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Abstract: With the recent developments of autonomous vehicles, extensive studies were conducted on Adaptive Cruise
Control (ACC, for short), which is an essential component of advanced driver-assistant systems (ADAS). The
safety assessment must be performed on the ACC system before it goes to market. The validation process
is generally conducted via simulation due to insufficient on-road data and the diversity of driving scenarios.
Our paper aims to develop an optimization-based reference generation model for ACC, which can be used
as a benchmark for assessment and evaluation. The model minimizes the difference between the actual and
reference inter-car distance while respecting constraints about vehicle dynamics and road regulations. ACC
sensors can be impacted by external factors, e.g., weather conditions and produce inaccurate data. To handle
the resulting uncertainty, we propose a copula-based chance-constrained stochastic model in order to model
the dependence between the random variables. Our numerical experiments show the performances of our
model on randomly generated driving scenarios.

1 Introduction

During the past two decades, there has been an
increasing trend towards autonomous driving in
both industry and research, which led to many
technological advances and commercial successes.
Autonomous vehicle applications, e.g., advanced
driver assistance systems (ADAS, for short) are
extensively incorporated into modern cars to enhance
safety and improve driving comfort. The most basic
feature of ADAS is Adaptive Cruise Control (ACC),
which has been the focus of research for several years.

1.1 ACC Overview

Since 1966, ACC has aimed to keep a safe distance
from a leading vehicle by adjusting the vehicle’s
speed and acceleration (Levine and Athans, 1966).
This functionality relies both on sensor information
about the location and the motion of the vehicle ahead
and on a controller to regulate the spacing between
the vehicles. An ACC-equipped vehicle drives at a
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preset speed until a leading car is detected by the
sensors, then switches to the distance regulation mode
by activating the ACC controller, which calculates the
safety distance and controls the operation.

Various approaches are applied to achieve the
objective of designing an ACC that most closely
matches the human expert driving behavior in terms
of maneuvering vehicle speed according to different
driving conditions with respect to traffic regulations
and comfortable driving. These ACC systems target
different objectives and are designed under different
standards. Therefore, we need a thorough validation
process to ensure the safety of those ACC systems
and also assess their performance before making them
commercially available. The result of the validation
and evaluation also allows to identify potential areas
for improvement by identifying current weaknesses.
Due to the fact that the costly and time-consuming
real road tests cannot cover a large number of driving
scenarios, we carry out the validation process within
a simulator to generate the driving scenarios. The
latter includes the motion state of the vehicles at each
sampling time.



1.2 Problem Description

As part of the functional testing of ADAS, the goal of
the ACC validation is to determine whether the right
decision was made, a critical accident was avoided,
and identify potential flaws. The validation process
starts with our model, where each driving scenario
serves as an input, and the reference commands are
calculated by solving an optimization problem. Then,
the analysis of the actual commands is performed
through a comparison with our generated reference
commands. This process is illustrated in Figure 1.
Generating reference trajectories is a typical motion
planning problem, and there are approaches to
achieve this goal, e.g., sampling-based methods,
graph-based methods, and optimization-based
methods. Among them, the optimization approach
seems the best suited to our problem as it provides
more flexibility to tailor the objectives and the
constraints meeting the requirements of various
driving scenarios.
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Figure 1: Validation process of ADAS

As part of an ACC system, various types of
sensors may be employed, such as cameras, lidar,
radar etc. Sensor performances are highly influenced
by a variety of factors, including the maintenance
state and the environmental conditions (Rasshofer
et al., 2011). There is an inherent level of
inaccuracy in sensor data which must be considered
in the simulations. In order to deal with the
sensor uncertainties, we study a chance-constrained
stochastic programming model based on the copula
theory to take into consideration the dependence of
the random variables.

1.3 Our Contribution

The main contribution of this paper is to make an
extension of previous work (Zhang et al., 2022)
and study the stochastic optimization model based
on copula theory for ACC reference generation.
Using the optimization framework, we are able to
come up with the best command to optimize the
distance between two vehicles while satisfying all the

problem constraints. The copula theory in modeling
uncertainty has enabled us to develop a robust and
flexible model that is suitable for application in the
real world. Moreover, we present a comprehensive
comparison of the results obtained with our generated
driving data that simulates real driving scenarios to
demonstrate the benefit of the stochastic models.

1.4 Paper’s Organization

The remainder of the paper is organized as follows.
Section II discusses different ACC algorithms under
study and provides a classification of the used
approaches. Section III describes our ACC validation
model and describes the mathematical tools used for
our formulation.. In Section IV, we provide numerical
experiments and simulations and compare our
different approaches (deterministic and stochastic).
Conclusions and future work are provided in Section
V.

2 Literature Review

2.1 ACC Modeling

Many ACC system problems are solved with two
main approaches based on the following:

• Optimal Control (OC) Methods: An optimal
control problem is derived from the modeling of
a system and the control design of that system,
which is then solved numerically and refined
using methods of optimization. See (Chehardoli,
2020; Jiang et al., 2020; Kim, 2012).

• Model Predictive Control (MPC): These
methods have been widely considered and
then reached a high popularity since 2010
(see references (Chen et al., 2021; Takahama
and Akasaka, 2018; Weißmann et al., 2018;
Naus et al., 2010), for example). The control
mechanism is based on a receding horizon
approach for the online optimization process. The
MPC involves predicting future system behavior
and then calculating optimal control inputs to
optimize the objective function.

A wide variety of papers has studied ACC from
multiple perspectives, including:

• Driver behavior modeling (see for example
(Varotto et al., 2020; Kummetha et al., 2020;
Seppelt and Lee, 2015)). Modeling the interaction
between the driver and the ACC is done by
analyzing the characteristics of driver behavior



and how those characteristics are represented by
state transition diagrams.

• String stability. In (Gunter et al., 2019; Makridis
et al., 2020; Khound et al., 2021), ACC model
string stability was assessed in order to ensure that
disturbances are not amplified.

• Collision avoidance. Authors of (Lunze, 2018;
Magdici and Althoff, 2017) develop a variety of
objectives for ACC design that are necessary and
sufficient for ensuring collision avoidance and
time-headway spacing.

Our ACC reference generation model is capable of
generating reference commands with optimal spacing
policies and collision avoidance based on vehicle
dynamics and other comfort constraints.

2.2 ACC Validation and Testing

Validating the functionality of autonomous driving is
also an important task, not only for ACC but also for
other modules which need assessments. In (Lattarulo
et al., 2017), the authors present a global framework
of testing methodology for the evaluation of path
planning and control algorithms, including a unified
test architecture and validation process. Other similar
works include (Lattarulo et al., 2018) , (Alnaser et al.,
2019).

Aside from the overall testing framework,
individual functionality like ACC should be
carefully considered. In (Mehra et al., 2015), an
experimental platform is presented for the validation
and demonstration of an optimization-based ACC
controller, whilst (Djoudi et al., 2020) presents a
simulation-based toolchain for reference generation
and test analysis. Several other insightful works on
testing and validating adaptive cruise control can be
found in (Schmied et al., 2015; Shakouri et al., 2015).

To improve the safety of an ACC system, we
proposed an ACC reference generation model that
can be integrated into a validation process by adapted
evaluation metrics.

Moreover, and for the sake of clarity, we provide
details on the comparison of our proposed approach
to the closest works of the literature. They are
summarized in Table 1, in which we introduced key
characteristics as follows:

• Optimization approaches of the proposed
literature are classified to be deterministic or
stochastic

• Three more key characteristics qualifying ACC
modeling are provided: OC for Optimal Control,

MPC for Model Predictive Control, and QO for
Quadratic Optimization.

3 Problem Formulation

3.1 Overview

In this section, we describe the modeling of the
ACC driving scenario and the formulation of the
related optimization problem. A typical ACC driving
scenario includes two cars driving simultaneously in
a single lane, namely, the ego car and the target
car. The ego car is equipped with an ACC system,
whilst the target car is the leading car positioned
ahead. Figure 2 illustrates the driving scenario, as
well as the states of two cars at time ti. The purpose
of our ACC reference generation is to generate a
sequence of acceleration commands, i.e., the decision
variables in our optimization problem. The objective
of the ego car is to keep a distance from the target
car with respect to different constraints, e.g., vehicle
dynamics, driving comfort, and road regulations.

Figure 2: ACC driving scenario at moment ti.

Suppose that the total duration of a driving
scenario is T composed of n sampling time dt,
i.e. T = ndt with a corresponding timestamp
[t0, t1, ...ti, . . . tn] where ti+1 = ti + dt, ∀i ∈
{0,1, . . . n − 1}. At each moment ti, the ACC
of the ego car uses sensors to gather information
from the target car and generates the acceleration
commands. In the following, we list the parameters
and the decision variable used in our model. The
input parameters are given by the ego car sensors,
and the decision variables represent the ACC optimal
commands. The parameters of the ego car are the
initial position xego

t0 , the initial velocity vego
t0 whilst

the parameters of the target car are composed of
the position vector X tgt

T = (xtgt
t1 ,xtgt

t2 , . . . xtgt
tn )T , the

velocity vector V tgt
T = (vtgt

t0 ,vtgt
t1 , . . . vtgt

tn−1)
T and the

acceleration vector Atgt
T = (atgt

t0 ,atgt
t1 , . . . atgt

tn−1)
T in

the whole driving scenario. The decision variable
is the ACC ego car acceleration commands vector
Aego

T = (aego
t0 ,aego

t1 , . . . aego
tn−1)

T .
Given the decision variable and the initial state of

the ego car, we can derive the velocity and the position



Table 1: Benchmarking of our contribution with the state of the art

Existing works Modeling of uncertainty Key characteristics
(Chehardoli, 2020) Yes Robust OC for ACC designing
(Jiang et al., 2020) Yes Stochastic OC incorporating human drivers’ risk-sensitivity
(Takahama and Akasaka, 2018) No MPC for ACC in traffic jam
(Chen et al., 2021) No MPC for ACC in cut-in scenarios
(Weißmann et al., 2018) No MPC for energy-optimal ACC
(Varotto et al., 2020) No Modeling of driver-ACC interaction
(Lunze, 2018) No ACC design focused on collision avoidance
(Lattarulo et al., 2017) No Framework of ACC testing
(Alnaser et al., 2019) No Verification of ACC in complex functional scenarios
(Mehra et al., 2015) No Experimental platform for validation of ACC
(Djoudi et al., 2020) No Functional testing of ACC with a simulation-based framework
Our contribution Yes QO for ACC reference generation

of the ego car by the equations of motion. The ego car
velocity vego

ti+1 at time ti+1 is given by the velocity at the
previous sample time vego

ti and the acceleration aego
ti :

vego
ti+1 = vego

ti +aego
ti dt. (1)

The velocity for the whole driving scenario can be
written in matrix form as

V ego
T =


vego

t0
...

vego
ti
...

vego
tn−1

=



vego
t0
...

vego
t0 +∑

k=i−1
k=0 aego

tk dt
...

vego
t0 +∑

k=n−2
k=0 aego

tk dt


= dtKnAego

T + vego
t0 1n,

(2)

where Kn ∈ Rn×n and 1n ∈ Rn×1

Kn =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
1 1 0 . . . 0 0

...
. . .

...
1 1 1 . . . 0 0
1 1 1 . . . 1 0

 (3)

1n =


1
1
...
1

 . (4)

Similarly, the ego car position at time ti+1 is given
by

xego
ti+1 = xego

ti + vego
ti dt +

1
2

aego
ti dt2. (5)

The corresponding matrix format for all time steps

is

Xego
T =


xego

t1
...

xego
ti
...

xego
tn

=



xego
t0 + vego

t0 dt + 1
2 aego

t0 dt2

...
xego

t0 +∑
k=i−1
k=0 vego

tk dt + 1
2 ∑

k=i−1
k=0 aego

tk dt2

...
xego

t0 +∑
k=n−1
k=0 vego

tk dt + 1
2 ∑

k=n−1
k=0 aego

tk dt2


= dtMnV ego

T +
1
2

dt2MnAego
T + xego

t0 1n,

(6)

where Mn ∈ Rn×n ,

Mn =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0

...
. . .

...
1 1 1 . . . 1

 . (7)

We use Equation (2) to rewrite Equation (6) in
terms of the initial position, the initial velocity and
the acceleration vector, i.e.,

Xego
T = dtMnV ego

T +
1
2

dt2MnAego
T + xego

t0 1n

= dtMn(dtKnAego
T + vego

t0 1n)

+
1
2

dt2MnAego
T + xego

t0 1n

= dt2(Bn +
1
2

Mn)A
ego
T + vego

t0 dtCn

+ xego
t0 1n,

(8)

where Bn = Mn ·Kn ∈ Rn×n and Cn = Mn · 1n ∈
Rn×1.

For the sake of clarity, we provide Table 2 to
summarize the whole parameters and variables used



in our formulations.

In the following, we use the position and the
velocity vector of the ego car to formulate our
optimization problem.

3.2 Basic Results in Copula Theory

We give some basic definitions and results on copulas
necessary for our modeling. We refer to (Nelsen,
2007) for more details.

Definition 1. A copula is the distribution function C :
[0,1]K → [0,1] of some K-dimensional random vector
whose marginals are uniformly distributed on [0,1].

Proposition 1. (Sklar’s Theorem). For any K-
dimensional distribution function F : RK → [0,1] with
marginals F1, . . . ,FK , there exists a copula C such
that

∀z ∈ RK ,F(z) =C(F1(z1), . . . ,FK(zK)

. If, moreover, FK is continuous, then C is uniquely
given by

C(u) = F(F−1
1 (u1), . . . ,F−1

K (uK)).

Otherwise, C is uniquely determined on range F1×
. . .× range FK .

The theoretical foundations for the application of
copulas are given by Sklar’s Theorem. Moreover, it
states that every multivariate cumulative distribution
function of a given random vector can be expressed
in terms of both its marginals and a given copula.

To model the uncertainty of our problem, we
consider the two following classes of copulas:

1. Independent (product) copula, defined by

C∏(u) :=
K

∏
k=1

uk.

The independent copula represents the joint
distribution of independent random variables.

2. Gumbel-Hougaard family of copulas, given for
a θ ≥ 1 by

Cθ(u) := exp

{
−

[
K

∑
k=1

(− lnuk)
θ

]1/θ}
.

The independent copula can be seen as a special
case of the Gumbel-Hougaard copula with θ = 1.

3.3 Stochastic Modeling of ACC

In section 3.1 the whole parameters are deterministic,
i.e., the input parameters are known in advance.
However, in real-life autonomous vehicle problems,

the parameters are unknown and may include
different sources of noise from external factors like
weather. Results are highly dependent upon the
quality of input data. Consequently, the parameters
can be better modeled by random variables, which
provide more robust solutions. In the following,
we model the ACC problem by chance constrained
problem. We suppose that the target car’s position
information xtgt

ti obtained from the ego car’s sensor
includes some noise and follows a normal distribution
xtgt

ti ∼ N(µi,σ
2
i ) with a joint distribution driven by the

Gumbel-Hougaard copula Cθ for θ ≥ 1 (Cheng et al.,
2015; Houda and Lisser, 2014).

In the following, we outline how the generation
of the ACC reference considering uncertainty can be
viewed as an optimization problem.

min
Aego

T

||Q Aego
T +P|| (9)

s.t. dt2(Bn +
1
2

Mn)A
ego
T ≤ X̂ tgt

T − vego
t0 dtCn

− (xego
t0 +ds)1n, (10)

− (vmax + vego
t0 )1n ≤ dtKnAego

T

≤ (vmax − vego
t0 )1n, (11)

−amax1n ≤ Aego
T ≤ amax1n, (12)

− jmaxdt1n ≤ DnAego
T ≤ jmaxdt1n. (13)

The following part explains in detail how we
derive the objective function (9) and how constraints
(10, 11, 12, 13) are developed.

The objective of ACC is to maintain a safe
distance between the ego car and the target car. In
order to calculate the reference distance between the
ego car and the target car, we define two terms: the
inter-vehicle time tc (for instance, 3 seconds) for the
ego car to brake safely and the standstill distance δS
to ensure there is always enough room between the
two adjacent cars.

At each moment tk, the reference distance of ACC
in platoons is defined by

dre f
tk = (vego

tk−1
− vtgt

tk−1
)tc+

1
2
(aego

tk−1
−atgt

tk−1
)tc2 +δS.

(14)
Therefore, the reference distance vector in the

whole driving scenario is :

Dre f
T = tc(dtKnAego

T + vego
t0 1n −V tgt

T )

+
1
2

tc2(Aego
T −Atgt

T )+δS1n

= (dt · tcKn +
1
2

tc2I)Aego
T − tcV tgt

T

− 1
2

tc2Atgt
T +(δS+ vego

t0 tc)1n.

(15)



Table 2: Summary of used parameters and variables in our formulations

Symbols Meaning

Target Car

Atgt
T Acceleration profile during simulation

atgt
ti Acceleration at time ti

V tgt
T Speed profile during simulation

vtgt
ti Speed at time ti

X tgt
T Position profile during simulation

xtgt
ti Position at time ti

Ego Car

Aego
T Acceleration profile during simulation

aego
ti Acceleration at time ti

V ego
T Speed profile during simulation

vego
ti Speed at time ti

Xego
T Position profile during simulation

xego
ti Position at time ti

Jego
T Jerk profile during simulation

jego
ti Jerk at time ti

Other Parameters Q Matrix of size n×n
P Vector of size n

Moreover, if we consider the position of the target
car X tgt

T to be its mean value µT = (µ1,µ2, . . . ,µn)
T ,

the current distance between the ego car and the target
car is

Dvehicle
T = µT −Xego

T

= µT − [dt2(Bn +
1
2

Mn)A
ego
T

+ vego
t0 dtCn + xego

t0 1n].

(16)

By combining (16) and (15), we obtain the
objective function (9):

min
Aego

T

||Dvehicle
T −Dre f

T ||

= min
Aego

T

||µT − [dt2(Bn +
1
2

Mn)A
ego
T

+ vego
t0 dtCn + xego

t0 1n]− [(dt · tcKn +
1
2

tc2I)Aego
T

− tcV tgt
T − 1

2
tc2Atgt

T +(δS+ vego
t0 tc)1n]||

= min
Aego

T

||− (dt2Bn +
1
2

dt2Mn +dt · tcKn

+
1
2

tc2I)Aego
T +µT + tcV tgt

T +
1
2

tc2Atgt
T −δS1n

− vego
t0 tc1n − xego

t0 1n − vego
t0 dtCn||

= min
Aego

T

||Q Aego
T +P||,

(17)
where Q = −(dt2Bn + 1

2 dt2Mn + dt · tcKn +
1
2 tc2I), P= µT +tcV tgt

T + 1
2 tc2Atgt

T −δS1n−vego
t0 tc1n−

xego
t0 1n − vego

t0 dtCn and || · || is the Euclidean norm.

In addition to the objective function (9), we detail
the above-mentioned constraints:

• Constraint (10) is the minimum distance
constraint that aims to prevent the vehicles
collisions, where

X̂ tgt
T =


µ1 +σ1F−1

N (1−α
z1/θ

t1 )

µ2 +σ2F−1
N (1−α

z1/θ

t2 )
...

µn +σnF−1
N (1−α

z1/θ

tn )

 , (18)

and

∑
ti

zti = 1, zti ≥ 0, ∀ti,

where F−1
N is the inverse of the standard normal

cumulative distribution function.
This constraint results from the following chance
constraint with a given threshold α (Prékopa,
2013):

P(Dvehicle
ti ≥ ds, ∀ti)≥ α. (19)

• Constraint (11) is the maximum velocity
constraint. Routes typically have a maximum
velocity limit which leads to the velocity
constraint. For a given speed limit vmax, the
constraint is deduced from

||V ego
T ||∞ ≤ vmax. (20)

• Constraint (12) is the maximum acceleration
constraint. Car passengers’ comfort is impacted
by acceleration. Vehicle maneuverings like rapid



acceleration or braking should be avoided. Our
model proposes an acceleration limit of amax
based on this motivation.

||Aego
T ||∞ ≤ amax. (21)

• Constraint (13) is the maximum jerk constraint.
In jerk, we measure the acceleration variances,
which significantly affect the comfort level of
passengers. A maximum limit jmax is required for
this constraint.

||Jego
T ||∞ ≤ jmax (22)

Since jti = (aego
ti − aego

ti−1)/dt, the jerk constraint
can be simplified to (13) where Dn ∈ R n×n is
given by

Dn =



1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

...
. . .

...
0 0 0 . . . 1 0
0 0 0 . . . −1 1

 . (23)

To prove the equivalence between (10) and (19),
we define two variables:

ξti :=−
xtgt

i −µi

σi
,

bti :=−
xego

ti +ds −µi

σi
.

It’s easy to see that ξti follows a standard normal
distribution.
Lemma 1. If the random vector (ξti , ...,ξti)

T has
a joint distribution driven by the Gumbel-Hougaard
copula Cθ with some θ ≥ 1, then the constraint
P(Dvehicle

ti ≥ ds, ∀ti)≥ α is equivalent to

xego
ti +ds −µi −σiF−1

N (1−α
z1/θ

ti )≤ 0, ∀ti,

∑
ti

zti = 1, zti ≥ 0, ∀ti.
(24)

Proof. In one direction, we need to prove if
P(Dvehicle

ti ≥ ds, ∀ti) ≥ α is true, then we can find a
group of zti such that (24) holds true.

The inequality (24) is equivalent to

xego
ti +ds −µi

σi
≤ F−1

N (1−α
z1/θ

ti ), ∀ti, (25)

namely,

FN(bti)≥ α
z1/θ

ti . (26)

We define z̃ti :=
(

lnFN(bti)
lnα

)θ

, for i = 1, . . . ,n.

And zti :=
z̃ti

∑
n
i=1 z̃ti

, for k = 1, . . . ,n.

It’s easy to verify that zti satisfies ∑ti zti = 1,zti ≥ 0.

Since z̃ti :=
(

lnFN(bti)
lnα

)θ

, then we have F−1
N (αz̃1/θ

ti ) =

bti ,∀ti. Moreover, as

P(Dvehicle
ti ≥ ds, ∀ti)

= P(ξti ≤ bti , ∀ti)
= Cθ(FN(bt1), . . . ,FN(btn)

= Cθ(FN(α
z̃1/θ

t1 ), . . . ,FN(α
z̃1/θ

tn )

= exp

−

[
∑
ti

(
− lnα

z̃1/θ

ti

)θ
]1/θ


= α

[∑n
i=1 z̃ti ]

1/θ

,

(27)

and P(Dvehicle
ti ≥ ds ∀ti)≥ α with α < 1. We have

[∑n
i=1 z̃ti ]

1/θ ≤ 1 and further ∑
n
i=1 z̃ti ≤ 1, then we have

zti ≥ z̃ti , ∀ti. Therefore, F−1
N (αz1/θ

ti ) ≤ bti ,∀ti, which
means zk satisfies (24).

For another direction, if (24) holds true, from
the definition of the Gumbel-Hougaard copula and
Sklar’s theorem, we have

P(Dvehicle
ti ≥ ds, ∀ti)

= P(ξti ≤ bti , ∀ti)
= Cθ(FN(bt1), . . . ,FN(btn)

≥ Cθ

(
α

z1/θ

t1 , . . . ,αz1/θ

tn

)

= exp

−

[
∑
ti

(
− lnα

z1/θ

ti

)θ
]1/θ


= exp

−

[
∑
ti

(
−z1/θ

ti lnα

)θ

]1/θ


= exp

lnα

[
∑
ti

zti

]1/θ


= α.

(28)

With Lemma 1, we prove that (10) and (19) are
equivalent, thus formulating the optimization problem
for ACC in the presence of uncertainty.

In addition to using our model for ACC with
dependent random variables, we can also extend it to
other models. By taking θ= 1, the Gumbel-Hougaard
copula is equivalent to the independent copula where
the sensor’s uncertainties are uncorrelated. Moreover,
if we do not account for the uncertainty of the sensor
error, then we can also replace the chance constraint



P(Dvehicle
ti ≥ ds, ∀ti) ≥ α with a normal constraint

Dvehicle
ti ≥ ds, which leads to a deterministic model of

our optimization problem.

4 Numerical experiments

The purpose of our numerical simulations is to
demonstrate the feasibility and effectiveness of our
models. Firstly, we compare the deterministic and
stochastic models on different randomly generated
instances. The deterministic model does not
consider the sensor uncertainties, whilst the stochastic
model takes uncertainty into account with chance
constraints. The random variables dependence is
modeled by Gumbel-Hougaard copula with θ = 2.
Next, we choose five random driving scenarios and
run our model with different values of the parameter
θ. The driving scenarios are generated with different
configurations, including the target car’s trajectory
profile, the ego car’s initial state and the sensor
error for the ego car. Based on those generated
scenarios, we formulate the optimization problem
and use optimization solvers to obtain the results
(Goldfarb and Idnani, 1983; Beal et al., 2018).

In order to create an ACC driving scenario,
we need two types of parameters: the parameters
related to the environment and to the vehicles.
The parameters related to the environment include
the simulation configuration and vehicle regulations,
e.g., the total scenario duration, velocity limit,
collision avoidance limit, etc. Those parameters
reflect the real-life driving rules and simulation
setting. Therefore, they are fixed during numerical
experiments. The parameters related to the vehicles,
e.g., initial position, velocity and distance, vary in
each randomly generated instance due to the diversity
of driving scenarios. In order to simulate real
driving situations, the relationship among randomly
generated vehicle parameters should be based on
Newton’s laws.

Parameters setup for numerical simulations are
summarized in the sequel:

• Parameters related to the environment

– Total duration of a scenario T : 2s.
– Sampling time step dt: 0.05s.
– Inter-vehicle time tc: 3s.
– Standstill distance σS: 3m.
– Minimum security distance ds: 10m.
– Maximum velocity vmax: 30m/s.
– Maximum acceleration vmax: 5m/s2 .
– Maximum jerk jmax: 5m/s3 .

– Confidence level α: 0.95.

• Parameters related to the vehicles

– Acceleration of the target car: independent
random variables following a normal
distribution with mean 0 and standard deviation
2, truncated from −5 to 5.

– Initial speed of target car and ego car:
independent random variables following a
normal distribution with mean 15 and standard
deviation 10, truncated from 5 to 25.

– Standard deviation of target car position σ: 1.
– Initial position of target car: random variable

following a normal distribution with mean 200
and standard deviation 1.

– Speed and position of target car: random
variables following normal distributions with
a mean calculated by an initial value and the
acceleration vector, and standard deviation 1.

– Initial position of ego car: the initial position
of the target car minus a random variable
following a normal distribution with mean 100
and standard deviation 20, truncated from 50 to
150.

With the above-mentioned configuration, we
generate 100 random driving scenarios, which are
solved by the solvers both for the deterministic and
stochastic models. Since the input parameters of
the model are based on biased sensor data, it is
possible that the result will violate the constraints (19)
during the driving scenario. Hence, we measure the
performances of our model through the feasibility of
the solutions for different scenarios.

Amongst 100 test-driving scenario cases, we
notice that only 40% of the instances are feasible
for the deterministic optimal solution, whilst 71%
are feasible for the stochastic optimal solution with
confidence level α = 0.95 and θ = 2.

For an in-depth analysis of constraint violations
across 100 test driving scenarios, Figure 3 visualizes
the constraint violation value ds −Dvehicle

T 1n, adapted
from constraint (19), for the whole results of the two
models. Figures 3(a) and 3(b) show the constraint
violation value for the whole constraints, whilst
Figures 3(c) and 3(d) show a zoom-in on a subset of
constraints for better readability. In Figure 3, each
curve with a different color displays the constraint
violation values of a driving scenario result, and the
x-axis represents the index of constraints. If the
value at constraint index i exceeds 0, it means that
ds > Dvehicle

ti , i.e. the constraint (19) is violated at
this sampling time. Figure 3 clearly indicates that
the stochastic model produces fewer violations than
the deterministic one. Following the visualization
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(a) Determinisitic model results

0 25 50 75 100 125 150 175 200
Index of constraint

160

140

120

100

80

60

40

20

0

Va
lu

e 
of

 c
on

st
ra

in
t

(b) Stochastic model results
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(c) Zoomed-in deterministic model results
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(d) Zoomed-in stochastic model results

Figure 3: Constraint function values of all instances for deterministic and stochastic models.
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Figure 4: Histogram and cumulative histogram of the
number of violated constraints for two models.

of the result, we also conduct a statistical analysis
of the distribution of the violated constraints number
in Figure 4. We observe that the stochastic model
not only produces more feasible solutions with 0
violations but also yields fewer violations for cases
where the solution is unfeasible,i.e., only a few
constraints are slightly violated.
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Figure 5: Maximal violated constraints under different
standard deviations.
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Figure 6: Average violated constraints under different
standard deviations.

Furthermore, keeping all other parameters

Table 3: Summary of results.

θ

No.
1 2 3 4 5

1 158.09 365.86 244.21 289.94 483.45
2 149.04 371.16 285.35 286.42 481.33
4 143.65 370.45 235.49 284.41 480.13
8 140.63 336.79 233.72 283.32 479.48
16 139.02 321.77 232.78 282.74 479.13

unchanged, we vary the standard deviation of the
target car position, which depends on the sensor’s
precision, from 1 to 40 to compare the performances
of each model. The value of the standard deviation is
gradually increased. We consider 100 tests for each
value and count the maximal and mean constraint
violations for each model. In order to take a step
further in our analysis, we run our model with θ = 1.
As shown in Figure 5 and Figure 6, the stochastic
model always outperforms the deterministic model
by producing fewer constraint violations.

In Table 3, the objective values of five
driving scenarios under different configurations are
presented. Each column represents the results of a
generated driving scenario instance. θ is set between
1, 2, 4, 8, 16 in order to test the robustness of our
model when the dependence parameter increases.

5 Conclusion and future work

In this paper, we studied an optimization-based
approach for ACC reference generation, taking
into account the uncertainty associated with sensor
information. Uncertainty is modeled by random
variables, and their dependence is handled with
copulas.

As a benchmark for ACC system decision
making, our optimization approach can generate a
reference that meets the needs of safety, comfort, and
effectiveness. According to a statistical analysis of
the simulation results, our chance-constrained based
stochastic model can produce more robust solutions.

For future work, we propose three open research
challenges that have the merit to be addressed:
the development of an increasingly sophisticated
vehicle model, the modeling of uncertainty by
other frameworks, and the formulation of objectives
that involve penalties for undesired behavior.
Furthermore, we will use this optimization-
based reference generation framework for other
autonomous driving functions, e.g., lane keeping
assistance (LKA) and collision avoidance.
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