

positions adopt the influence categories with significant

percentage differences. The A and C topologies are about

twice more frequent for the SE positions whereas the G and T

topologies are seven-times and three-times more frequent for

buried positions, respectively. It therefore seems to us more

reasonable to compare the GCAT of FSP and non-FSP and

the GCAT of sectors and non-sectors only for buried positions.

Using strongly connected components (SCC), we compare

the large-scale connectivity of the SE GCAT and the buried

GCAT. SCC is a set of nodes connected to each other by paths

taking into account the direction of the edges (Methods). The SE

sub-network has 31 strongly connected components (SCC)

against six for the buried sub-network. Our interpretation is

that the mutations of positions that belong to the same SCC are

potentially inter-dependent while the mutations of positions that

belong to different SCC are independent. Multiple mutations

within a SCC could amplify changes leading to more risk of

damages or on the contrary correct changes leading to rescue

mechanisms. Multiple mutations of positions from different SCC

would produce neither amplification nor correction. The split of

the SE positions in 31 SCC could be a mean to seclude surface

areas and prevent propagation of mutational changes throughout

the entire surface, contributing thus to the protein functional

sustainability by limiting the impact of SE mutations. In

comparison, less SCC could promote mutational influences

propagating everywhere on the surface making the control of

points of entrance to trigger function (ligand binding) more

versatile to mutations. The possibility that many SCC limits the

mutational sensitivity of SE positions is consistent with the result

in (Reynolds et al., 2011), which shows that only eleven SE

positions, spatially scattered (out of 39, in the paper they study

93 positions), have significant effects on ligand binding upon

mutation.

The buried network has a less patchy network (6 SCC), which

suggests propagation of mutational influences within most

buried positions. Such propagation might bear alternative

atomic motion paths that support functional allosteric

mechanisms and contribute thus to functional robustness to

mutations (Buchenberg et al., 2017). SE positions, except

functional SE positions are less conserved than buried

positions (Core of the protein) (Halabi et al., 2009), exhibiting

a higher functional robustness to mutations that is consistent

with collective influences scattered in patches as a mechanism to

limit propagation of damages. Nevertheless, this is speculative

and the difference in the SCC could simply be geometrical. The

51 buried amino acids are 3D-packed in the core of the protein

while the SE amino acids are spread on the surface of the protein,

making the distances between all the SE amino acids longer than

between the buried amino acids. Hence having mutational

influence paths connecting all the SE positions is more unlikely.

Considering all influences (i.e., all edges) and coloring the

GCAT nodes according to their spatiality i.e., SE or buried

(Figure 2, middle column), we can see that most nodes,

buried (49 out 51 = 96%) and SE (54 out of 62 = 87%)

combine mutational influences on buried and SE positions,

exhibiting heterogeneous influences and limited independency

between the SE and buried sub-networks. Only four SE nodes

(320, 332, 384 and 402) have exclusive neighborhood influences

on SE nodes and only two buried nodes (325, 376) have exclusive

influences on buried nodes (Figure 2, middle column, upper row,

square boxes). Four SE nodes (333, 373, 380 and 381) are isolated

from the other SE nodes and are only influenced by buried nodes

and only one (380) influences a buried position (375) (Figure 2,

middle column, upper or lower rows, circles). No buried nodes

are isolated from the other buried nodes. Thus, there are little

exclusive influences whether homogeneous (SE-to-SE or buried-

to-buried) or heterogeneous (SE-to-buried or buried-to-SE).

Considering triangular influences, i. e, three-position

mutational influences, computed from the clustering

coefficients (CC), we observe that there are slightly more

triangular influences within the buried sub-network (CC =

0,35) than within the SE sub-network (CC = 0.26) (Methods).

However, the CC of the whole network (CC = 0,30) is close to the

CC averaged over the CCs of the SE and buried sub-networks

((0.35 + 0, 26)/2 = 0.305) indicating more heterogeneous

triangular influences between SE and buried nodes than

homogeneous triangular influences within the SE and the

buried sub-networks, respectively (Figure 2, middle column,

compare upper panel with middle and lower panel).

The heterogeneous influence between SE and buried nodes

is also observed considering bidirectional influences (Figure 2,

right column, compare upper panel with middle and lower

panel). Bidirectional influences model pairwise mutual

mutational influences (Methods). Out of 43 SE nodes

involved in bidirectional edges (69%), twenty-six nodes are

involved in heterogeneous bidirectional edges (Eighteen

combined and eight exclusive SE-to-buried, 60%) and

seventeen are exclusive SE-to-SE bidirectional edges (40%).

Out of 50 buried nodes involved in bidirectional edges (98%),

twenty-eight nodes are involved in heterogeneous

bidirectional edges (Twenty-two combined and six

exclusive buried-to-SE, 56%) and 22 are exclusive buried-

to-buried bidirectional edges (44%).

In summary, the GCAT does not predict the SE and buried

positions, the SE and buried sub-networks have different large-

scale connectivity (SCC), the SE is broken in smaller patches

compared to the buried sub-network and regardless the

influences between all nodes, between three nodes or between

two nodes, there are always influences between the nodes within

each sub-network and between the nodes across the two sub-
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networks. This exhibits networks with some autonomy in the

regulation of mutational influences and at the same time some

coordination of influences between them.

Sector and non-sector positions

The second analysis compares sector and non-sector

positions (Figure 3) (Halabi et al., 2009). The 51 buried

positions split into 38 non-sector positions and 13 sector

positions (out of 17 sector positions) such that the

comparison requires extrapolation by a factor of about 3 or

percentage comparison.

The sectors partition in 5 G (38%), 2 C (15%), 1 A (8%) and

5 T (39%) while non-sector positions partition in 13 G (34%),

12 C (32%), 4 A (10%) and 9 T (24%) (Figure 3, left column).

Sector and non-sectors are distinguished by their percentage in

the C category, twice more in the non-sectors and by their

percentage in the T category, 1.6 times more in sectors. The

sectors are sensitive to mutation elsewhere and influencing

positions upon mutations (T positions) three times more

often (T/C = 39/15 = 2.6) than they are not (C positions)

which is consistent with their co-evolution relationships. In

contrast, non-sectors are less often sensitive to mutation

elsewhere and influencing positions than not (T/C = 24/32 =

0.75). Yet, clearly sectors and non-sectors visit the four influence

FIGURE 3
1BE9 GCAT network features of sector and non-sector sub-networks. The buried network, the sector and non-sector GCAT sub-networks are
shown on the upper, middle and lower panels, respectively. The left, middle and right columns are the GCAT classification, all influences and
bidirectional mutual influences, respectively. The square boxes indicate nodes that are involved in homogeneous influences only (i.e., edges sector
to sector or edges non-sector to non-sector), the circles indicate nodes that are involved in heterogeneous influences only (i.e., edges sector to
non-sector or edges non-sector to sector).
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categories, indicating that the GCAT classes do not distinguish

the co-evolution relationships of sectors.

Sector and non-sector sub-networks have 4 and 8 SCC

respectively, showing that sectors are slightly more sub-

divided in patches. In fact, if the non-sector sub-network was

as patchy as the sector sub-network, it should have 12 SCC and

not 8 (i.e. 1.5 times more CC). We have no interpretation of the

role of patches in the sectors but in (Halabi et al., 2009) the

sectors also divided into two groups.

Considering all influences (all types of edges) and

coloring the GCAT nodes in green if a sector position and

in pink if a non-sector position (Figure 3, middle column),

we can see that most nodes, sector (13 out 13) and non-

sectors (26 out of 38 = 68%) combine mutational influences

on sector and non-sector positions, exhibiting

heterogeneous influences and limited independency

between the two sub-networks. Twelve non-sector nodes

(303, 307, 312, 356, 357, 392, 394, 398, 404, 409, 410 and

412) have exclusive neighborhood influences on non-sector

nodes and no sector nodes influence exclusively sector nodes

(Figure 3, middle column, upper panel, square boxes). There

are neither sector nodes isolated from the other sector nodes

(Figure 3, middle column, middle panel) nor non-sector

nodes isolated from the other non-sector nodes (Figure 3,

middle column, lower panel), indicating that there are no

exclusive heterogeneous sector-to-non-sector or non-sector-

to-sector influences. Thus, the sector nodes are all involved

in heterogeneous combined influences while the non-sector

positions have 32% of exclusive and homogeneous

influences.

Considering triangular influences, we observe a higher

fraction of nodes with triangular influences in the sector sub-

network (CC = 0,50) than in the non-sector sub-network (CC =

0.33). The CC of the buried network (=0.35) is lower than the CC

averaged over the sector and non-sector positions (0.42)

indicating a lower number of heterogeneous triangles between

sector and non-sector nodes than between SE and buried nodes.

The sector (11/13 = 85%) and non-sector (32/38 = 84%)

sub-networks involve similar percentage of their nodes in

bidirectional mutual influences (Figure 3, right column,

compare upper panel with middle and lower panel). Out of

32 non-sector nodes involved in bidirectional edges, 13 are

involved in heterogeneous bidirectional edges (11 combined

and 2 exclusive non-sector-to-sector, 40%) and 20 are

exclusive non-sector-to-non-sector bidirectional edges

(60%) (Figure 3, right column, upper panel, squares). Thus,

homogeneous non-sector-to-non-sector bidirectional

influences dominate in the non-sector nodes. In contrast,

out of 11 sector nodes involved in bidirectional edges, nine

are involved in heterogeneous bidirectional edges

(8 combined and 1 exclusive sector-to-non-sector, 82%)

and 2 are exclusive sector-to-sector bidirectional edges

(18%). Thus, it is heterogeneous sector-to-non-sector and

combined bidirectional influences, which dominate in the

sector nodes.

In summary, the GCAT does not predict the sector and non-

sector positions, which have similar large-scale connectivity

(SCC) and exhibit influences between all nodes, between three

nodes or between two nodes within the sector (non-sector) sub-

networks as well as across the two sub-networks. Yet, there are

more three-node influences in the sectors nodes and less three-

node heterogeneous influences between sector-to-non-sectors

than between SE and buried nodes. The non-sector nodes

have privileged bidirectional influences another feature not

observed for the SE and buried sub-networks.

FSP and non-FSP positions

The third analysis compares FSP and non-FSP positions

(Figure 4) (McLaughlin et al., 2012). The 51 buried positions

split into 31 non-FSP positions and 20 FSP positions such that

the comparison requires extrapolation by a factor of 1.6 or

percentage comparison. The FSP partition in 6 G (30%), 5 C

(25%), 1 A (5%) and 8 T (40%) while non-FSP positions partition

in 12 G (39%), 9 C (29%), 4 A (13%) and 6 T (19%) (Figure 4, left

column). 70% of the FSP adopt a category that influences system

(G or T) and 80% of the FSP in A or C category, which influences

the system less, are hotspots, i.e., positions that bind to the ligand

of 1BE9 (5/6: 324, 372, 328, 376, 325). In contrast, only 29% of the

FSP in G and T categories are hotspots. It must be noticed that T

FSP are not more often sector (6 out of 8) than G FSP (5 out of 6).

Assuming as a first approximation that the higher the number of

arrows, the higher the likelihood of influences, it becomes

consistent to have FSP adopting G and T categories, more

out-edges increasing the likelihood of affecting neighbors and

hence of impacting function. This assumption considers that the

quantity of changes matters regardless the quality of changes.

Binding to the ligand may make positions already more

functionally susceptible to mutation requiring a C or A

category to prevent systematic and irreversible functional

failure upon mutation.

Along the same line, the non-FSP should be expected to have

less out-edges and adopt preferentially C and A categories

leading to functional tolerance to mutations. Yet, 58% of the

non-FSPs adopt G or T category and 42% adopt A or C category,

exhibiting only a slight difference with the FSP. Now, only 3 non-

FSP positions are hotpots against nine hotspot FSPs, which may

explain why non-FSP functionally tolerates the G and T

categories. Now clearly, FSP and non-FSP adopt the four

categories of influences, which suggest that FSP and non-FSP

may differ by the quality of their changes rather than the quantity

of changes.

However, one alternative, supported by the similarity of the

G and C category percentages between the FSP and the non-FSP

is that “faults” introduced by FSP mutations (G-type or C-type)
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must be mirrored by similar “correction types” introduced by

non-FSP without functional consequences, to sustain adaptation

and rescue mechanisms upon secondary site mutation. Under

that hypothesis, both FSP and non-FSP must exhibit similar

quantity of changes, i.e., appear in similar influence classes.

This hypothesis is consistent with non-FSP being about

3 times more often in the A category than FSP, exhibiting

high sensitivity to mutation elsewhere with little influence on

positions upon mutations (robust mutations) and twice less in

the T category. The propensity for FSP to T category may

correspond to positions capable of jeopardizing the function

and be corrected (in-edges) compared to G FSP positions (less

likely “repairable”).

The FSP sub-network has 2 SCC while the non-FSP sub-

network has 15 SCC indicating a more patchy organization in the

non-FSP sub-network. The FSP sub-network should have

10 SCC if it had the same disconnected feature than the non-

FSP sub-network (i.e., 10-times more).

Considering all influences (all types of edges) and coloring

the GCAT nodes in green if a FSP position and in pink if a non-

FSP position (Figure 4, middle column), we can see that most

nodes, FSP (18 out 20) and non-FSP (20 out of 31 = 64%)

FIGURE 4
1BE9 GCAT network features of FSP and non-FSP sub-networks. The buried network, the FSP and non-FSP sub-networks are shown on the
upper, middle and lower panels, respectively. The left, middle and right columns are the GCAT classification, all influences and bidirectional mutual
influences, respectively. The square boxes indicate nodes that are involved in homogeneous influences only (i.e., edges FSP to FSP or edges non-FSP
to non-FSP), the circles indicate nodes that are involved in heterogeneous influences only (i.e., edges FSP to non-FSP or edges non-FSP to FSP).
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combine mutational influences on FSP and non-FSP positions,

exhibiting heterogeneous influences and limited independency

between the two sub-networks. Eleven non-FSP nodes (303, 307,

356, 357, 392, 394, 398, 404, 409, 410 and 412) have exclusive

neighborhood influences on non-FSP nodes and two FSP nodes

(372 and 376) influence exclusively FSP nodes (Figure 4, middle

column, upper row, square boxes). There are no FSP nodes

isolated from the other FSP nodes (Figure 4, middle column,

middle panel) and only the non-FSP node 345 is isolated from the

other non-FSP nodes, indicating it has exclusive hybrid non-FSP-

to-FSP influences (Figure 4, middle column, lower or upper

panel, circles). Thus, there are little exclusive homogeneous

influences apart from within non-FSP positions (35%) and

even less heterogeneous exclusive influences (3% for non-FSP).

The clustering coefficients (CC) of FSP and non-FSP positions

are 0.47 and 0.34; respectively showing higher triangular influences

in the FSP sub-network than in the non-FSP sub-network. The

higher triangular influences of the FSP might be correlated with the

sector feature since out of 20 FSP, 12 are sectors. This possibility is

supported by the fact that the CCs of non-sector FSP and of sector-

FSP are 0.38 and 0.51, respectively and the CC of non-FSP non-

sectors is 0.35. The CC of non-FSP sector cannot be computed

because only position 345 is non-FSP sector. The CC of the buried

network (CC= 0.35) is lower than the CC averaged over the FSP and

non-FSP positions (0.40) indicating a lower number of

heterogeneous triangles between sector and non-sector nodes

than between SE and buried nodes.

Considering bidirectional mutual influences, the FSP (18/

20 = 90%) and non-FSP (25/31 = 81%), network involve

similar percentage of nodes (Figure 3, right column,

compare upper panel with middle and lower panel). Out of

25 non-FSP nodes involved in bidirectional edges, 10 are

involved in heterogeneous bidirectional edges (4 combined

and six exclusive non-FSP-to-FSP, 40%) and 15 are exclusive

non-FSP-to-non-FSP bidirectional edges (60%) (Figure 4,

right-column, upper row, squares). In contrast, out of

18 FSP nodes involved in bidirectional edges (90%), 11 are

involved in heterogeneous bidirectional edges (9 combined

and 2 exclusive FSP-to-non-FSP, 61%) and seven are exclusive

FSP-to-FSP bidirectional edges (39%). Thus, it is

heterogeneous bidirectional influences (FSP-to-non-FSP

and combined), which dominate among FSP nodes but

homogeneous non-FSP-to-non-FSP bidirectional influences

among non-FSP nodes.

In summary, the GCAT does not predict the FSP and non-

FSP positions but reveals some differences. FSP and non-FSP

have distinct large-scale connectivity (SCC), the FSP have

more three-node influences (higher CC) than non-FSPs,

which on the contrary have more privileged bidirectional

influences. This may indicate a link between influence

motifs and impact of mutations.

Discussion

The GCAT network is a tool that takes into account the

asymmetry of mutational changes and allows visualizing the

mutational influences of amino acid positions on one another.

It is built from the comparison of the position neighborhoods in

the amino acid network of the wild-type PDB 1BE9 and in the

amino acid networks of in silico PDBmutants. The analysis of the

GCAT at the level of individual nodes shows that 1BE9 positions

split into four categories of influences called G, C, A and T. The

positions G and T influence more other positions upon mutation

than the position C and A while the positions A and T are

influenced by the mutations of more positions than G and C. The

different influence categories reveal AAN neighborhoods with

different tolerance to mutations. The positions 301 and 415 are

the only positions whose AAN neighborhoods tolerate all the

mutations at their position and elsewhere. AAN neighborhoods

of positions in the C category tolerate mutations at their position

and elsewhere since they influence less than average other

positions and are influenced by the mutation of less than

average other positions. AAN neighborhoods of positions in

the G category do not tolerate mutations at their position while

neighborhoods of positions in the A category do not tolerate

mutations elsewhere. AAN neighborhoods of positions in the T

category do not tolerate mutations at their position and

elsewhere. We end up with two classes of AAN

neighborhoods, one class which tolerates more mutations than

the other for which corrections through neighbor motions or

neighbor mutations might be needed to accommodate

mutations. Investigating what are the features of the

neighborhoods for tolerance is future work requiring

application of the GCAT on other proteins.

The GCAT does not predict the spatiality of positions, the

sectors or the FSPs but its analysis through network measures

highlights differences that generate hypothesis on mechanisms of

tolerance and robustness to mutations (e.g., SCC numbers). We also

observe different influence types with more triangular influences in

FSP and sectors and a secluded bidirectional pairwise sub-network

of influences in non-FSP and non-sectors. The CC and bidirectional

edges were investigated looking for specific topologies of influences

potentially embedding error-corrections or rescue mechanisms, co-

evolution or adaptation through double or multiple mutations.

From this point of view, the fact that the GCAT categories are

adopted by sectors and non-sectors and by FSP and non-FSP

introduces an alternative to looking for FSP or Sector-specificity.

FSP and non-FSP sharing mutational influence characteristics

makes possible that “mutational faults” introduced by FSP are

mirrored by non-FSP “mutational corrections”.

Thus, the GCAT opens several perspectives towards

understanding how positions cope with mutations and how to

classify position tolerances and need for corrections. The next
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step is to repeat in silico mutations allowing neighbors to move,

using RosettaBackrub for example (Smith and Kortemme, 2008;

Lauck et al., 2010), and identify position neighborhoods

corrected through motions, namely positions G or T in the

present GCAT but C or A in the motion-allowed version.

Position remaining in the G/T category even when motions is

allowed would be a class where corrections might involve

mutations of neighbors to tolerate mutations. Another

perspective is to generate GCAT networks produced from

AAN built on cutoff distances higher than 5Å to discriminate

motion corrections involving chemical neighbors (cutoff at 5Å)

and motion corrections involving neighbors above chemical

reach, leading to a classification of multiple-scale corrections.

We have previously shown using different cutoff, that positions

in 1BE9 have different neighborhoods at different scales making

multiple-scale corrections likely (Pacini et al., 2021). To improve

our understanding of mutational influences and functional

evolution, we could also investigate the GCAT of the PDB

1BFE, which is as 1BE9 but CRIPT-free.

Conclusion

The GCAT models the complexity of positional influences

that exists in proteins and offers some means to identify which

positions influence which and in what terms with the perspective

to improve our understanding of protein variants and their role

on disease onset and drug treatment efficiency. At this early stage,

the GCAT analysis is exploratory and aims at looking at

influences from the scale of individual positions (GCAT

category) to the scale of collective influences (connected

components), considering influence types (all edges, triangular

influences, bidirectional influences) and assessing independency

between sub-networks of position features (heterogeneous versus

homogeneous influences).
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