Decoding Short LDPC Codes via BP-RNN Diversity and Reliability-Based Post-Processing - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Communications Année : 2022

Decoding Short LDPC Codes via BP-RNN Diversity and Reliability-Based Post-Processing

Résumé

This paper investigates decoder diversity architectures for short low-density parity-check (LDPC) codes, based on recurrent neural network (RNN) models of the belief-propagation (BP) algorithm. We propose a new approach to achieve decoder diversity in the waterfall region, by specializing BP-RNN decoders to specific classes of errors, with absorbing set support. We further combine our approach with an ordered statistics decoding (OSD) post-processing step, which effectively leverages the bit-error rate optimization deriving from the use of the binary cross-entropy loss function. We show that a single specialized BP-RNN decoder combines better than BP with the OSD postprocessing step. Moreover, combining OSD post-processing with the diversity brought by the use of multiple BP-RNN decoders, provides an efficient way to bridge the gap to maximum likelihood decoding.
Fichier principal
Vignette du fichier
Decoding_Short_LDPC_Codes_via_BP_RNN_Diversity_and_Reliability_Based_Post_Processing_IEEE_version (1).pdf (799.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03845023 , version 1 (09-11-2022)

Identifiants

Citer

Joachim Rosseel, Valérian Mannoni, Inbar Fijalkow, Valentin Savin. Decoding Short LDPC Codes via BP-RNN Diversity and Reliability-Based Post-Processing. IEEE Transactions on Communications, 2022, pp.1-1. ⟨10.1109/TCOMM.2022.3218821⟩. ⟨hal-03845023⟩
96 Consultations
160 Téléchargements

Altmetric

Partager

More