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Abstract

Univariate Lévy processes have become quite common in the reliabil-
ity literature for modeling accumulative deterioration. In case of corre-
lated deterioration indicators, several possibilities have been suggested for
modeling their dependence. The point of this paper is the study of three
different dependence models: use of a regular copula, superposition of in-
dependent univariate Lévy processes and use of a Lévy copula. The three
methods are first presented and analysed. In this way, it is shown that
the multivariate process constructed through an ordinary copula cannot
have independent increments in general, that is, it is not a Lévy process.
The impact of a wrong choice for the model is next explored, based on
data simulated from one model and next adjusted to all three models. It
is shown that a wrong model can lead to either overestimate or underesti-
mate the reliability function, which could be problematic in an application
context.

Keywords: Reliability ; Multivariate degradation ; Lévy process ; Copula ;
Lévy copula

1 Introduction

In reliability theory, a classical way for modeling the univariate deterioration
accumulated by a system over time is to consider univariate Lévy processes, such
as gamma processes [31], inverse gaussian processes [34] or Wiener processes [36];
please see [13] for more references.

Based on the development of online monitoring, several deterioration indi-
cators are nowadays often monitored at the same time, leading to the need for
multivariate deterioration models. This need has been paid much attention in
the recent reliability literature, please see Section 1.2. in [33] for a very good
and recent review on the subject. We here focus on three specific multivariate
models from this literature.

A first model assume the multivariate process to be a Lévy process, with
dependence modeled through a Lévy copula. Indeed, it is well-known that all
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the dependence between the marginal processes of a multivariate Lévy process
can be captured through a Lévy copula (see [14] for technical details about Lévy
copulas). Among the reliability papers using this model, one can quote for in-
stance [1], [16], and [17]. As will be seen later on, if this model allows to catch
any range of dependence between the marginal processes of a multivariate Lévy
process, its use entails a high technicality. In particular, the joint distribution
of the process at time t is generally not available in full form and approximate
Monte-Carlo simulations are hence needed for its numerical assessment [6]. This
seems to have been an obstacle for a generalized use of bivariate Lévy processes
in reliability, especially because these Monte-Carlo simulations are maybe not
that intuitive at first sight. That is why we think that these simulation proce-
dures deserve to be studied further. Note that some papers can be found in the
reliability literature which provide other tools to facilitate the practical use of
Lévy copulas. Among them, one can quote [11] for an example of estimation
procedure in a model governed by a Clayton Lévy copula with gamma processes
as margins, and [28] for the use of Fokker-Planck equations in order to obtain
the Laplace transforms of the reliability function of a Lévy copula model.

Another way for modeling multivariate Lévy processes is to construct them
through superposition of independent univariate Lévy processes. See, e.g., [18,
20] or [22, Section 4] for the bivariate case in a reliability context. See also [2]
for the multivariate case in a general context (and also for other constructions of
multivariate non negative Lévy processes). The construction by superposition is
simple, which makes it easy to use. As will be seen later on, this model however
suffers from limitations concerning the range of possible dependence between
the components.

Finally, several papers from the recent literature suggest to consider time-
independent regular copulas for modeling the dependence between univariate
Lévy processes (details further). As a reminder, let us recall that regular copulas
allows to capture all the dependence between random variables (not between
stochastic processes). See, e.g., [23] for more details about regular copulas. See,
e.g., [7, 8, 9, 19, 24, 25, 35, 37] for some papers considering regular copulas for
modeling multivariate deterioration. See also [36, Section 7], which highlights
the fact that this model has become more and more common in the reliability
literature.

The first goal of the paper is to present and analyse in details the three pre-
vious models, that is the model based on superposition, and those two based on
regular or Lévy copulas. On that aspect, we try to highlight the main advantage
and drawback of each method and try to provide all required technical tools for
their practical use. As for the model based on regular copulas, we show that this
model is not coherent as, generally, such a construction leads to a process with
dependent increments. The use of this model in many engineering papers seems
therefore inappropriate. For the model based on Lévy copulas, we compare two
different methods from the literature for their numerical assessment. Finally,
we investigate the possible dependence range of each model and compare them.

The second goal of the paper is the study of the impact of a wrong choice for
the model in a practical context. With that aim, data are generated from one
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model, which are used to fit the three models (including the right one). Next,
the reliability of a two-component parallel system is computed, considering the
three adjusted models and the results are compared.

The paper is organized as follows: the three models are described in Section
2 and the impact of a wrong modeling on the reliability function is next explored
in Section 3. Conclusive remarks and perspective end this paper in Section 4.

Please note that the present study is limited to the case of non negative
bivariate processes for sake of simplicity, but the results and conclusion would
remain valid in the multivariate case.

2 The three models

Let us first remind that a bivariate process (Y (t) = (Y1 (t) , Y2 (t)))t≥0 is said
to be a Lévy process, as soon as:

� (Y (t))t≥0 is stochastically continuous,

� Y (0) = (0, 0) almost surely,

� (Y (t))t≥0 has independent increments: for all m ≥ 2 , for all 0 < t1 <
· · · < tm, the random vectorsY (t1) ,Y (t2)−Y (t1) , · · · ,Y (tm)−Y (tm−1)
are (mutually) independent,

� (Y (t))t≥0 is a right-continuous with left-side limits (càdlàg) process.

Please note that the last assumption is not mandatory, but it is not a re-
striction as such a càdlàg version of the process always exists, please see [27] for
more details. In all the paper, we consider non negative Lévy processes, which
are often called subordinators in the literature, please see [2] for more details
on such processes.

2.1 The model based on a regular copula

2.1.1 Description of the model

Let us first remind that, from Sklar’s Theorem [29], if F is a 2-dimensional dis-
tribution function with continuous marginal cumulative distribution functions
F1 and F2, then there exists a unique function C : [0, 1]

2 → [0, 1] such that

F (x1, x2) = C (F1 (x1) , F2 (x2)) , ∀x = (x1, x2) ∈ R2.

The function C is called a regular copula and it is a 2-dimensional cumulative
distribution function with standard uniform margins. The function C captures
all the dependence between the two components of the distribution F .

We now come to the model used for instance in [7, 8, 9, 19, 24, 25, 35, 37]
(considering only the two-dimensional case as explained in the introduction),
which is based on the use of such regular copulas to model the dependence
between two univariate Lévy processes.
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Starting from two univariate non negative Lévy processes (Y1 (t))t≥0 and
(Y2 (t))t≥0, we set Y (t) = (Y1 (t) , Y2 (t))t≥0 to be the joint bivariate process
and for each (t1, · · · , tm) such that 0 = t0 < t1 < · · · < tm, let

∆Yij = Yi (tj)− Yi (tj−1) ,

Yj = Y (tj) = (Y1 (tj) , Y2 (tj)) ,

∆Yj = (∆Y1j ,∆Y2j) = Y (tj)−Y (tj−1)

and let F∆Yij , FYj and F∆Yj be the corresponding cumulative distribution
functions (CDF), for all j = 0, · · · ,m and i = 1, 2.

In order to model the dependence between the univariate processes (Yi (t))t≥0,
i = 1, 2, the authors of the quoted papers suggest to consider a regular copula
C and assume that C is such that

F∆Yj
(y1, y2) = C

(
F∆Y1j

(y1) , F∆Y2j
(y2)

)
(1)

for all j = 0, · · · ,m, all 0 = t0 < t1 < · · · < tm and all y1, · · · , yd ≥ 0.
This means that the regular copula which models the dependence between the
random increments ∆Y1j and ∆Y2j on (tj−1, tj ] is assumed to be independent
on tj−1 and tj .

In the same papers, assuming the two processes (Yi (t))t≥0, i = 1, 2, to be
jointly observed at times t1 < · · · < tm, the likelihood function is next written
as the product of the probability density functions of the bivariate increments
∆Y1, · · · , ∆Ym. This means that the likelihood function is written as if the
bivariate increments ∆Y1, · · · , ∆Ym were independent. Please see [8, Equation
(11)], to refer to one single paper.

However, in [14], the authors remark that for a bivariate (or multivariate)
Lévy process, the regular copula governing the dependence between the random
variables Yi (t), i = 1, 2, usually depends on t (say Ct). The assumption of
a time-independent copula as in (1) hence seems questionable for the process
(Y (t))t≥0 to have independent increments (that is to be a Lévy process).

In the next section, we explore some properties that should fulfill the mul-
tivariate process constructed through assumption (1) if it had independent in-
crements, and check whether it is true.

2.1.2 Coherence of the model

Let (Y (t))t≥0 be a bivariate (non negative) process constructed through a reg-
ular copula as in (1). Using the notations of the previous section and considering
m = 2, we have

Y1 = Y (t1) = (Y1 (t1) , Y2 (t1)) ,

Y2 = Y (t2) = (Y1 (t2) , Y2 (t2)) ,

∆Y2 = Y (t2)−Y (t1) = (Y1 (t2)− Y1 (t1) , Y2 (t2)− Y2 (t1))

with 0 < t1 < t2.
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Based on assumption (1), the corresponding CDF are

FY1
(y1, y2) = P (Y1 (t1) ≤ y1, Y2 (t1) ≤ y2) = C

(
FY1(t1) (y1) , FY2(t1) (y2)

)
,
(2)

FY2 (y1, y2) = P (Y1 (t2) ≤ y1, Y2 (t2) ≤ y2) = C
(
FY1(t2) (y1) , FY2(t2) (y2)

)
(3)

and

F∆Y2
(y1, y2) = P (Y1 (t2)− Y1 (t1) ≤ y1, Y2 (t2)− Y2 (t1) ≤ y2)

= C
(
FY1(t2)−Y1(t1) (y1) , FY2(t2)−Y2(t1) (y2)

)
, (4)

respectively, for all 0 < t1 < t2 and all y1, y2 ∈ R+.
Now, note that Y (t2) = Y (t1) + (Y (t2)−Y (t1)), or equivalently Y2 =

Y1 +∆Y2.
Let us assume that the process (Yt)t≥0 has independent increments.
In that case, Y1 and ∆Y2 should be independent, and the distribution of

Y2 should be the convolution of the distributions of Y1 and ∆Y2.
Assuming that Y1 admits a probability density function (PDF) with respect

to Lebesgue measure (for simplicity but the results would be similar otherwise),
one should have

FY2
(y1, y2) = (F∆Y2

∗ fY1
) (y1, y2)

=

∫
R2

+

F∆Y2
(x1, x2) fY1

(y1 − x1, y2 − x2) dx1 dx2

for all (y1, y2) ∈ R2
+.

Integrating over y1 and y2, one should then have∫
[0,z1]×[0,z2]

FY2
(y1, y2) dy1 dy2 (5)

=

∫
[0,z1]×[0,z2]

(∫
R2

+

F∆Y2
(x1, x2) fY1

(y1 − x1, y2 − x2) dx1 dx2

)
dy1 dy2

=

∫
R2

+

F∆Y2
(x1, x2)

(∫
[0,z1]×[0,z2]

fY1
(y1 − x1, y2 − x2) dy1 dy2

)
dx1 dx2

=

∫
[0,z1]×[0,z2]

F∆Y2
(x1, x2)FY1

(z1 − x1, z2 − x2) dx1 dx2 (6)

for all (z1, z2) ∈ R2
+.

Now let Gt1,t2 (z1, z2) stand for the difference between (5) and (6). Substi-
tuting FY1 , FY2 and F∆Y2 by their expressions with respect to C (see (2− 4)),
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we get

Gt1,t2 (z1, z2) =

∫
[0,z1]×[0,z2]

C
(
FY1(t2) (y1) , FY2(t2) (y2)

)
dy1 dy2

−
∫
[0,z1]×[0,z2]

C
(
FY1(t2)−Y1(t1) (x1) , FY2(t2)−Y2(t1) (x2)

)
×C

(
FY1(t1) (z1 − x1) , FY2(t1) (z2 − x2)

)
dx1 dx2

for all (z1, z2) ∈ R2
+.

Conclusion: Based on (5− 6), if the process Y had independent increments,
one should have

Gt1,t2 (z1, z2) = 0 (7)

for all (z1, z2) ∈ R2
+.

We next check whether Equation (7) is true on two different univariate non
negative Lévy processes. For both cases, a Clayton copula is considered, with

C (u1, u2) =
[
max

(
u−θ
1 + u−θ

2 − 1, 0
)]− 1

θ

where θ ∈ [−1,∞)\ {0}, and where θ → 0 corresponds to independence, θ →
+∞ to the upper Fréchet-Hoeffding bound (complete dependence) and θ = −1
to the lower Fréchet-Hoeffding bound, please see [23] for more details. The
function Gt1,t2 (z1, z2) depends on θ through the copula C and it is denoted by
Gt1,t2,θ (z1, z2).

Example 1 As a first example, gamma processes are considered, with Yi (t) ∼
Γ (t, 1) for i = 1, 2. The function Gt1,t2,θ (z1, z2) is plotted with respect to (z1, z2)
in Figure 1 for t1 = 1, t2 = 2 and θ = 1 (left plot), θ = −0.5 (right plot). As
can be seen, even in the case of homogeneous univariate processes and with
t2 − t1 = t1 = 1, Gt1,t2,θ (z1, z2) can be positive or negative, but it is not a null
function (that is we do not have Gt1,t2,θ (z1, z2) = 0 for all z1, z2 ∈ R+), which
means that the bivariate process does not have independent increments.

The function Gt1,t2,θ (z1, z2) is next plotted with respect to θ for t1 = 1,
t2 = 2 and (z1, z2) = (2, 2) in Figure 2, where we can see that it is positive
or negative, except from the two cases θ → 0 and θ → +∞, when it tends
towards 0. These two cases correspond to the cases of independence and complete
dependence, respectively, and it can be easily checked that indeed, in these two
specific cases, (Y (t))t≥0 has independent increments.

Example 2 As a second example, inverse gaussian processes are considered,
with Y (t) ∼ IG

(
t, bt2

)
and

ft (y) = t

√
b

2πy3
exp

[
−b (y − t)

2

2y

]
,
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Figure 1: The function Gt1,t2,θ (z1, z2) with respect to (z1, z2) for t1 = 1, t2 = 2
with θ = 1 (left plot) and θ = −0.5 (right plot), Gamma case (Example 1).
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Figure 2: The function Gt1,t2,θ (2, 2) with respect to θ for t1 = 1, t2 = 2 and
(z1, z2) = (2, 2). The left plot is a zoomed version of the right plot.

following the parameterization of [34]. Here again, the function Gt1,t2,θ (z1, z2)
is plotted with respect to (z1, z2) in Figure 3 for t1 = 1, t2 = 2 and θ = 1 (left
plot), θ = −0.5 (right plot), where we can see that Gt1,t2,θ (z1, z2) is not the null
function either.

Even if this study is restricted to non negative Lévy processes, note that
we have also tested the case of Gaussian processes for which the results are
similar, that is the construction of a bivariate process through a regular copula
and univariate Gaussian processes does not lead to a bivariate Lévy process.

As a conclusion, the construction of the bivariate process (Y (t))t≥0 based
on a regular copula as in (1) generally does not lead to a process with indepen-
dent increments. Then, providing the distributions of the bivariate increments
∆Y1, · · · ,∆Ym through (1) does not allow to recover the joint distribution of
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Figure 3: The function Gt1,t2,θ (z1, z2) with respect to (z1, z2) for t1 = 1, t2 = 2
with θ = 1 (left plot) and θ = −0.5 (right plot), Inverse Gaussian case (Example
2).

successive increments (∆Y1, · · · ,∆Ym), nor the joint finite-dimensional distri-
bution of (Y (t1) , · · · ,Y (tm)) with 0 < t1 < · · · < tm. Remembering that the
family of such finite-dimensional distributions is required to fully characterize
the distribution of the bivariate process (Y (t))t≥0 (see e.g. [4, Chapter 7]), it
means that the distribution of the bivariate process is not fully characterized by
(1) and should be further specified.

2.2 Bivariate Lévy processes constructed through super-
position

2.2.1 The model

We here consider a (non negative) bivariate process constructed through su-
perposition as in [18, 20, 21], with{

Y1 (t) = X1 (t) +X3 (t) ,
Y2 (t) = X2 (t) +X3 (t)

for all t ≥ 0, where (Xi (t))t≥0, i = 1, 2, 3 are independent univariate non
negative Lévy processes (please see [2, §2.1] for the extension to the multivariate
case). It is well known that the joint process (Y (t) = (Y1 (t) , Y2 (t)))t≥0 is a
Lévy process. Also, the joint CDF of Y (t) is available in full form, with

FY(t) (y1, y2) = P (X1 (t) +X3 (t) ≤ y1, X2 (t) +X3 (t) ≤ y2)

=

∫
R+

FX1(t) (y1 − v)FX2(t) (y2 − v) fX3(t) (v) dv

for all y1, y2 ∈ R+ (see, e.g., [20]), where FXi(t) and fXi(t) are the CDF and
PDF of Xi (t), i = 1, 2, 3, respectively.
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For each t > 0, the regular copula modeling the dependence between the
random variables Y1 (t) and Y2 (t) is denoted by Ct.

Based on [23, Corollary 2.3.7.], we know that

Ct (z1, z2) = FY(t)

(
F−1
Y1(t)

(z1) , F
−1
Y2(t)

(z2)
)

=

∫
R+

FX1(t)

(
F−1
Y1(t)

(z1)− v
)

FX2(t)

(
F−1
Y2(t)

(z2)− v
)
fX3(t) (v) dv

for all z1, z2 ∈ [0, 1].
We next look at the dependence of Ct with respect to t.

2.2.2 On the time dependence of Ct with respect to t

To analyse the dependence of Ct with respect to t, we consider gamma processes
with Xi (t) ∼ Γ (t, 1) for i = 1, 2, 3. In that case, we have Yi (t) ∼ Γ (2t, 1) for
i = 1, 2, and (Yt)t≥0 is a bivariate Lévy process, with gamma processes as
margins.

The copula function Ct is plotted in Figure 4 for t = 1 (that is C1) and
for t = 2 (that is C2), as well as the difference C1 −C2. The plots of C1 and
C2 look very similar (left and middle plots) but when looking at the difference
C1 −C2 (right plot), it can be seen that it can be both positive and negative,
and C1 −C2 is not the null function.

Hence, even for such a simple bivariate Lévy process, the regular copula
function modeling the dependence between Y1 (t) and Y2 (t) depends on t.

Figure 4: The functions C1 (z1, z2) (left), C2 (z1, z2) (middle) and C1 (z1, z2)−
C2 (z1, z2) (right) with respect to (z1, z2).

Note however that if we extend the study to Lévy processes on the whole R
line, this result would not remain valid as it is easy to check that considering
a bivariate Gaussian process constructed though superposition of independent
univariate Gaussian processes leads to a time-independent regular copula for
(Y1(t), Y2(t)).
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2.3 Model based on a Lévy copula

2.3.1 The model

We finally consider a bivariate non-negative Lévy processes (Y (t) = (Y1 (t) , Y2 (t)))
(without drift). The process (Y (t))t≥0 is non-decreasing (component-wise) and
hence has bounded variation. It is a pure jump process and the jumps arrival
times and sizes are governed by its Lévy measure µ(dy) on R2

+\ {0}, which is
such that ∫∫

R2
+

(min (|y|, 1))µ(dy) < ∞,

(see [3, 27] for details).
The corresponding bivariate tail integral function is defined by

U (y) = U (y1, y2) =

∫∫
[y1,+∞)×[y2,+∞)

µ (dy) (8)

for all y = (y1, y2) ∈ R2
+\ {0}, with U (y1,∞) = U (∞, y2) = 0 for y1, y2 > 0

and U (0) = +∞, see [6, 14].
For i = 1, 2, the process (Yi (t))t≥0 is a univariate Lévy process with Lévy

measure µi where µ1 (dy1) = µ (dy1 × R+) and µ2 (dy2) = µ (R+ × dy2). The
corresponding tail integral function is Ui, with

Ui (xi) =

∫
[xi,+∞)

µi (dy)

for xi > 0, Ui (0) = +∞ and Ui (+∞) = 0.
Based on Sklar’s theorem for Lévy processes, it is known that all the depen-

dence between the univariate processes (Y1 (t))t≥0 and (Y2 (t))t≥0 is governed
by a Lévy copula L, which links U and Ui, i = 1, 2 through

U (y) = L (U1 (y1) , U2 (y2))

for all y = (y1, y2) ∈ R2
+\ {0} (see [6, 14] for details).

Lévy copulas allow to model any kind of dependence between the marginal
processes of a bivariate Lévy process. As explained in the introduction, the
joint distribution of Yt is generally not available in full form. Approximate
Monte-Carlo simulations are hence used for their numerical assessment, which
are presented in the next section. (Note that numerical schemes could also be
used, see e.g. [6, Chapter 12]).

In the following, we will make use of Pearson correlation coefficient ρ, which
is known to be independent on t and is given by

ρ = ρY(t) =

∫∫
R2

+

U(u1, u2) du1 du2

σY1(1)σY2(1)
=

∫∫
R2

+

L (U1 (u1) , U2 (u2)) du1 du2

σY1(1)σY2(1)
(9)
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for all t > 0 and also of the Laplace transform of Y (t), with

LY(t) (s) = E
(
e−s1Y1(t)−s2Y2(t)

)
= LY1(t) (s1)LY2(t) (s2) e

ts1s2LU(s1,s2) (10)

and

LU (s1, s2) =

∫∫
R2

+

e−s1y1−s2y2U (y1, y2) dy1 dy2

=

∫∫
R2

+

e−s1y1−s2y2L (U1 (y1) , U2 (y2)) dy1 dy2

for all t > 0 and all s = (s1, s2) ∈ R2
+. As we could not find any proof in the

literature, some details are given in the Appendix for formulas (9) and (10).
Standard Lévy copulas are positive Archimedean Lévy copulas which are of

the shape
L (u) = Φ

(
Φ−1 (u1) + Φ−1 (u2)

)
(11)

for all u = (u1, u2) ∈ R2
+\ {0}, where Φ is the generator function.

In the following, we consider Clayton-Lévy (CL) copulas with

Φθ,CL (t) = t−
1
θ ,

Lθ,CL (u1, u2) =
(
u−θ
1 + u−θ

2

)− 1
θ ,

and Gumbel-Lévy (GL) copulas with

Φθ,GL (t) = exp
(
t−

1
θ

)
− 1,

Lθ,GL (u1, u2) = exp

([
(ln (1 + u1))

−θ

+ (ln (1 + u2))
−θ
]− 1

θ

)
− 1

for all t > 0 and all u = (u1, u2) ∈ R2
+\ {0}, where θ > 0. Note that the case

θ → 0+ corresponds to independence and θ → ∞ to complete dependence for
both CL and GL copulas.

2.3.2 Approximate Monte-Carlo simulation

Non-negative bivariate Lévy processes (without drift) are pure jump processes
that can be represented through series of the shape

Y (t) =

∞∑
n=1

Zn 1{Vn≤t},

where Vn, n = 1, 2, · · · are the jumps times and Zn, n = 1, 2, · · · the bivariate
jump sizes (see [26]). Approximate Monte-Carlo (MC) simulation methods of
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such processes are based on the truncation of these series, removing the (in-
finitely many) smallest jumps and keeping only the (finitely many) largest ones.

A first simulation method based on series representation can be find in [6].
This method relies on the simulation of the jumps times and sizes of one com-
ponent (say the first component), and next on the simulation of the jumps sizes
of the other component, conditionally on the jump size on the first component.
This method is called Conditional Method in [10]. As was already observed in
several papers, this method induces some dissymmetry between the two compo-
nents and ”suffers from convergence problems when the components are weakly
dependent” [30]. We hence prefer consider another simulation method, sug-
gested in [30]. Setting T to be the horizon time, it writes down the following
way:

Let

Fθ,CL (u2|u1) =
∂Lθ,CL (u1, u2)

∂u1
=

(
1 +

(
u2

u1

)−θ
)− 1+θ

θ

,

Fθ,GL(u2|u1) =
∂Lθ,GL (u1, u2)

∂u1

=
1

1 + u1

(
1 +

(
ln (1 + u2)

ln (1 + u1)

)−θ
)− 1+θ

θ

× exp

{[
(ln (1 + u1))

−θ

+ (ln (1 + u2))
−θ
]− 1

θ

}
and let F−1

θ,· (u2|u1) be the inverse function with respect to u2 of Fθ,· (u2|u1),
where the point in the notation Fθ,· refers to CL or GL. Then

F−1
θ,CL (u2|u1) = u1

(
u
− θ

1+θ

2 − 1

)−1/θ

for the Clayton-Lévy case. As for the Gumbel-Lévy copula, there is no closed-
form expression for the inverse function and a numerical inversion procedure is
used. More precisely, for fixed u1, u2 and θ, F−1

θ,GL (u2|u1) is obtained as the
root of the function x 7→ Fθ,GL (x|u1)− u2, using the R function uniroot.

Let (Γ11
i )i∈N∗ and (Γ22

i )i∈N∗ be two independent sequences of jump times

of independent standard Poisson processes with rate T . Let also (W j
i )i∈N∗ ,

j = 1, 2, (Qj
i )i∈N∗ , j = 1, 2 be four independent sequences of i.i.d. uniform

random variables on [0, 1] and let (Vi)i∈N∗ be an independent sequence of i.i.d.
uniform random variables on [0, T ]. Define:

Γ12
i = F−1

θ,· (Q
1
i |Γ11

i ) and Γ21
i = F−1

θ,· (Q
2
i |Γ22

i )

for all i ≥ 1. Then, an approximation of Y1(t) and Y2(t) is obtained through

12



the following formulas:

Y k
1 (t) =

k∑
i=1

U−1
1 (Γ11

i )1{n1k
i W 1

i ≤1}1[0,t](Vi) +

k∑
i=1

U−1
1 (Γ21

i )1{n2k
i W 2

i ≤1}1[0,t](Vi)

(12)

Y k
2 (t) =

k∑
i=1

U−1
2 (Γ22

i )1{n2k
i W 2

i ≤1}1[0,t](Vi) +

k∑
i=1

U−1
2 (Γ12

i )1{n1k
i W 1

i ≤1}1[0,t](Vi)

(13)

for all t ∈ [0, T ], with

n1k
i = #

{
j = 1, 2 : Γ1j

i ≤ k

T

}
, n2k

i = #

{
j = 1, 2 : Γ2j

i ≤ k

T

}
,

where k is an integer (to be chosen large enough).

Remark 3 In such approximations, the k first points are considered for both
Poisson processes (Γ11

i )i∈N∗ and (Γ22
i )i∈N∗ , leading to mostly 2k jumps for Y k

j (t),
j = 1, 2 (in practice, a little less as some of them disappear due to the indica-

tors on
{
njk
i W j

i ≤ 1
}
, j = 1, 2 in (12) and (13)). An alternative would be to

consider a threshold level, say τ , as proposed by [30], and consider all points
of the two Poisson processes in [0, τ ]. The choice of the k first points for both
Poisson processes as in (12) and (13) allows an easier comparison with another
simulation method which is considered just bellow.

Formulas (12) and (13) lead to the following algorithm.
In the specific case of an Archimedean copula as in (11), the authors in [10]

suggest another approximation:

Y K
1 (t) =

K∑
n=1

U−1
1

(
Φ

(
E1n

G−1 (Γn)

))
1{Vn≤t}, (14)

Y K
2 (t) =

K∑
n=1

U−1
2

(
Φ

(
E2n

G−1 (Γn)

))
1{Vn≤t} (15)

for all t ≥ 0, where:

� K is an integer (to be chosen large enough),

� (Γn)n≥1 are the points of a Poisson process with rate T ,

� Ein, i = 1, 2, n ≥ 1 are independent standard exponential distributions
(with mean 1),

� (Vn)n≥1 are i.i.d. random variables uniformly distributed on [0, T ],
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Algorithm 1 (Tankov)

• Chose an integer k;

• Generate Γ11
k and Γ22

k independently, according to the gamma distribution
with shape parameter k and rate T ;

• For j = 1, 2, generate i.i.d. Γjj
1 ,· · · , Γjj

k−1 independently according to the

uniform distribution on
[
0,Γjj

k

]
(no need for sorting the Γjj

i , i = 1, · · · , k−1);

• Generate i.i.d. Vi, i = 1, · · · , k independently according to the uniform
distribution on [0, T ];

• Generate i.i.d. W 1
i , W

2
i , Q

1
i , Q

2
i , i = 1, · · · , k independently according to

the uniform distribution on [0, 1];

• Compute Γ12
i = F−1

θ,· (Q
1
i |Γ11

i ) and Γ21
i = F−1

θ,· (Q
2
i |Γ22

i ) for i = 1, · · · , k;

• Compute n1k
i and n2k

i for i = 1, · · · , k;

• Compute Y k
1 (t) and Y k

2 (t) according to (12) and (13).

with Γn’s, Vn’s and Eij ’s independent, and where G = LS−1 (Φ) is the inverse
Laplace-Stieltjes transform of Φ.

In the specific case of a Clayton-Lévy copula, we have

Φθ,CL (s) = s−
1
θ =

∫
R+

e−su u
1
θ−1

Γ
(
1
θ

)du =

∫
R+

e−sudG (u) = LSG (s)

with

G (u) =
θ u

1
θ

Γ
(
1
θ

) =
u

1
θ

Γ
(
1 + 1

θ

)
and

G−1(t) =

(
t

θ
Γ(1/θ)

)θ

=

(
t Γ

(
1 +

1

θ

))θ

.

In the case of a Gumbel-Lévy copula, the computation of G−1 would require
two successive numerical procedures, first for the computation of the inverse
Laplace-Stieltjes transform G of Φ, and next for its inversion. Based on this
numerical complexity, this simulation procedure is not considered further for
the Gumbel-Lévy copula.

Formulas (14) and (15) lead to the following algorithm (which is used for
the Clayton-Lévy copula).

Remark 4 For comparison purpose between Algorithms 1 and 2, we take K =
2k in order to get (mostly) the same number of jumps in the two simulation
methods, which leads to very similar computation times.
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Algorithm 2 (Grothe-Hofert)

• Chose an integer K;

• Generate ΓK according to the gamma distribution with shape parameter
K and rate T ;

• Generate i.i.d. Γ1, · · · ,ΓK−1 according to the uniform distribution on
[0,ΓK ] (no need for sorting the Γi, i = 1, · · · ,K − 1);

• Generate i.i.d. Ein according to the standard exponential distribution for
1 ≤ n ≤ K and i = 1, 2;

• Generate i.i.d. V1, · · · , VK according to the uniform distribution on [0, T ];

• Compute Y K
1 (t) and Y K

2 (t) according to (14) and (15).

2.3.3 Comparison of the two simulation approaches

In this section, a bivariate Lévy process (Yt)t≥0 with Clayton-Lévy copula
Lθ is considered, with gamma processes as margins and marginal parameters
(Ai, 1), i = 1, 2. It is called a bivariate Gamma-Clayton-Lévy (GCL) process
with parameters (A1, 1, A2, 1, θ). The objective is to compare the two simulation
methods, as described by Algorithms 1 and 2. Remembering that the joint PDF
of Yt is not available in full form but fully characterized by its joint Laplace
transform (available in full form), the accuracy of the simulation methods is
evaluated by comparing the empirical Laplace transform of Y(t) with its theo-
retical counterpart, which is given by (10) (in a general setting). For a better
account, the marginal empirical Laplace transforms and Pearson correlation co-
efficient are also compared with their theoretical counterparts, which are given
by (24) and (9), respectively.

In the specific case of a process with gamma processes as margins, we have

Ui (ui) = Ai

∫ ∞

ui

e−yi

yi
dyi = Ai Ei (ui) (16)

for i = 1, 2 and ui > 0, where Ei is the exponential integral function.
Formula (9) may then be written in the following way:

ρθ,CL =

∫∫
R2

+

(
(A1 Ei (u1))

−θ
+ (A2 Ei (u2))

−θ
)− 1

θ

du1 du2

√
A1A2

=

∫∫
R2

+

(
α− θ

2 Ei (u1)
−θ

+ α
θ
2 Ei (u2)

−θ
)− 1

θ

du1 du2 (17)

with

α =
A1

A2
.
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Formulas (24) and (10) write down:

LYi(t) (si) = exp

(
t

∫
R+

(
e−siyi − 1

)
Ai

e−yi

yi
dyi

)
=

(
1

1 + si

)Ait

for i = 1, 2,

LY(t) (s) =

(
1

1 + s1

)A1t( 1

1 + s2

)A2t

ets1s2LU(s1,s2)

with

LU (s) =

∫∫
R2

+

e−s1y1−s2y2

(
(A1 Ei (u1))

−θ
+ (A2 Ei (u2))

−θ
)− 1

θ

dy1 dy2.

Then, for each set of parameters (A1, A2, θ,K, t), the following procedure
is used. Firstly, N = 5000 trajectories (Y(n)(u))u∈[0,t], n = 1, . . . , N of the
process Y are simulated. Next, we have to chose the points where to compare
the empirical and theoretical Laplace transforms of Yi(t), i = 1, 2 and we take
si,j = L−1

Yi(t)
(0.01 ∗ j) for i = 1, 2 and j = 1, . . . , 100, which allows to mostly

cover the range of LYi(t) for i = 1, 2. For each i = 1, 2, the relative error on the
marginal Laplace transform is then computed by:

E
(i)
L (t) =

1

100

100∑
j=1

∣∣LYi(t)(si,j)− L̄Yi(t)(si,j)
∣∣

LYi(t)(si,j)
, (18)

where L̄Yi(t)(.) is the empirical Laplace transform for the i-th margin, with

L̄Yi(t)(si,j) =
1

N

N∑
n=1

e−si,jY
(n)
i (t).

For the bivariate process, the theoretical and empirical Laplace transforms
(LY(t)(s) and L̄Y(t)(s), respectively) are evaluated on a regular grid of 100
points s = (s1, s2), which mostly allows to cover the range of LY(t), as pre-
viously. The relative error EL(t) is next computed in a similar manner as in
Equation (18).

Finally, an empirical linear correlation coefficient ρ̂ is computed between the

series Y
(n)
1 (t) and Y

(n)
2 (t), n = 1, . . . , N and compared to the theoretical value

ρ.

This experiment, which provides three relative errors (for margins 1 and
2, and for the bivariate distribution) and the empirical correlation coefficient,
is repeated B = 100 times. The means and standard deviations of the three
relative errors together with the mean and standard deviation of the estimates
of the linear correlation coefficient are then computed.

Setting A1 = 0.5, A2 = 1, t = 1, several values are considered for K
(50, 100, 500 and 1000) and for θ (0.2, 0.5, 1 and 10). The means and standard
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Table 1: Mean (and standard deviation between brackets) of the relative errors

E
(1)
L (1) for the first margin

K θ Grothe-Hofert Tankov
50 0.2 0.812 (0.025) 0.012 (0.006)

100 0.2 0.502 (0.019) 0.014 (0.007)
500 0.2 0.126 (0.016) 0.013 (0.007)

1000 0.2 0.057 (0.014) 0.011 (0.006)
50 0.5 0.017 (0.008) 0.012 (0.006)

100 0.5 0.012 (0.006) 0.012 (0.007)
500 0.5 0.013 (0.006) 0.013 (0.007)

1000 0.5 0.012 (0.006) 0.011 (0.006)
50 1.0 0.012 (0.007) 0.012 (0.006)

100 1.0 0.012 (0.006) 0.012 (0.007)
500 1.0 0.013 (0.007) 0.013 (0.007)

1000 1.0 0.012 (0.007) 0.012 (0.006)
50 10.0 0.012 (0.007) 0.012 (0.006)

100 10.0 0.013 (0.006) 0.013 (0.007)
500 10.0 0.012 (0.007) 0.012 (0.007)

1000 10.0 0.012 (0.007) 0.012 (0.006)

deviations of the relative errors for the Laplace transforms of the first margin
and bivariate distribution are provided in Tables 1 and 2, respectively. The
results for the second margin are very close to those for the first margin, and
they are hence omitted. The mean and standard deviation of the correlation
estimator ρ̂ are provided in Table 3, as well as the true correlation value ρ.

From Tables 1 to 3, it can be noted that the two generation approaches
perform similarly for large (θ = 1) and very large (θ = 10) dependencies be-
tween the two components of the process (Yt)t≥0 and that the convergence
with respect to K is very fast. However, for a moderate correlation θ = 0.5
(which leads to ρ ≃ 0.410), the generation method of Grothe and Hofert seems
to need a larger value for K than Tankov’s one, as for the relative error on the
Laplace transforms. For very small correlation (θ = 0.2, leading to a quasi-
independence situation), we can observe a clear advantage of Tankov’s method.
This phenomenon is not observed for the correlation coefficient, where both
methods lead to mostly similar results (but the correlation coefficient is not suf-
ficient to fully characterize the distribution, contrary to the bivariate Laplace
transform).

Note that other experiments have been conducted, varying the value of A1

(with A1 equal to A2 and A1 much larger than A2). The results were very
similar to those of Tables 1 to 3 and they are hence omitted. They however
confirm that the approach proposed by Tankov is very efficient, whatever the
level of dependency, whereas the method proposed by Grothe and Hofert needs
larger values for K as θ is decreasing.

2.4 Comparison of the dependence range

We here look at the possible dependence range implied by the three models,
by comparing the maximal values of the corresponding Pearson correlation
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Table 2: Mean (and standard deviation in brackets) of the relative errors EL(1)
for the bivariate distribution

K θ Grothe-Hofert Tankov
50 0.2 2.426 (0.075) 0.026 (0.015)

100 0.2 1.457 (0.058) 0.028 (0.018)
500 0.2 0.358 (0.040) 0.029 (0.016)

1000 0.2 0.174 (0.030) 0.029 (0.018)
50 0.5 0.079 (0.044) 0.045 (0.029)

100 0.5 0.039 (0.026) 0.040 (0.029)
500 0.5 0.035 (0.023) 0.040 (0.027)

1000 0.5 0.041 (0.029) 0.036 (0.022)
50 1.0 0.034 (0.026) 0.034 (0.022)

100 1.0 0.033 (0.020) 0.033 (0.020)
500 1.0 0.033 (0.019) 0.031 (0.022)

1000 1.0 0.034 (0.021) 0.031 (0.020)
50 10.0 0.028 (0.019) 0.028 (0.018)

100 10.0 0.030 (0.017) 0.033 (0.021)
500 10.0 0.027 (0.018) 0.028 (0.021)

1000 10.0 0.028 (0.021) 0.028 (0.021)

coefficients (which depend on the models).
As for the model based on a regular copula, the maximal dependence between

Y1 (t) and Y2 (t) is obtained for the upper Fréchet bound, that is when

C (u1, u2) = min (u1, u2)

for all u1, u2 > 0, or equivalently, when the random variables Y1 (t) and Y2 (t)
are comonotonic (see for example Section 2.9 in [12]).

This provides:

F̄Y(t) (u1, u2) ≤ min
(
F̄Y1(t) (u1) , F̄Y2(t) (u2)

)
and Pearson correlation coefficient of Yt fulfills:

ρYt ≤ ρFr
max (t) =

∫∫
R2

+

min
(
F̄Y1(t) (u1) , F̄Y2(t) (u2)

)
du1 du2 − E (Y1 (t))E (Y2 (t))

σY1(t)σY2(t)
.

(19)
As for the superposition model, it is easy to check that Pearson correlation

coefficient of Y (t) is independent on t (as for any Lévy process) and it is given
by

ρS = ρY(1)

=
var (X3 (1))

σ (Y1 (1))σ (Y2 (1))

≤ min (var (Y1 (1)) , var (Y2 (1)))

σ (Y1 (1))σ (Y2 (1))

= ρSmax
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Table 3: Mean (and standard deviation in brackets) of the correlation coefficient
estimators ρ̂

K θ ρ Grothe-Hofert Tankov
50 0.2 0.060 0.067 (0.021) 0.060 (0.017)

100 0.2 0.060 0.062 (0.016) 0.059 (0.016)
500 0.2 0.060 0.062 (0.018) 0.058 (0.017)

1000 0.2 0.060 0.059 (0.017) 0.054 (0.018)
50 0.5 0.410 0.410 (0.022) 0.405 (0.019)

100 0.5 0.410 0.409 (0.017) 0.409 (0.021)
500 0.5 0.410 0.410 (0.020) 0.410 (0.020)

1000 0.5 0.410 0.407 (0.019) 0.403 (0.021)
50 1.0 0.711 0.709 (0.012) 0.709 (0.012)

100 1.0 0.711 0.711 (0.010) 0.710 (0.014)
500 1.0 0.711 0.711 (0.012) 0.712 (0.012)

1000 1.0 0.711 0.710 (0.013) 0.708 (0.012)
50 10.0 0.970 0.970 (0.001) 0.970 (0.001)

100 10.0 0.970 0.970 (0.001) 0.970 (0.001)
500 10.0 0.970 0.970 (0.001) 0.970 (0.001)

1000 10.0 0.970 0.970 (0.001) 0.970 (0.001)

with

ρSmax = min

(
σ (Y1 (1))

σ (Y2 (1))
,

(
σ (Y1 (1))

σ (Y2 (1))

)−1
)

(20)

(see for example [12]). Note that the upper bound is reachable, taking X1(1) =
0 or X2(1) = 0 according to whether σ (Y1 (1)) ≤ σ (Y2 (1)) or the opposite,
which leads to σ (Y1 (1)) = σ (X3 (1)) or σ (Y2 (1)) = σ (X3 (1)), respectively.

Finally, for the model based on a Lévy copula, the maximal dependence is
obtained for the Lévy copula of complete dependence L∥, with

L∥ (u) = min (u1, u2)

for u = (u1, u2) ∈ R2
+\ {0} (see [6]). Hence, the upper bound for ρ is given by

ρ ≤ ρLmax =

∫∫
R2

+

min (U1 (u1) , U2 (u2)) du1 du2

σY1(1)σY2(1)
. (21)

For illustration purpose, we now assume that the marginal processes are gamma
processes with Yi (t) ∼ Γ (Ait, 1), i = 1, 2. In that case, we have E (Yi (t)) =
var (Yi (t)) = Ait and Ui (ui) = Ai Ei (ui) for ui > 0 and i = 1, 2 (see (16)).
We set

α = var (Y1 (t)) /var (Y2 (t)) = A1/A2.

For the superposition model, the maximum coefficient ρSmax is computed
through (20) with

ρSmax = ρSmax (α) = min
(
α

1
2 , α− 1

2

)
.
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For the Lévy copula model, the maximum coefficient given in (21) depends on
the same α with

ρLmax (α) =

∫∫
R2

+

min
(
α

1
2 Ei (u1) , α

− 1
2 Ei (u2)

)
du1 du2.

For the regular copula model, the maximum coefficient ρFr
max (t) is computed

through (19), which depends on t, A1 and A2. For comparison purpose, we take
A1 = α and A2 = 1 so that ρFr

max (t) now only depends on t and α (which is still
equal to A1/A2). It is denoted by ρFr

max (t, α).
The functions ρLmax (α) and ρSmax (α) are plotted in Figure 5, together with
ρFr
max (t, α) for t = 0.1, t = 1, t = 10. We can notice on this figure that ρLmax (α) ≥

ρSmax (α). This is coherent with the fact that the superposition model is a
specific Lévy process (that could be modeled through a Lévy copula) and hence
exhibits some restrictive dependence range when compared to a general Lévy
process modeled through a Lévy copula. Also, we have ρFr

max (t, α) ≥ ρLmax (α) for
t = 0.1, t = 1 and t = 10. This means that assuming the process Y to be a Lévy
process induces some restriction on the possible dependence between Y1 (t) and
Y2 (t), when compared to a general random vector (Y1 (t) , Y2 (t)) without any
specification for the structure of the process Y. Here again, this was expected.
Finally, it seems that ρFr

max (t, α) decreases with t (this has been checked for
various values of t beyond t = 0.1, t = 1 and t = 10). We do not have clear
explanations for that fact.

0 5 10 15
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Figure 5: ρLmax (α), ρ
S
max (α) and ρFr

max (t, α) for t = 0.1, t = 1 and t = 10.
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3 On the impact of a wrong modeling on the
reliability function

3.1 Introduction

In this section, a two-component series system is considered, with joint deterio-
ration level modeled by one of the three models from Section 2, where component
j is considered as failed as soon as its deterioration level is beyond a given failure
threshold Lj , j = 1, 2. The point here is to investigate the impact of a wrong
modeling on the reliability function of the two-component series system, with

R (t) = P (Y1 (t) < L1, Y2 (t) < L2) (22)

for all t > 0.
With that aim, data are generated from one of the two coherent models

(superposition or Lévy copula), which is considered to be the true model. Next,
the parameters of the three models (including the true one) are estimated from
a series of observations of the increments ∆Yij = Yi(tj)− Yi(tj−1), i = 1, 2, j =
1, ..., d. To be more specific, based on the fact that our purpose is to investigate
the impact of a wrong modeling of the dependence between the gamma marginal
processes, the marginal parameters are assumed to be known and only the
dependence parameters are estimated. Note that the point of the paper is not
the comparison of estimation methods (as in [11] for instance), and large size
samples are considered, in order the estimation results to be reliable. Once
the dependence parameters have been estimated, the corresponding reliability
functions are computed with the estimated parameters.

3.2 Estimation methods

3.2.1 Model based on regular copulas

For the model based on regular copulas described in Subsection 2.1, three cop-
ula families are considered (Clayton, Frank and Gümbel), with one single pa-
rameter θ > 0 to be estimated for each of them. With that aim, we use the
R package ”copula”: firstly the function pobs transforms the increments into
pseudo-observations in the set [0, 1] × [0, 1], and then the function fitCopula
gives the maximum pseudo-likelihood estimate.

The reliability function is next estimated by:

R̂(t) = Cθ̂(FY1(t)(L1), FY2(t)(L2)).

3.2.2 Model based on superposition

Let Xi (t) ∼ Γ (ait, b) for i = 1, 2, 3 so that Yi (t) ∼ Γ (Ait, b) for i = 1, 2, with
A1 = a1 + a3, A2 = a2 + a3. In this model, all the dependence is measured by
parameter a3, with

cov(Y1 (t) , Y2 (t)) = var(X3 (t)) =
a3
b2

t.
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An estimator based on the empirical covariance is used for a3, with

â3 =
b2

td

d∑
j=1

(
∆Y1,j −

A1

b
∆tj

)(
∆Y2,j −

A2

b
∆tj

)
.

Note that this estimator is unbiased as

E (â3) =
b2

td

d∑
j=1

cov (∆Y1,j ,∆Y2,j)

=
b2

td

d∑
j=1

var (∆X3,j)

=
b2

td

d∑
j=1

a3
b2

∆tj

= a3.

Then we set

â1 = A1 − â3,

â2 = A2 − â3,

and the reliability function is estimated by

R̂(t) =

∫
R
F̂X1(t)(L1 − v)F̂X2(t)(L2 − v)f̂X3(t)(v) dv,

where f̂X3(t) and F̂Xi(t), i = 1, 2 stand for the PDF and CDF of the gamma
distribution with parameters (â3, b) and (âi, b), i = 1, 2 respectively.

3.2.3 Model based on a Lévy copula

Let (Yt)t≥0 be a bivariate Lévy process with gamma processes as margins,
Yi(t) ∼ Γ(Ait, bi), i = 1, 2, and dependence modeled by a Clayton-Lévy or
Gumbel-Lévy copula with parameter θ. To determine the parameter θ of the
Lévy copula, we use the following estimator for Pearson correlation coefficient
ρ:

ρ̂ =
b1b2

td
√
A1A2

d∑
j=1

(
∆Y1j −

A1

b1
∆tj

)(
∆Y2j −

A2

b2
∆tj

)
,

which can be seen to be an unbiased estimator as previously for a3, in the
specific setting of this paper where the marginal parameters are assumed to
be known. Whenever the marginal parameters are unknown and have to be
estimated, please see [20] for an unbiased estimator.

22



Then θ̂ is obtained by searching θ such that ρ̂ = ρθ,CL or ρ̂ = ρθ,GL, where
ρθ,CL is given in (17) and where

ρθ,GL =
b1b2√
A1A2

∫∫
R2

+

(
exp

{[
(ln (1 + U1 (u1)))

−θ

+ (ln (1 + U2 (u2)))
−θ
]− 1

θ

}
− 1

)
du1 du2

(see (9)).

Finally, the reliability is estimated through (22), considering θ̂ as parameter
for the underlying Lévy copula and using Monte Carlo simulations with J =
200 000 trajectories for the computation.

3.3 True model: Superposition

In this section, we suppose that the true model is the superposition model with
a1 = a2 = a3 = b = 1, which leads to Yi (t) ∼ Γ (2t, 1) for i = 1, 2.

The parameters a3 (for the superposition) and θ (for classic and Lévy cop-
ulas) are estimated from 250 repetitions of d = 5000 observations. We consider
two sets of observation times. The first one with periodic observation times with
period 1: ∆tj = 1, j = 1, · · · , d. The second one with aperiodic observation
times: {∆tj , j = 1, · · · , d} are i.i.d. observations of the uniform distribution on
[1, 20].

The results for the estimations of the dependence parameters are provided
for the six models and the two sets of observation times in Table 4, where
the mean and standard deviation over the 250 repetitions are given, together
with two empirical quantiles. Note that for the three regular copula models,
the estimates highly depend on the type of observation times (periodic or not),
which is not the case for the superposition model or models constructed through
Lévy copulas. Also, considering periodic observations, we have tested different
periodicity for the regular copula models and observed that the results also
depend on the periodicity. (Example: for the Clayton copula, the estimates
for the parameter θ are equal to 0.553 for ∆tj = 0.1, and 0.641 for ∆tj = 10,
j = 1, · · · , d).

We next consider the previously obtained mean estimates as dependence
parameters, and compute the associated reliability function for failure thresh-
olds L1 = L2 = 10. The reliability functions for the superposition model,
for ordinary Clayton, Frank and Gumbel copula models, and for Clayton-Lévy
and Gumbel-Lévy copula models are respectively denoted by RS , RC , RF , RG,
RCL and RGL. The true superposition model (with the exact value for the
dependence parameter) is also computed and denoted RTrue. All these func-
tions are plotted in Figures 6 and 7, for the two different sets of observation
times. For a better understanding of the possible impact of the dependence
model on the reliability function, we have also looked at the overall range of the
reliability function considering the two extreme cases (independence and total
dependence). Remark that, as the two components share the same distribution,
the total dependence just means that Y1 (t) = Y2 (t). The two extreme case have

23



periodic observation times aperiodic observation times
Model mean std q0.25 q0.975 mean std q0.25 q0.975

Superposition (a3) 1.000 0.047 0.917 1.100 0.999 0.039 0.919 1.075
Clayton (θ) 0.607 0.028 0.558 0.661 4.144 0.082 4.001 4.326
Frank (θ) 3.375 0.113 3.143 3.608 15.679 0.224 15.289 16.126
Gümbel (θ) 1.469 0.019 1.438 1.510 3.350 0.050 3.252 3.453

Clayton-Lévy (θ) 0.595 0.029 0.546 0.659 0.593 0.024 0.546 0.642
Gumbel-Lévy (θ) 0.727 0.041 0.656 0.808 0.727 0.032 0.664 0.797

Table 4: Estimates of the dependence parameters for the six considered models
when the true model is the superposition model

been added to the figures, where RI (resp. RTD) corresponds to independence
(resp. total dependence).
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Figure 6: The reliability functions RTrue, RS , RC , RF , RG, RCL, RGL (left)
and the bias RS − RTrue, RC − RTrue, RF − RTrue, RG − RTrue, RCL −
RTrue, RGL −RTrue for periodic observation times when the true model is the
superposition model

As expected and based on the fact that the parameter a3 is very well esti-
mated (see Table 4), the difference between the true reliability RTrue and its
estimate using the true model RS is very close to 0 in the two figures. Now,
if we focus on the two Lévy copula models, it seems that, for this example,
the Clayton-Lévy family is a better (or less bad) choice than the Gumbel-Lévy
family to fit the data. More important, we can see that these two models are
not impacted at all by the choice of observation times (please look at the scale
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Figure 7: The reliability functions RTrue, RS , RC , RF , RG, RCL, RGL (left)
and the bias RS − RTrue, RC − RTrue, RF − RTrue, RG − RTrue, RCL −
RTrue, RGL−RTrue for aperiodic observation times when the true model is the
superposition model

of the vertical axis on the two figures, which shows that the results are mostly
similar for the two sets of observation times). This is not the case for ordinary
copula models. Indeed, if the reliability functions RS , RC , RF are quite close
to RTrue for periodic observation times (Figure 6), probably due to the fact
that, in that case, the increments of the process are iid random variables, it
is no longer the case with aperiodic observation times (Figure 7). It can be
observed that the models with ordinary copulas are only slightly better than
the total dependence extreme model, which confirms that they are far from the
true model. This is mainly due to the incoherence of this type of model, as
explained in the beginning of the paper. Finally, note also that the models
based on Lévy copula does not catch that well the dependence induced by a
superposition model. This must be due to the fact that the two Lévy copulas
that have been considered here are of the Archimedean type, which implies that
the corresponding bivariate Lévy measure is absolutely continuous with respect
to Lebesgue measure (assuming the marginal Lévy measures to be absolutely
continuous) whereas the bivariate Lévy measure for the superposition model is
of the shape

µ(dy) = µX1
(y1) dy1×δ0 (dy2)+δ0 (dy1)×µX2

(y2) dy2+µX3
(y1) dy1×δy1

(dy2)

and is hence not absolutely continuous with respect to Lebesgue measure. (The
bivariate Lévy measure is easily obtained, noticing that the processes X1 and
X2 never jump together, whereas the jumps of X3 have just the same con-
tribution in both Y1 and Y2). The superposition model which implies either
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Model mean std q0.25 q0.975
Superposition (a3) 0.442 0.020 0.408 0.482

Clayton (θ) 2.479 0.051 2.385 2.579
Frank (θ) 10.103 0.160 9.794 10.417
Gümbel (θ) 2.484 0.034 2.422 2.559

Clayton-Lévy (θ) 0.528 0.021 0.492 0.572
Gumbel-Lévy (θ) 0.593 0.025 0.549 0.646

Table 5: Estimates of the dependence parameters for the six considered models
when the true model is the Clayton-Lévy copula model

independent jumps (both in size and time location) for the two marginal pro-
cesses, or simultaneous jumps with completely dependent jump sizes is hence
not well represented by a Lévy copula model with a smooth Lévy copula such
as an Archimedean one.

3.4 True model: Clayton-Lévy copula

We now consider a Clayton-Lévy copula model as the true model and study
again the effect of a wrong modeling. More precisely, d = 5000 observations of a
Clayton-Lévy copula model with parameter θ = 0.5 and margins Yi (t) ∼ Γ (t, 1)
for i=1,2 are considered. The parameters are estimated from 250 repetitions of
the process considering aperiodic observation times {∆tj , j = 1, · · · , n}, simu-
lated as i.i.d. observations of the uniform distribution on [1, 20]. The results of
the estimation procedure are provided in Table 5 and the resulting reliability
functions are represented in Figure 8 , again with the two extreme models, in-
dependence and total dependence. (Note that we have also considered the case
of periodic observation times but the results were very similar, so that they are
omitted).

Here again, we can see that the estimate of the reliability function considering
the true model with the estimated parameter (RCL) fits very well with the
true reliability function (RTrue). Also, the best results are obtained for the
superposition model (RS), closely followed by the model based on the Gumbel-
Lévy copula (RGL). Finally, note that the models based on the regular copulas
(RC , RL, RG) lead to a higher distortion with respect to the true reliability.

4 Conclusive remarks

As a conclusion, we have here considered three models for modeling the depen-
dence between univariate wear Lévy processes. The model based on regular
copulas has been shown to lead to a bivariate process that do not have inde-
pendent increments, that is, it is not a Lévy process. The construction hence is
questionable, as the distribution of successive increments (among other things)
is not known and should be further specified to get a coherent model. The model
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Figure 8: The reliability functions RTrue, RS , RC , RF , RG, RCL, RGL (left)
and the bias RS −RTrue, RC −RTrue, RF −RTrue, RG−RTrue, RCL−RTrue

RGL−RTrue for aperiodic observation times when the true model is a Clayton-
Lévy copula model with θ = 0.5

constructed by superposition is a specific bivariate Lévy process that allows easy
computations. It however suffers from a restrictive range of dependence when
compared to a general Lévy process constructed through a Lévy copula. The
model based on Lévy copulas allows any kind of dependence between the margins
of a bivariate Lévy process. However, this model implies a higher technicality
and requires approximate simulation methods for its numerical assessment (or
the use of numerical schemes).

As for the impact on the reliability function of a wrong choice of model, we
have seen that the model based on a regular copula, even though its incoherence,
provides not that bad results when the underlying (true) process is a Lévy
process (constructed either by superposition of through a Lévy copula) in case of
periodic observation times. The results are less convincing when the observation
times are not periodic. We also saw that, considering a Lévy copula as the true
model, a wrong choice for the family of Lévy copulas has an impact on the
reliability function and the superposition model can even provide better results
than a model with a wrongly chosen Lévy copula (see Figure 8). Finally, the
models based on a smooth Lévy copula do not catch that well the dependence
implied by the superposition model.

Then, in practice, what could be suggested? At first, as there is no theoret-
ical basis for the model based on regular copulas, we would suggest not to use
this model (especially when the observation times are not periodic). Next, to
chose between a Lévy process constructed by superposition or a Lévy copula,
one can first estimate Pearson correlation coefficient. If it is beyond the upper
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bound for the superposition model, then of course, this model cannot be used.
If it is below, one can maybe refer to technical experts to better understand
the interaction between the two marginal deterioration indicators. Indeed, in
a superposition model, the dependence is modeled through simultaneous jumps
with completely dependent jump sizes in the two marginal processes. This can
be meaningful in an application context. Think for instance of the wings of
a wind turbine where all wings are subject to the same wind that can have a
similar impact on each wing and at the same time. Another point for reflection
could be the development of goodness-of-fit tests, but this clearly is a challeng-
ing issue, as, to the best of our knowledge, we are not aware of any existing
reliable goodness-of-fit test even for well-known univariate Lévy processes such
as gamma processes.

Note also that the method for choosing the model between superposition
and a parametric family of Lévy copulas highly depends on the data. In this
article, we have considered so-called low-frequency observations, which means
that the levels of deterioration are measured during inspections at isolated times.
In case of continuous monitoring, it may be possible to have high-frequency
observations which may allow to consider non parametric estimation procedures
for the underlying Lévy copula, see for instance [5]. See also Section 4 in [30] for
more references. This would allow not to make an a priori choice between the
superposition and Lévy copula models (as the superposition model corresponds
to a specific Lévy copula). Furthermore, even if we have focused, in this
paper, on bivariate processes, it is important to note that in the case of a large
number of components, due to the high technicality of Lévy copula models, it
would probably be more reasonable to use simpler models, such as superposition
models.

Finally, even if it does not provide a multivariate Lévy process, another
promising option is to model the dependence between univariate Lévy processes
through the use of a random effect, as it allows tractable computations, based
on the conditional independent-increment property given the random effect. See
for instance [15, 32]. We are not aware of any study of the possible range of
dependence obtained through this method, when compared to that obtained
through a Lévy copula or by superposition, but the question seems to be of
interest due to the model’s potential.
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5 Appendix

Proof of Formulas (10) and (9). Let s = (s1, s2) ∈ R2
+. Based on Lévy-

Khinchin formula [6, Corollary 3.1], it is well-known that

LY(t) (s) = E
(
e−s1Y1(t)−s2Y2(t)

)
= exp

t

∫∫
R2

+

(
e−s1y1−s2y2 − 1

)
µ(dy)

 (23)

Writing

e−s1y1−s2y2 − 1 =
(
e−s1y1 − 1

) (
e−s2y2 − 1

)
+
(
e−s1y1 − 1

)
+
(
e−s2y2 − 1

)
and noting that

exp

t

∫∫
R2

+

(
e−s1y1 − 1

)
µX(dy)

 = exp

(
t

∫
R+

(
e−s1y1 − 1

)
µ1 (dy1)

)
= LY1(t) (s1)

(24)

31



(with a similar expression for the second component), we get

LY(t) (s) = exp

t

∫∫
R2

+

(
e−s1y1 − 1

) (
e−s2y2 − 1

)
µ (dy)

LY1(t) (s1)LY2(t) (s2) .

Now let us write the double integral as∫∫
R2

+

(
e−s1y1 − 1

) (
e−s2y2 − 1

)
µ (dy)

= s1s2

∫∫
R2

+

(∫ y1

0

e−s1z1dz1

)(∫ y2

0

e−s2z2dz2

)
µ (dy) .

Using Fubini’s theorem, we get∫∫
R2

+

(
e−s1y1 − 1

) (
e−s2y2 − 1

)
µ (dy)

= s1s2

∫∫
R2

+

e−s1z1−s2z2

 ∫∫
[y1,+∞)×[y2,+∞)

µ (dy)

 dz1 dz2

= s1s2

∫∫
R2

+

e−s1z1−s2z2 U (z1, z2) dz1 dz2

= s1s2LU (s1, s2) ,

which provides the result for Formula (10).
As for Formula (9), it is well-known that ρY(t) is independent of t for a Lévy

process so that it is enough to take t = 1. Hence, the point is to compute the
covariance between Y1 (1) and Y2 (1). Now, starting again from (23), it is easy
to check that

E (Y1 (1)) = −
∂LY(1)

∂s1

(
0+, 0+

)
=

∫∫
R2

+

y1µ(dy) =

∫
R+

y1µ1(dy1)

(the same for E (Y2 (1))) and

∂2LY(1)

∂s1∂s2

(
0+, 0+

)
= E (Y1 (1)Y2 (1))

=

∫∫
R2

+

y1y2 µ(dy) +

∫∫
R2

+

y1µ(dy)

∫∫
R2

+

y2µ(dy)

=

∫∫
R2

+

y1y2 µ(dy) + E (Y1 (1))E (Y2 (1)) .
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Hence

cov (Y1 (1) , Y2 (1)) =

∫∫
R2

+

y1y2 µ(dy)

=

∫∫
R2

+

(∫ y1

0

dz1

)(∫ y2

0

dz2

)
µ(dy)

=

∫∫
R2

+

 ∫∫
[y1,+∞)×[y2,+∞)

µ (dy)

 dz1 dz2

=

∫∫
R2

+

U (z1, z2) dz1 dz2

using Fubini’s theorem again for the third line, which achieves this proof.
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