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We study the dynamics of an initially axisymmetric and vertical Lamb-Oseen vortex in a7
stratified-rotating fluid under the complete Coriolis force on the 𝑓 plane, i.e. in presence of8
a background rotation both along the vertical and horizontal directions. By a combination9
of direct numerical simulations and asymptotic analyses for small horizontal background10
rotation, we show that a critical layer appears at the radius where the angular velocity of the11
vortex is equal to the buoyancy frequency when the Froude number is larger than unity. This12
critical layer generates a vertical velocity which is invariant along the vertical and which13
first increases linearly with time and then saturates at an amplitude scaling like 𝑅𝑒1/3, where14
𝑅𝑒 is the Reynolds number. In turn, a quasi-axisymmetric anomaly of vertical vorticity is15
produced at the critical radius through the non-traditional Coriolis force. Below a critical16
non-traditional Rossby number 𝑅𝑜 (based on the horizontal component of the background17
rotation) depending on 𝑅𝑒, the Rayleigh’s inflectional criterion is satisfied and a shear18
instability is subsequently triggered rendering the vertical vorticity fully non-axisymmetric.19
The decay of the angular velocity is then enhanced until it is everywhere lower than the20
buoyancy frequency. A theoretical criterion derived from the Rayleigh condition predicts21
well the instability. It shows that this phenomenon can occur even for a large non-traditional22
Rossby number 𝑅𝑜 for large 𝑅𝑒. Hence, the non-traditional Coriolis force might have much23
more impact on geophysical vortices than anticipated by considering the order of magnitude24
of 𝑅𝑜.25
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1. Introduction31

The Coriolis force due to the planetary rotation is an essential ingredient of geophysical32
fluid dynamics. When studying its effect on fluid motions, it is common to use the so-called33
traditional approximation which amounts to take into account only the vertical component,34
Ω𝑏 sin(𝜙), of the planetary angular velocity vector 𝛀𝒃 at a given latitude 𝜙. Its horizontal35
component Ω𝑏 cos(𝜙) is neglected mainly because the associated Coriolis force (called non-36
traditional Coriolis force) involves vertical motions or appears in the vertical momentum37
equation, whereas geophysical flows are usually in hydrostatic balance with weak vertical38
motions compared to horizontal motions (Gerkema et al. 2008).39

However, Gerkema et al. (2008) have reviewed several circumstances where the effect of40
the non-traditional Coriolis force becomes non-negligible. This occurs for example when41
the vertical velocity is not small like for the instability of Ekman layers (Wippermann42
1969; Etling 1971) and for deep convection (Sheremet 2004). In the latter case, its effect is43
particularly intuitive since convective cells become slanted along the axis of rotation instead44
of the direction of gravity. The non-traditional Coriolis force may have also many effects45
on equatorial flows (Hayashi & Itoh 2012; Igel & Biello 2020) and on the propagation and46
frequency range of internal waves, especially when the stratification is weak (Gerkema et al.47
2008). Recently, the non-traditional force has been shown to significantly modify several48
instabilities: the inertial instability (Tort et al. 2016; Kloosterziel et al. 2017), the symmetric49
instability (Zeitlin 2018) and the shear instability (Park et al. 2021). Tort & Dubos (2014) and50
Tort et al. (2014) have also derived shallow water models taking into account the complete51
Coriolis force.52

In the case of vortices, Lavrovskii et al. (2000) and Semenova & Slezkin (2003) have53
shown analytically that the equilibrium shape of a meddy-like anticyclonic vortex in a54
stratified fluid is slightly tilted with respect to the horizontal in presence of the full Coriolis55
force. However, they have assumed that the vortex has a uniform vorticity and is embedded56
within a fluid a rest. Hence, there exist both a discontinuity of vorticity and velocity at the57
vortex boundary. Here, we study numerically and theoretically the evolution of a vortex58
with a continuous distribution of vorticity under the complete Coriolis force. The vortex is59
initially axisymmetric and columnar with a vertical axis in a stratified-rotating fluid under60
the Boussinesq and 𝑓 -plane approximations. Since there is a misalignment between the61
buoyancy force and the rotation vector, this configuration is somewhat similar to the tilted62
vortex in a stratified non-rotating fluid considered by Boulanger et al. (2007, 2008). They63
have shown that a critical layer develops at the radius where the angular velocity of the64
vortex is equal to the Brunt–Väisälä frequency. Near this critical layer, they observed an65
intense axial flow and strong density variations that are uniform along the vortex axis but66
that lead to a three-dimensional shear instability under certain circumstances. We will show67
that a similar critical layer develops in the present configuration when the Froude number68
is larger than unity. For some parameters, an instability will be also triggered but it will be69
two-dimensional instead of being three-dimensional and due to a different mechanism. In70
addition, we will show that the critical layer evolution contains two different regimes: first, an71
unsteady inviscid phase followed by a second viscous phase which can be steady or can evolve72
non-linearly depending on the parameters. Such evolution is similar to the one evidenced by73
Wang & Balmforth (2020, 2021) in their studies of forced baroclinic critical layers. They74
have also reported the subsequent development of a two-dimensional shear instability and75
studied its non-linear evolution by means of a reduced model. Our investigations are based on76
direct numerical simulations coupled to asymptotic analyses of the critical layer in the limit77
of small non-traditional Coriolis parameter following the lines of Boulanger et al. (2007,78
2008); Wang & Balmforth (2020, 2021).79
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As a preliminary remark, we stress that the present study has been first carried out by80
means of three-dimensional numerical simulations. However, the flow turned out to remain81
independent of the vertical coordinate although the vertical velocity is non-zero. In other82
words, the dynamics were two-dimensional but with 3 components of velocity (2D3C). As83
we will see later, this can be easily understood from the governing equations. For this reason,84
the subsequent simulations reported in this paper have been restricted to a two-dimensional85
configuration. However, in a future paper, we will show that the introduction of infinitely86
small three-dimensional perturbations may also lead for some parameters to a full three-87
dimensionalisation of the vortex, i.e. a 3D3C dynamics, via an axial shear instability similar88
to the one reported by Boulanger et al. (2007, 2008). We stress that the two-dimensional89
dynamics is still observed in this full three-dimensional configuration in a significant range90
of the parameters space.91

The paper is organized as follows. The problem is first formulated in §2. Direct numerical92
simulations are described in §3. Asymptotic analyses are conducted for small non-traditional93
Coriolis parameter in §4. In §5, the numerical and asymptotic results are compared. The origin94
of the full non-axisymmetric dynamics of the vortex will be investigated in §6. Finally, the95
late evolution is discussed in §7 and the conclusions are given in §8.96

2. Formulation of the problem97

2.1. Governing equations98

We use the incompressible Navier-Stokes equations under the Boussinesq approximation99

∇.𝒖 = 0, (2.1)100
101

𝜕𝒖

𝜕𝑡
+ (𝒖.∇) 𝒖 = −∇

(
𝑝

𝜌0

)
+ 𝑏𝒆𝒛 − 2𝛀𝒃 × 𝒖 + a∇2𝒖, (2.2)102

𝜕𝑏

𝜕𝑡
+ 𝒖.∇𝑏 + 𝑁2𝑢𝑧 = ^∇2𝑏, (2.3)103

where 𝒖 is the velocity field, 𝑝 is the pressure and 𝑏 = −𝑔𝜌/𝜌0 is the buoyancy, 𝑔 is the104
gravity, 𝜌 is the density perturbation and 𝜌0 is a constant reference density. 𝒆𝒛 is the vertical105
unit vector and 𝛀𝒃 is the background rotation vector. It is assumed to have not only a vertical106
component but also a horizontal component along the 𝑦 direction: 2𝛀𝒃 = 𝑓 𝒆𝒚 + 𝑓 𝒆𝒛 where107
𝑓 = 2Ω𝑏 sin (𝜙) and 𝑓 = 2Ω𝑏 cos (𝜙), where 𝜙 is the latitude or, equivalently, the angle108
between the background rotation vector and the unit vector in the 𝑦 direction, 𝒆𝑦 (figure 1).109
a and ^ are the viscosity of the fluid and diffusivity of the stratifying agent, respectively. The110
total density field 𝜌𝑡 reads 𝜌𝑡 (𝒙, 𝑡) = 𝜌0 + �̄�(𝑧) + 𝜌(𝑥, 𝑡), where �̄� is the mean density profile111
along the 𝑧-axis. The Brunt–Väisälä frequency112

𝑁 =

√︄
− 𝑔

𝜌0

d�̄�
d𝑧

(2.4)113

will be assumed to be constant.114

2.2. Initial conditions115

A single vertical vortex with a Lamb-Oseen profile is taken as initial conditions. Its vorticity116
field reads117

𝝎(𝒙, 𝑡 = 0) = Z 𝒆𝒛 =
Γ

𝜋𝑎2
0
𝑒−𝑟

2/𝑎2
0 𝒆𝒛 , (2.5)118
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Figure 1: Sketch of the initial vortex in a stratified fluid and in presence of a background
rotation Ω𝑏 inclined with an angle 𝜙

where Γ is the circulation, 𝑎0 is the radius and 𝑟 is the radial coordinate. The geometry of119
the flow is sketched in figure 1.120

2.3. Non-dimensionalization121

Equations (2.1-2.3) are non-dimensionalized by using 2𝜋𝑎2
0/Γ and 𝑎0 as time and length122

units:123

∇.𝒖 = 0, (2.6)124125
𝜕𝒖

𝜕𝑡
+ (𝒖.∇) 𝒖 = −∇𝑝 + 𝑏𝒆𝒛 − 2

(
1
𝑅𝑜

𝒆𝒛 +
1
𝑅𝑜

𝒆𝒚

)
× 𝒖 + 1

𝑅𝑒
∇

2𝒖, (2.7)126

𝜕𝑏

𝜕𝑡
+ 𝒖.∇𝑏 + 1

𝐹2
ℎ

𝑢𝑧 =
1

𝑅𝑒𝑆𝑐
∇2𝑏, (2.8)127

where the same notation has been kept for the non-dimensional variables. Note that 𝜌0 has128
been eliminated by redefining the pressure 𝑝. The Reynolds, Froude, Rossby and Schmidt129
numbers are defined as130

𝑅𝑒 =
Γ

2𝜋a
, 𝐹ℎ =

Γ

2𝜋𝑎2
0𝑁

, 𝑅𝑜 =
Γ

𝜋𝑎2
0 𝑓

, 𝑅𝑜 =
Γ

𝜋𝑎2
0 𝑓

, 𝑆𝑐 =
a

^
. (2.9)131

Note that two Rossby numbers 𝑅𝑜 and 𝑅𝑜 are defined based on the two components of the132
rotation vector. The Schmidt number will be always set to unity. In the following, all results133
will be reported in non-dimensional form.134

135

2.4. Numerical method136

A pseudo-spectral method with periodic boundary conditions is used to integrate the137
equations (2.1-2.3) in space (Deloncle et al. 2008). Time integration is performed with138

Focus on Fluids articles must not exceed this page length
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a fourth-order Runge–Kutta scheme. Most of the aliasing is removed by truncating the top139
one third of the modes along each direction. The viscous and diffusive terms are integrated140
exactly. The horizontal sizes of the computational domain have been set to 𝑙𝑥 = 𝑙𝑦 = 18. As141
shown by Bonnici (2018) and Billant & Bonnici (2020), this is sufficiently large to minimize142
the effects of the periodic boundary conditions and to give results independent of the box sizes.143
In particular, the periodic boundary condition imposes that the net circulation over the domain144
is zero implying that the initial vorticity is not exactly (2.5) but Z ′

= Z − Γ/(𝑙𝑥 𝑙𝑦). However,145
with 𝑙𝑥 = 𝑙𝑦 = 18, the artificial background vorticity Γ/(𝑙𝑥 𝑙𝑦) is weak and represents only146
1% of the maximum vorticity of the vortex. The horizontal resolution has been varied from147
𝑛𝑥 = 𝑛𝑦 = 512 for 𝑅𝑒 = 2000 up to 𝑛𝑥 = 𝑛𝑦 = 1024 for 𝑅𝑒 = 10000. As mentioned in the148
introduction, preliminary simulations were fully three-dimensional with a resolution 𝑛𝑧 and149
a vertical size 𝑙𝑧 similar to the horizontal ones. However, the flow were always observed to150
remain independent of the vertical coordinate. It can be seen indeed from (2.6-2.8) that if151
𝜕/𝜕𝑧 = 0 at 𝑡 = 0, then the flow will remain independent of the vertical coordinate for all152
time. Therefore, only two-dimensional simulations but with 3 components of velocity will153
be presented in the following. Several tests using different horizontal resolutions have been154
performed in order to verify the accuracy of the computations. For 𝑅𝑒 = 2000, the velocity155
has been found to differ by less than 0.1% when the resolution is increased from 512 × 512156
to 1024 × 1024. Similarly, for 𝑅𝑒 = 10000, the relative variation of the velocity is less than157
0.5% when the resolution is increased from 1024 × 1024 to 1536 × 1536.158

3. Direct Numerical Simulations159

3.1. Illustrative example of the vortex dynamic160

To get an overview of the effect of the complete Coriolis force, we start by presenting the161
vortex evolution for the sample set of parameters 𝑅𝑒 = 2000, 𝐹ℎ = 10, 𝑅𝑜 = 23.1, 𝜙 = 60◦162
(𝑅𝑜 = 40). Figures 2 and 3 show the evolution of the vertical velocity and vertical vorticity at163
six different times (A movie is available in the supplementary material). Initially, the vortex164
is completely axisymmetric (figure 3(𝑎)) and the vertical velocity is zero (figure 2(𝑎)).165
As time goes on, a vertical velocity field with an azimuthal wavenumber 𝑚 = 1 develops166
(figure 2(𝑏)). This structure tends to intensify and becomes more and more concentrated at167
a particular radius (figure 2(𝑐)). Concomitantly, a ring of negative vertical vorticity appears168
and grows at the same radius (figure 3(𝑏, 𝑐)). Later, the vertical velocity structure and the169
ring of anomalous vertical vorticity are no longer perfectly circular (figure 3(𝑑, 𝑒, 𝑓 )). Two170
negative vortices appear on the vertical vorticity ring and revolve around the vortex center171
(figure 3(𝑒, 𝑓 )). Simultaneously, the shape of the vertical velocity structure is deformed172
similarly (figure 2(𝑒, 𝑓 )). As already mentioned, preliminary three-dimensional simulations173
with various vertical sizes 𝑙𝑧 of the computational domain and resolutions 𝑛𝑧 have shown174
that the velocity and vorticity fields remain always completely independent of the vertical175
coordinate, i.e. the same evolution is observed in any horizontal cross-section. It is also176
important to stress that this phenomenon occurs only in presence of the complete Coriolis177
force. Indeed, if 𝑅𝑜 = ∞, the vertical velocity remains identically zero while the vertical178
vorticity simply decays by viscous diffusion.179

From figure 3, we can distinguish two phases in the evolution of the vortex. First, a circular180
ring of anomalous vertical vorticity develops and then, this ring becomes non-axisymmetric.181
A more in-depth analysis of these two phases will be discussed later. Let us first examine the182
effects of the control parameters on this phenomenon.183
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Figure 2: Vertical velocity at different times: (𝑎) 𝑡 = 1 , (𝑏) 𝑡 = 30 , (𝑐) 𝑡 = 60, (𝑑) 𝑡 = 75,
(𝑒) 𝑡 = 80 and ( 𝑓 ) 𝑡 = 90 for 𝑅𝑒 = 2000, 𝐹ℎ = 10, 𝑅𝑜 = 23.1, 𝜙 = 60◦ (𝑅𝑜 = 40).

Figure 3: Vertical vorticity at different times: (𝑎) 𝑡 = 1 , (𝑏) 𝑡 = 30 , (𝑐) 𝑡 = 60, (𝑑) 𝑡 = 75,
(𝑒) 𝑡 = 80 and ( 𝑓 ) 𝑡 = 90 for 𝑅𝑒 = 2000, 𝐹ℎ = 10, 𝑅𝑜 = 23.1, 𝜙 = 60◦ (𝑅𝑜 = 40).

3.2. Effects of the stratification184

When the Froude number is decreased from 𝐹ℎ = 10 to 𝐹ℎ = 2, the same evolution of185
the vertical velocity (figure 4 (𝑎) − (𝑑), see the movie in the supplementary material) and186
the vertical vorticity (figure 4 (𝑒) − (ℎ)) is observed but at a smaller radius. However, the187
anomaly of the vertical vorticity does not become negative this time and the maximum vertical188
velocity is also lower than for 𝐹ℎ = 10. Figure 5(𝑎) shows the evolution of the vertical velocity189
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Figure 4: Vertical velocity (top) and vertical vorticity (bottom) at different times: (𝑎, 𝑒)
𝑡 = 10 , (𝑏, 𝑓 ) 𝑡 = 40 , (𝑐, 𝑔) 𝑡 = 65 and (𝑑, ℎ) 𝑡 = 80 for 𝑅𝑒 = 2000, 𝐹ℎ = 2, 𝑅𝑜 = 23.1,

𝜙 = 60◦ (𝑅𝑜 = 40).

maximum 𝑢𝑧𝑚. In fact, three phases can be distinguished. First, 𝑢𝑧𝑚 increases linearly with190
time with some small oscillations superimposed which will be later attributed to inertia-191
gravity waves. The propagation of waves can be also seen in the vertical velocity field at the192
beginning of the movies. Then, 𝑢𝑧𝑚 saturates and tends to slightly decrease. When 𝑡 ≳ 60,193
large oscillations arise when the vortex becomes fully non-axisymmetric.194

If the Froude number is below unity, such evolution is no longer observed. In §4, it will be195
shown that this phenomenon is due the presence of a critical layer where the angular velocity196
of the vortex is equal to the non-dimensional Brunt–Väisälä frequency, i.e. Ω = 1/𝐹ℎ, where197
Ω is the non-dimensional angular velocity of the vortex corresponding to the vorticity field198
(2.5).199

3.3. Effects of the Rossby numbers200

When the traditional Rossby number 𝑅𝑜, which is based on the vertical component of the201
background rotation, is varied, while keeping the other numbers fixed (𝑅𝑒, 𝐹ℎ, 𝑅𝑜), the202
vortex evolution remains strictly identical. This is consistent with the fact that the dynamics203
is independent of the vertical coordinate so that the Coriolis force associated with 𝑅𝑜 can be204
eliminated from (2.7) by redefining the pressure.205

In contrast, varying the non-traditional Rossby number 𝑅𝑜, which is based on the horizontal206
component of the background rotation, has important effects on the evolution of the vortex.207
Since the Rossby number 𝑅𝑜 has no effect, the effect of 𝑅𝑜 has been studied by varying the208
latitude 𝜙 while keeping the background rotation rate Ω𝑏 constant. Hence, both 𝑅𝑜 and 𝑅𝑜209
varies. Figure 6 shows the evolution of the vertical velocity and vertical vorticity when the210
latitude is increased from 𝜙 = 60◦ to 𝜙 = 80◦ (𝑅𝑜 is increased from 𝑅𝑜 = 40 to 𝑅𝑜 = 115.2)211
while keeping the other parameters fixed (A movie is available in the supplementary material).212



8

Figure 5: Maximum vertical velocity as a function of time for 𝐹ℎ = 2 and (𝑎) 𝑅𝑒 = 2000,
𝑅𝑜 = 23.1, 𝜙 = 60◦ (𝑅𝑜 = 40), (𝑏) 𝑅𝑒 = 2000, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2) and (𝑐)

𝑅𝑒 = 10000, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2).

The initial evolution (figure 6(𝑎, 𝑏, 𝑒, 𝑓 ) is similar to the one in figure 4 but, later (figure213
6(𝑐, 𝑑, 𝑔, ℎ)), the fields keep the same shape, i.e. no significant asymmetric deformations can214
be seen in contrast to figure 4(𝑑, ℎ). As seen in figure 5(𝑏), only two phases are then present215
in the evolution of the maximum vertical velocity. First, a phase where 𝑢𝑧𝑚 grows linearly216
with weak oscillations and, second, a phase where 𝑢𝑧𝑚 remains approximately constant. In217
addition, the maximum vertical velocity is lower (figure 6(𝑏, 𝑐)) and the anomalous vorticity218
ring is weaker (figure 6(𝑔)) than in figure 4. At late time 𝑡 = 200 (figure 6(𝑑, ℎ)), we can219
see that the vertical velocity has decreased by viscous diffusion while the vertical velocity220
field has moved towards the center of the vortex. This is consistent with the critical layer’s221
interpretation since, as the angular velocity decays, the radius where Ω = 1/𝐹ℎ decreases.222

3.4. Effects of the Reynolds number223

Figure 7 shows the evolution of the vertical velocity and vertical vorticity when the Reynolds224
number is increased from 𝑅𝑒 = 2000 to 𝑅𝑒 = 10000 while keeping the other parameters as225
in figure 6. A movie is also available in the supplementary material. The maximum vertical226
velocity is almost doubled and the vertical velocity field is much thinner and focused near227
a given radius (figure 7(𝑏)) than in figure 6. Furthermore, the ring of anomalous vertical228
vorticity (figure 7( 𝑓 )) is more intense. Later, asymmetric deformations of this ring and229
of the vertical velocity field are clearly visible (figure 7(𝑐, 𝑑, 𝑔, ℎ)) in contrast to figure 6.230
Oscillations are then visible in the evolution of 𝑢𝑧𝑚 (figure 5(𝑐)).231

3.5. Combined effects of 𝑅𝑜 and 𝑅𝑒232

In the previous sections, we have seen that the vertical vorticity becomes fully non-233
axisymmetric in a second stage if 𝜙 is sufficiently lower than 90◦, i.e. if 𝑅𝑜 is not too234
large (figure 4) or if the Reynolds number is large enough (figure 7), otherwise the vertical235
vorticity field remains quasi-axisymmetric (figure 6). Figure 8 summarizes several other236
simulations for various 𝑅𝑜 and Reynolds numbers 𝑅𝑒 keeping the Froude number equal to237
𝐹ℎ = 2. Yellow and blue symbols indicate simulations where the vertical vorticity remains238
quasi-axisymmetric or becomes non-axisymmetric, respectively. We can see that the critical239
Rossby number 𝑅𝑜𝑐 above which the vortex remains quasi-axisymmetric increases with the240
Reynolds number from 𝑅𝑜𝑐 ≃ 100 for 𝑅𝑒 = 2000 to 𝑅𝑜𝑐 ≃ 400 for 𝑅𝑒 = 10000.241
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Figure 6: Vertical velocity (top) and vertical vorticity (bottom) at different times: (𝑎, 𝑒)
𝑡 = 10 , (𝑏, 𝑓 ) 𝑡 = 50 , (𝑐, 𝑔) 𝑡 = 150 and (𝑑, ℎ) 𝑡 = 200 for 𝑅𝑒 = 2000, 𝐹ℎ = 2,

𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2).

Figure 7: Vertical velocity (top) and vertical vorticity (bottom) at different times: (𝑎, 𝑒)
𝑡 = 10 , (𝑏, 𝑓 ) 𝑡 = 100 , (𝑐, 𝑔) 𝑡 = 150 and (𝑑, ℎ) 𝑡 = 200 for 𝑅𝑒 = 10000, 𝐹ℎ = 2,

𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2).
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Figure 8: Map of the simulations in the parameter space (𝑅𝑒, 𝑅𝑜) for 𝐹ℎ = 2. The yellow
and blue circles represent simulations where the vertical vorticity remains

quasi-axisymmetric or not, respectively. The solid and dashed lines represent the criterion
(6.14) for different values of (𝑎, 𝑐): (∞, 0) and (∞, 0.4), respectively. The number near
some points indicate the figure numbers where the corresponding simulation is shown.

4. Asymptotic analyses242

In order to understand the vortex evolution observed in the DNS, it is interesting to perform243
an asymptotic analysis for small horizontal component of the background rotation, i.e. for244
𝑅𝑜 ≫ 1, and for large Reynolds number. To this end, it is first convenient to rewrite (2.6-2.8)245
in cylindrical coordinates (𝑟, \, 𝑧)246

1
𝑟

𝜕𝑟𝑢𝑟

𝜕𝑟
+ 1
𝑟

𝜕𝑢\

𝜕\
+ 𝜕𝑢𝑧

𝜕𝑧
= 0, (4.1a)247

𝜕𝑢𝑟

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑟

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑢𝑟

𝜕\
+ 𝑢𝑧

𝜕𝑢𝑟

𝜕𝑧
− 𝑢\

2

𝑟
= −𝜕𝑝

𝜕𝑟
+ 2𝑢\

𝑅𝑜
− 2𝑢𝑧

𝑅𝑜
cos (\)

+ 1
𝑅𝑒

(
∇2𝑢𝑟 −

2
𝑟2

𝜕𝑢\

𝜕\

)
,

(4.1b)249

𝜕𝑢\

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢\

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑢\

𝜕\
+ 𝑢𝑧

𝜕𝑢\

𝜕𝑧
+ 𝑢𝑟𝑢\

𝑟
= −1

𝑟

𝜕𝑝

𝜕\
− 2𝑢𝑟

𝑅𝑜
+ 2𝑢𝑧

𝑅𝑜
sin (\)

+ 1
𝑅𝑒

(
∇2𝑢\ +

2
𝑟2

𝜕𝑢𝑟

𝜕\

)
,

(4.1c)251

𝜕𝑢𝑧

𝜕𝑡
+𝑢𝑟

𝜕𝑢𝑧

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑢𝑧

𝜕\
+𝑢𝑧

𝜕𝑢𝑧

𝜕𝑧
= −𝜕𝑝

𝜕𝑧
+ 𝑏 + 2𝑢𝑟

𝑅𝑜
cos (\) − 2𝑢\

𝑅𝑜
sin (\) + 1

𝑅𝑒
∇2𝑢𝑧 , (4.1d)252

Rapids articles must not exceed this page length
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𝜕𝑏

𝜕𝑡
+ 𝑢𝑟

𝜕𝑏

𝜕𝑟
+ 𝑢\

𝑟

𝜕𝑏

𝜕\
+ 𝑢𝑧

𝜕𝑏

𝜕𝑧
+ 𝑢𝑧

𝐹2
ℎ

=
1

𝑅𝑒𝑆𝑐
∇2𝑏. (4.1e)253

It is also convenient to consider the equation for the vertical vorticity Z :254

𝜕Z

𝜕𝑡
+ 𝒖.∇Z = (𝝎 + 2

𝑅𝑜
𝒆𝒛).∇𝑢𝑧 +

2
𝑟𝑅𝑜

[
𝜕

𝜕𝑟
(𝑟𝑢𝑧 sin (\)) + 𝜕

𝜕\
(𝑢𝑧 cos (\))

]
+ 1
𝑅𝑒

ΔZ, (4.2)255

where 𝝎 = ∇ × 𝒖.256
The solution is expanded with the small parameter Y = 2/𝑅𝑜 ≪ 1 in the form257

(𝑢𝑟 , 𝑢\ , 𝑢𝑧 , 𝑝, 𝑏) = (0, 𝑢\0, 0, 𝑝0, 0) + Y(𝑢𝑟 1, 𝑢\1, 𝑢𝑧1, 𝑝1, 𝑏1) + ..., (4.3)258

where 𝑢\0 = 𝑟Ω, with Ω = (1 − 𝑒−𝑟
2)/𝑟2, is the non-dimensional angular velocity of the259

vortex corresponding to the vorticity field (2.5).260
It is first instructive to consider a steady and non-diffusive flow, i.e. 𝜕/𝜕𝑡 = 0 and 𝑅𝑒 = ∞.261

Then, (4.1b) reduces at leading order to the cyclostrophic balance262

−
𝑢2
\0
𝑟

= −𝜕𝑝0
𝜕𝑟

+ 2𝑢\0
𝑅𝑜

, (4.4)263

whereas (4.1a,4.1c-4.1e) are identically zero at leading order. At first order in Y, it is sufficient264
to consider only (4.1d) and (4.1e):265

Ω
𝜕𝑢𝑧1
𝜕\

= −𝑟Ω sin (\) + 𝑏1, (4.5a)266

267

Ω
𝜕𝑏1
𝜕\

= −𝑢𝑧1

𝐹2
ℎ

. (4.5b)268

The solution is269

𝑢𝑧1 =
𝑟Ω2𝐹2

ℎ

𝐹2
ℎ
Ω2 − 1

cos (\), (4.6a)270

271

𝑏1 =
−𝑟Ω

𝐹2
ℎ
Ω2 − 1

sin (\), (4.6b)272

showing that the Coriolis force due to the horizontal component of the background rotation273
(first term in the right hand side of (4.5a)) forces a vertical velocity and buoyancy fields.274
These fields are independent of the vertical coordinate as observed in the DNS. However, we275
can remark that (4.6a-4.6b) are singular if there exists a radius 𝑟𝑐 where Ω(𝑟𝑐) = 1/𝐹ℎ. Such276
critical radius exists wherever 𝐹ℎ > 1 since the non-dimensional angular velocity decreases277
from unity on the vortex axis to zero for 𝑟 → ∞.278

A similar critical layer occurs in the case of a tilted vortex in a stratified fluid (Boulanger279
et al. 2007) and in stratified rotating shear flow (Wang & Balmforth 2020). This singularity280
can be smoothed if the flow is no longer assumed to be steady or inviscid. Although these281
two effects can a priori operate simultaneously, the unsteadiness turns out to be, first, the282
dominant effect while diffusive effects are negligible followed by a second phase where it is283
the opposite.284
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4.1. Unsteady inviscid analysis285

Accordingly, we first consider (4.1a-4.1e) in the inviscid limit 𝑅𝑒 = ∞ but keeping the time286
derivatives. At leading order, the equations reduce to287

−
𝑢2
\0
𝑟

=
𝜕𝑝0
𝜕𝑟

+ 2𝑢\0
𝑅𝑜

, (4.7)288

289
𝜕𝑢\0
𝜕𝑡

= 0, (4.8)290

so that 𝑢\0 = 𝑟Ω as before. At first order, the equations (4.1d-4.1e) become291

𝜕𝑢𝑧1
𝜕𝑡

+Ω
𝜕𝑢𝑧1
𝜕\

= 𝑏1 − 𝑟Ω sin (\), (4.9a)292

293
𝜕𝑏1
𝜕𝑡

+Ω
𝜕𝑏1
𝜕\

= −𝑢𝑧1

𝐹2
ℎ

. (4.9b)294

The only difference with (4.6) is the presence of the time derivatives. By imposing 𝑢𝑧1 =295
𝑏1 = 0 at 𝑡 = 0, the solutions can be found in the form296

𝑢𝑧1 = 𝑢𝑧 𝑝e𝑖 \ + 𝑢∗𝑧 𝑝e−𝑖 \ , (4.10a)297
298

𝑏1 = 𝑏𝑝e𝑖 \ + 𝑏∗𝑝e−𝑖 \ , (4.10b)299

where the star denotes the complex conjugate and300

𝑢𝑧 𝑝 =
𝑟Ω

4

[
− 1
𝛼

(
1 − e𝑖𝛼𝑡

)
+ 1
𝛽

(
1 − e−𝑖𝛽𝑡

)]
, (4.11a)301

302

𝑏𝑝 = −𝑖 𝑟Ω
4𝐹ℎ

[
1
𝛼

(
1 − e𝑖𝛼𝑡

)
+ 1
𝛽

(
1 − e−𝑖𝛽𝑡

)]
, (4.11b)303

with304

𝛼 =
1 − 𝐹ℎΩ

𝐹ℎ

, 𝛽 =
1 + 𝐹ℎΩ

𝐹ℎ

. (4.12)305

Compared to the steady solution (4.6), the additional terms present in (4.11) correspond306
to waves generated at 𝑡 = 0 to satisfy the initial conditions. These waves oscillate at the307
frequencies 1/𝐹ℎ − Ω and −1/𝐹ℎ − Ω, i.e. the non-dimensional Brunt–Väisälä frequency308
with an additional Doppler shift coming from the azimuthal motion of the vortex. Hence,309
they correspond to inertia-gravity waves with zero vertical wavenumber. In contrast to (4.6),310
we see now that the vertical velocity and buoyancy (4.10a-4.10b) are no longer singular at311
the radius 𝑟𝑐 where Ω(𝑟𝑐) = 1/𝐹ℎ. Indeed, we have (1 − 𝑒𝑖𝛼𝑡 )/𝛼 ≃ −𝑖𝑡 when 𝛼 → 0 so that312
(4.11a-4.11b) remain finite at 𝑟 = 𝑟𝑐.313

Following Wang & Balmforth (2020), the behaviour of these solutions in the vicinity of314
the critical radius can be studied more precisely by introducing the variable [ = 𝑟 −𝑟𝑐. When315
[ ≪ 1, the vertical velocity approximates to317

𝑢𝑧1 =

[(
𝑟𝑐Ω𝑐

2[Ω′
𝑐

+ Ω𝑐

2Ω′
𝑐

+ 𝑟𝑐

2
− 𝑟𝑐Ω

′′
𝑐Ω𝑐

4Ω′
𝑐

2

) (
1 − cos ([Ω′

𝑐𝑡)
)
+ 𝑟𝑐

4

(
1 − cos

(
2
𝐹ℎ

𝑡

))]
cos (\)

−
[(

𝑟𝑐Ω𝑐

2[Ω′
𝑐

+ Ω𝑐

2Ω′
𝑐

+ 𝑟𝑐

2
− 𝑟𝑐Ω

′′
𝑐Ω𝑐

4Ω′
𝑐

2

)
sin ([Ω′

𝑐𝑡) +
𝑟𝑐

4
sin

(
2
𝐹ℎ

𝑡

)]
sin (\) + O([),

(4.13)

318
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where the subscript 𝑐 indicates a value taken at 𝑟𝑐. The terms involving [Ω
′
𝑐𝑡 in the sin and319

cos functions have not been expanded in (4.13) since this quantity can be large when 𝑡 is large320
even for small [. The approximation (4.13) is therefore uniformly valid whatever 𝑡. Taking321
into account only the leading order, (4.13) can be simplified and rewritten as322

𝑢𝑧1 =
𝑟𝑐Ω𝑐𝑡

2

[(
1 − cos𝑈

𝑈

)
cos (\) − sin𝑈

𝑈
sin (\)

]
+ O(1), (4.14)324

where 𝑈 = [Ω
′
𝑐𝑡. This expression shows that the radial profile of the vertical velocity in325

the vicinity of 𝑟𝑐 depends only on the self-similar variable 𝑈. This implies that the vertical326
velocity will be more and more concentrated around 𝑟𝑐 as time increases. In addition,327
(4.14) shows that the amplitude of 𝑢𝑧1 will increase linearly with time for a fixed value328
of 𝑈. In practice, the approximation (4.14) will be accurate only when 𝑡 is large since the329
neglected terms are of order unity. Since Ω𝑐 = 1/𝐹ℎ, this will occur more and more later330
when 𝐹ℎ increases. We emphasize that the inertia-gravity wave oscillating at frequency331
1/𝐹ℎ +Ω𝑐 = 2/𝐹ℎ is neglected in (4.14) unlike in (4.13).332

4.2. Unsteady viscous analysis333

Here, viscous and diffusive effects are taken into account in addition to the time evolution.334
Following Boulanger et al. (2007) and Wang & Balmforth (2020, 2021), we assume that335
the Reynolds number is large 𝑅𝑒 ≫ 1 and consider only the vicinity of the critical radius336
by introducing a rescaled radius such that 𝑟 = 𝑅𝑒1/3(𝑟 − 𝑟𝑐). We also assume that the337
evolution occurs over the slow time 𝑇 = 𝑅𝑒−1/3𝑡. Since 𝑅𝑒 ≫ 1, the leading order solution338
of (4.1a-4.1e) is still 𝑢\0 = 𝑟Ω. At order Y, the equations (4.1d-4.1e) become340

1
𝑅𝑒1/3

𝜕𝑢𝑧1
𝜕𝑇

+
(
Ω𝑐 +

𝑟Ω
′
𝑐

𝑅𝑒1/3 + O
(

1
𝑅𝑒2/3

))
𝜕𝑢𝑧1
𝜕\

= 𝑏1

−
(
𝑟𝑐Ω𝑐 +

𝑟 (Ω𝑐 + 𝑟𝑐Ω
′
𝑐)

𝑅𝑒1/3 + O
(

1
𝑅𝑒2/3

))
sin (\) + 1

𝑅𝑒1/3
𝜕2𝑢𝑧1

𝜕𝑟2 + O
(

1
𝑅𝑒2/3

)
,

(4.15a)341

1
𝑅𝑒1/3

𝜕𝑏1
𝜕𝑇

+
(
Ω𝑐 +

𝑟Ω
′
𝑐

𝑅𝑒1/3 + O
(

1
𝑅𝑒2/3

))
𝜕𝑏1
𝜕\

= −𝑢𝑧1

𝐹2
ℎ

+ 1
𝑆𝑐

[
1

𝑅𝑒1/3
𝜕2𝑏1

𝜕𝑟2 + O
(

1
𝑅𝑒2/3

)]
.

(4.15b)342
These equations can be solved by expanding 𝑢𝑧1 and 𝑏1 as follows343

𝑢𝑧1 = 𝑅𝑒1/3 [
�̃�𝑧1(𝑟, 𝑇)e𝑖 \ + 𝑐.𝑐.

]
+ �̃�𝑧2(𝑟, 𝑇)e𝑖 \ + 𝑐.𝑐. + ..., (4.16a)344

345

𝑏1 = 𝑅𝑒1/3 [
�̃�1(𝑟, 𝑇)e𝑖 \ + 𝑐.𝑐.

]
+ �̃�2(𝑟, 𝑇)e𝑖 \ + 𝑐.𝑐. + .... (4.16b)346

By substituting (4.16a-4.16b) in (4.15a-4.15b), we get at order O(𝑅𝑒1/3)347

𝑖Ω𝑐�̃�𝑧1 = �̃�1, (4.17a)348
349

𝑖Ω𝑐 �̃�1 = − �̃�𝑧1

𝐹2
ℎ

, (4.17b)350

which both yields351

�̃�1 = 𝑖Ω𝑐�̃�𝑧1. (4.18)352

The equations at order O(1) are353

𝜕�̃�𝑧1
𝜕𝑇

+ 𝑖Ω𝑐�̃�𝑧2 + 𝑖𝑟Ω
′
𝑐�̃�𝑧1 = �̃�2 −

𝑟𝑐Ω𝑐

2𝑖
+ d2�̃�𝑧1

d𝑟2 , (4.19a)354
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𝜕�̃�1
𝜕𝑇

+ 𝑖Ω𝑐 �̃�2 + 𝑖𝑟Ω
′
𝑐 �̃�1 = − 1

𝐹2
ℎ

�̃�𝑧2 +
1
𝑆𝑐

d2�̃�1

d𝑟2 . (4.19b)355

By using (4.18), the solvability condition to find �̃�2 and �̃�𝑧2 from (4.19a-4.19b) requires �̃�𝑧1356
to satisfy357

𝜕�̃�𝑧1
𝜕𝑇

+ 𝑖𝑟Ω
′
𝑐�̃�𝑧1 =

𝑖

4
𝑟𝑐Ω𝑐 +

1
2

(
1 + 1

𝑆𝑐

)
d2�̃�𝑧1

d𝑟2 . (4.20)358

As shown by Wang & Balmforth (2020, 2021), the solution is359

�̃�𝑧1 = 𝑖𝐴
1
𝜋

∫ ���Ω′
𝑐

���𝑇/𝛾
0

exp
(
− 𝑧3

3
+ 𝑖𝛾𝑟𝑧

)
d𝑧, (4.21)360

where361

𝐴 =
𝜋𝑟𝑐Ω𝑐

2
���2Ω′

𝑐

���2/3
(
1 + 1

𝑆𝑐

)1/3 , 𝛾 =

���2Ω′
𝑐

���1/3(
1 + 1

𝑆𝑐

)1/3 . (4.22)362

When
��Ω′

𝑐

��𝑇/𝛾 ≫ 1, the upper bound in the integral can be replaced by infinity so that (4.21)363
recovers the steady solution (Boulanger et al. 2007)364

�̃�𝑧1 = 𝑖𝐴Hi(𝑖𝛾𝑟), (4.23)365

where Hi is the Scorer’s function (Abramowitz & Stegun 1972). We will see that the time366
interval where both the unsteadiness and viscous effects are important is short so that (4.23)367
turns out to be reached quickly after the inviscid regime.368

4.3. Effect on the vertical vorticity369

We now turn to the study of the effect of the vertical velocity on the vertical vorticity. Since370
the flow is invariant along the vertical, the equation for the vertical vorticity (4.2) reduces to371

𝜕Z

𝜕𝑡
+ 𝒖.∇Z =

Y

𝑟

[
𝜕

𝜕𝑟
(𝑟𝑢𝑧 sin (\)) + 𝜕

𝜕\
(𝑢𝑧 cos (\))

]
+ 1
𝑅𝑒

ΔℎZ . (4.24)372

This equation shows that the vertical velocity generated at order O(Y) will in turn force a373
vertical vorticity field at order O(Y2). In order to compute this second order horizontal flow,374
the vertical vorticity and stream function can be expanded as375

Z = Z0 + Y2Z2 + ..., (4.25)376
377

𝜓 = 𝜓0 + Y2𝜓2 + ..., (4.26)378

where (Z0, 𝜓0) are the non-dimensional vertical vorticity and stream function of the base379
flow (2.5) and Z2 = Δℎ𝜓2. The second order vertical vorticity follows380

𝜕Z2
𝜕𝑡

+Ω
𝜕Z2
𝜕\

− 1
𝑟

𝜕𝜓2
𝜕\

𝜕Z0
𝜕𝑟

=
1
𝑟

[
𝜕

𝜕𝑟
(𝑟𝑢𝑧1 sin (\)) + 𝜕

𝜕\
(𝑢𝑧1 cos (\))

]
+ 1
𝑅𝑒

ΔℎZ2. (4.27)381

Since the first order vertical velocity 𝑢𝑧1 has an azimuthal wavenumber 𝑚 = 1, Z2 and 𝜓2 can382
be sought in the form383

Z2 = Z20(𝑟, 𝑡) +
[
Z22(𝑟, 𝑡)𝑒2𝑖 \ + 𝑐.𝑐.

]
, (4.28)384

385

𝜓2 = 𝜓20(𝑟, 𝑡) +
[
𝜓22(𝑟, 𝑡)𝑒2𝑖 \ + 𝑐.𝑐.

]
. (4.29)386

In the following, we will determine only the axisymmetric part Z20 since we will show that387
the component Z22 grows slower than Z20.388
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4.3.1. Inviscid evolution of Z20389

When 𝑢𝑧1 follows the unsteady inviscid expression (4.10a), the axisymmetric vertical390
vorticity Z20 is given by391

𝜕Z20
𝜕𝑡

= − 𝑖

2𝑟
𝜕

𝜕𝑟

(
𝑟 (𝑢∗𝑧𝑝 − 𝑢𝑧𝑝)

)
. (4.30)392

By assuming that Z20 = 0 at 𝑡 = 0, the solution reads394

Z20 =
Z0
4

(
cos (𝛼𝑡) − 1

𝛼2 + cos (𝛽𝑡) − 1
𝛽2

)
+ 𝑟ΩΩ

′

4

[
𝛼𝑡 sin (𝛼𝑡) + 2(cos (𝛼𝑡) − 1)

𝛼3 − 𝛽𝑡 sin (𝛽𝑡) + 2(cos (𝛽𝑡) − 1)
𝛽3

]
.

(4.31)395

Considering the vicinity of the critical radius [ = 𝑟 − 𝑟𝑐, this solution approximates at396
leading order to397

Z20 =
𝑟𝑐Ω𝑐

4Ω′
𝑐

2
[3

[
2
(
1 − cos ([Ω′

𝑐𝑡)
)
− [Ω

′
𝑐𝑡 sin ([Ω′

𝑐𝑡)
]
+ O

(
1
[2

)
, (4.32)398

where [𝑡 has been considered finite as in (4.13) so that the approximation remains valid even399
for long time. In terms of the similarity variable 𝑈, (4.32) can be rewritten400

Z20 =
𝑟𝑐Ω𝑐Ω

′
𝑐𝑡

3

4

[
2(1 − cos𝑈) −𝑈 sin𝑈

𝑈3

]
+ O

(
1
[2

)
. (4.33)401

This expression shows that Z20 remains finite and even vanishes when𝑈 → 0 but Z20 is more402
and more concentrated in the vicinity of the critical layer as time increases. Furthermore, its403
amplitude increases like 𝑡3 at leading order.404

Using the same approach for Z22, it can be shown that its amplitude grows like 𝑡2 instead405
of 𝑡3. Indeed, the forcing term of Z22 is proportional to 𝑡2 like for Z20 but the left hand side of406
(4.27) is dominated by the term 2𝑖Ω𝑐Z22 instead of 𝜕Z20/𝜕𝑡 for the axisymmetric component.407
Thus, Z22 is proportional to 𝑡2, at least initially. This explains why the vertical vorticity is408
observed in the DNS to remain quasi-axisymmetric during the first two phases.409

4.3.2. Viscous evolution of Z20410

When the vertical velocity is given by the unsteady viscous solution (4.16a) and (4.21), it411
is possible to also obtain its effect on the second order axisymmetric vertical vorticity Z20.412
Expressing first (4.27) in terms of 𝑟 and 𝑇 gives at leading order when 𝑅𝑒 ≫ 1413

1
𝑅𝑒1/3

𝜕Z20
𝜕𝑇

=
−𝑖
2
𝑅𝑒2/3 𝜕

𝜕𝑟

(
�̃�∗𝑧1 − �̃�𝑧1

)
+ O(𝑅𝑒1/3) + 1

𝑅𝑒1/3
𝜕2Z20

𝜕𝑟2 + ... . (4.34)414

As shown by Wang & Balmforth (2021), the exact solution of (4.34) can be found by415
means of a Fourier transform in 𝑟 using (4.21). This gives416

Z20 = −𝑖 𝑅𝑒𝐴
2𝛾𝜋

∫ ���Ω′
𝑐

���𝑇
0

exp
(
−𝑞3

3𝛾3 + 𝑖𝑞𝑟

) (
1 − exp

(
𝑞3/

��Ω′
𝑐

�� − 𝑞2𝑇
)

𝑞

)
d𝑞 + 𝑐.𝑐. . (4.35)417

In appendix, an approximation of (4.35) valid for large time 𝑇 ≫ 1 is found in the form418

Z20 = Z
(1)
20 + Z

(2)
20 , (4.36)419
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where420

Z
(1)
20 (𝑟) = 𝑅𝑒

𝐴

2

∫ 𝑟

0
(Hi∗(𝑖𝛾𝑢) + Hi(𝑖𝛾𝑢)) d𝑢, (4.37a)421

422

Z
(2)
20 (𝑟, 𝑡) = −𝑅𝑒 𝐴

2𝛾
erf

(
𝑟

√
4𝑡𝑅𝑒−1/3

)
. (4.37b)423

This approximation shows that Z20 saturates and tends toward (4.37a) for 𝑡𝑅𝑒−1/3 → ∞ for424
𝑟 = O(1). However, when |𝑟 | → ∞ and 𝑡𝑅𝑒−1/3 is finite, Z20 vanishes. The approximation425
(4.36) will be compared to numerical solutions of (4.34) as well as DNS in section (5.2).426

To summarize, the axisymmetric vertical vorticity correction at order O(Y2), Z20, follows427
two distinct regimes. First, it evolves purely inviscidly and grows like 𝑡3 according to (4.31).428
Then, it tends to saturate and follows the approximation (4.36) for large times. This shows429
that Z20 saturates toward the steady solution (4.37a) for finite 𝑟 .430

4.4. Non-linear analysis of the critical layer431

The viscous linear analysis of the critical layer in sections 4.2 and 4.3 has shown that432
the vertical velocity scales as 𝑢𝑧 = O(Y𝑅𝑒1/3). This creates a vorticity correction of the433
order 𝛿Z = O(Y2𝑅𝑒) (see (4.25), (4.28), (4.36)-(4.37)). Since 𝑟 = 𝑟𝑐 + 𝑟/𝑅𝑒1/3 in the434
critical layer, the corresponding angular velocity correction 𝛿Ω is given at leading order by435
𝛿Z ≃ 𝑟𝑐𝑅𝑒

1/3𝜕𝛿Ω/𝜕𝑟 so that 𝛿Ω = O(Y2𝑅𝑒2/3). In turn, we see that this angular velocity436
correction would have the same order as the other terms of order O(1/𝑅𝑒1/3) in (4.15) if437
Y2𝑅𝑒2/3 = O(1/𝑅𝑒1/3), i.e. if438

𝑅𝑒 =
𝑅𝑒

Y2 , (4.38)439

where 𝑅𝑒 is of order unity. For this distinguished limit, there is therefore a non-linear feedback440
of the horizontal flow on the evolutions of the vertical velocity and buoyancy as considered441
by Wang & Balmforth (2020, 2021). Using the scaling (4.38), the typical order of magnitudes442
of the different variables can be expressed in terms of Y only: 𝑢𝑧 = O

(
Y1/3) , 𝑏 = O

(
Y1/3) ,443

𝛿Z = O (1), 𝛿Ω = O
(
Y2/3) , 𝑢𝑟 = O

(
Y4/3) and the radius and slow time are 𝑟 = Y−2/3(𝑟 − 𝑟𝑐)444

and 𝑇 = Y2/3𝑡, respectively. We also assume 𝜕/𝜕𝑧 = 0. Accordingly, we expand the variables445
as follows:446

𝑢𝑧 = Y1/3 [
�̃�𝑧1e𝑖 \ + 𝑐.𝑐.

]
+ Y

[
�̃�𝑧2e𝑖 \ + 𝑐.𝑐.

]
+ ..., (4.39a)447

448

𝑏 = Y1/3 [
�̃�1e𝑖 \ + 𝑐.𝑐.

]
+ Y

[
�̃�2e𝑖 \ + 𝑐.𝑐.

]
+ ..., (4.39b)449

450

Ω = Ω0 + Y2/3Ω1 + ..., (4.39c)451
452

𝑢𝑟 = Y4/3𝑢𝑟1 + ..., (4.39d)453
454

Z = Z0 + Z1 + Y2/3Z2 + ..., (4.39e)455

where Ω0 and Z0 are the non-dimensional angular velocity and vorticity corresponding to456
(2.5). In the vicinity of 𝑟𝑐, they can be expanded as457

Ω0 = Ω𝑐 + 𝑟Ω
′
𝑐Y

2/3 + ..., (4.40a)458
459

Z0 = Z𝑐 + 𝑟Z
′
𝑐Y

2/3 + .... (4.40b)460

Note that there are only components of the form exp(±𝑖\) in (4.39a-4.39b) because the flow461
is invariant along the vertical and because third harmonics arise only at higher order. Then,462
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(4.1d-4.1e) become at leading order464

Y
𝜕�̃�𝑧1
𝜕𝑇

+ Y𝑢𝑟1
𝜕�̃�𝑧1
𝜕𝑟

+ 𝑖

(
Ω𝑐 +Ω

′
𝑐𝑟Y

2/3
)
Y1/3�̃�𝑧1 + 𝑖YΩ1�̃�𝑧1 + 𝑖YΩ𝑐�̃�𝑧2

= Y1/3�̃�1 + Y�̃�2 − Y
𝑟𝑐Ω𝑐

2𝑖
+ Y

𝑅𝑒

𝜕2�̃�𝑧1

𝜕𝑟2 + O
(
Y5/3

)
,

(4.41a)465

467

Y
𝜕�̃�1
𝜕𝑇

+ Y𝑢𝑟1
𝜕�̃�1
𝜕𝑟

+ 𝑖

(
Ω𝑐 +Ω

′
𝑐𝑟Y

2/3
)
Y1/3�̃�1 + 𝑖YΩ1�̃�1 + 𝑖YΩ𝑐 �̃�2

= −Y1/3

𝐹2
ℎ

�̃�𝑧1 −
Y

𝐹2
ℎ

�̃�𝑧2 +
Y

𝑅𝑒𝑆𝑐

𝜕2�̃�1

𝜕𝑟2 + O
(
Y5/3

)
.

(4.41b)468

Similarly, the equation (4.2) for the vorticity becomes470

Y2/3 𝜕Z1
𝜕𝑇

+
(
Ω𝑐 +Ω

′
𝑐𝑟Y

2/3
) 𝜕Z1
𝜕\

+ Y2/3Ω1
𝜕Z1
𝜕\

+ Y2/3𝑢𝑟1
𝜕Z1
𝜕𝑟

+ Y2/3Ω𝑐

𝜕Z2
𝜕\

= Y2/3 𝜕

𝜕𝑟

((
�̃�𝑧1e𝑖 \ + �̃�∗𝑧1e−𝑖 \

)
sin (\)

)
+ Y2/3

𝑅𝑒

𝜕2Z1

𝜕𝑟2 + O
(
Y4/3

)
.

(4.42)471

At leading order, (4.41-4.42) become472

Y1/3𝑖Ω𝑐�̃�𝑧1 = Y1/3�̃�1, (4.43a)473
474

Y1/3𝑖Ω𝑐 �̃�1 = −Y1/3

𝐹2
ℎ

�̃�𝑧1, (4.43b)475

476

Ω𝑐

𝜕Z1
𝜕\

= 0. (4.43c)477

The first two equations are identical to (4.17) and the third one implies Z1 ≡ Z1(𝑟, 𝑇) and478
𝑢𝑟1 = 0. At the next order, we have479

𝜕�̃�𝑧1
𝜕𝑇

+ 𝑖Ω
′
𝑐𝑟�̃�𝑧1 + 𝑖Ω1�̃�𝑧1 + 𝑖Ω𝑐�̃�𝑧2 = �̃�2 −

𝑟𝑐Ω𝑐

2𝑖
+ 1
𝑅𝑒

𝜕2�̃�𝑧1

𝜕𝑟2 , (4.44a)480

481

𝜕�̃�1
𝜕𝑇

+ 𝑖Ω
′
𝑐𝑟 �̃�1 + 𝑖Ω1�̃�1 + 𝑖Ω𝑐 �̃�2 = − �̃�𝑧2

𝐹2
ℎ

+ 1
𝑅𝑒𝑆𝑐

𝜕2�̃�1

𝜕𝑟2 , (4.44b)482

483

𝜕Z1
𝜕𝑇

+Ω𝑐

𝜕Z2
𝜕\

= − 𝑖

2
𝜕

𝜕𝑟

(
�̃�∗𝑧1 − �̃�𝑧1 + �̃�𝑧1e2𝑖 \ − �̃�∗𝑧1e−2𝑖 \

)
+ 1
𝑅𝑒

𝜕2Z1

𝜕𝑟2 . (4.44c)484

Equations (4.44a) and (4.44b) are identical to (4.19) except for the presence of the terms485
involving Ω1. They can be combined to give486

𝜕�̃�𝑧1
𝜕𝑇

+ 𝑖Ω
′
𝑐𝑟�̃�𝑧1 + 𝑖Ω1�̃�𝑧1 =

𝑖

4
𝑟𝑐Ω𝑐 +

1
2𝑅𝑒

(
1 + 1

𝑆𝑐

)
𝜕2�̃�𝑧1

𝜕𝑟2 , (4.45)487

whereas (4.44c) splits into488

𝜕Z1
𝜕𝑇

= − 𝑖

2
𝜕

𝜕𝑟

(
�̃�∗𝑧1 − �̃�𝑧1

)
+ 1
𝑅𝑒

𝜕2Z1

𝜕𝑟2 , (4.46a)489

490

Ω𝑐

𝜕Z2
𝜕\

= − 𝑖

2
𝜕

𝜕𝑟

(
�̃�𝑧1e2𝑖 \ − �̃�∗𝑧1e−2𝑖 \

)
. (4.46b)491
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Since Z1 = 𝑟𝑐𝜕Ω1/𝜕𝑟 , the equations (4.45-4.46a) form a closed system of equations. An492
equation for Ω1 can be obtained by integrating (4.46a):493

𝜕Ω1
𝜕𝑇

= − 𝑖

2𝑟𝑐
(
�̃�∗𝑧1 − �̃�𝑧1

)
+ 1
𝑅𝑒

𝜕2Ω1

𝜕𝑟2 . (4.47)494

Equation (4.46b) shows that the azimuthal wavenumbers 𝑚 = ±2 are generated in the495
vorticity only at higher order explaining again why the vorticity remains quasi-axisymmetric496
in the DNS during the first two phases. For this reason, components of the form exp(±3𝑖\)497
arise in the vertical velocity and density (4.39a-4.39b) only at the higher order Y5/3.498

5. Comparison between the DNS and the asymptotic analyses499

We now compare in details the asymptotic and numerical results.500

5.1. Vertical velocity501

Figure 9 shows the evolution of the maximum vertical velocity 𝑢𝑧𝑚(\, 𝑡) (solid line) for502
\ = 0 (figure 9(𝑎)) and \ = 𝜋/2 (figure 9(𝑏)) for the set of parameters 𝑅𝑒 = 10000, 𝐹ℎ = 2,503
𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2). Two different angles are considered since the theoretical504
vertical velocity has the form 𝑢𝑧 = 𝑢𝑧𝑐 (𝑟, 𝑡) cos (\) + 𝑢𝑧𝑠 (𝑟, 𝑡) sin (\). Hence, the plots for505
\ = 0 and \ = 𝜋/2 allow us to check the predictions for 𝑢𝑧𝑐 and 𝑢𝑧𝑠, respectively.506

We can see that the inviscid theoretical solution (4.10a) (red dashed line in figure 9(𝑎, 𝑏))507
predicts very well the initial linear increase of the maximum vertical velocity in the DNS508
for both angles. The unsteady viscous solution (4.16a,4.21) (yellow dashed line) increases509
also linearly initially and is in good agreement with the DNS except that it lacks the small510
oscillations. They are indeed due to inertia-gravity waves oscillating at frequency 1/𝐹ℎ+Ω =511
2/𝐹ℎ near 𝑟𝑐 (see the last term of (4.11a)) and of the two lines of (4.13) which are neglected512
in (4.14) and section 4.2.513

When the growth of 𝑢𝑧𝑚 is no longer linear, the time-dependent viscous solution (4.21)514
remains in very good agreement with the DNS and describes perfectly the transition towards515
the steady viscous solution (4.23) (green dashed line). The latter solution is close to the516
levels of saturation of 𝑢𝑧𝑚(\, 𝑡) for \ = 0 and \ = 𝜋/2 in the DNS, although the agreement517
is not as good as for the initial regime. However, the non-linear equations (4.45,4.47) (blue518
dashed lines) are in better agreement with the DNS indicating that non-linear effects are also519
active in the saturation. By essence, none of the theoretical solutions can exhibit oscillations520
associated with the late non-axisymmetric evolution observed in the DNS.521

Figures 9(𝑐, 𝑑) show a similar comparison when the Reynolds number is reduced to 𝑅𝑒 =522
2000, keeping the other parameters fixed. In this case, 𝑢𝑧𝑚(\ = 0, 𝑡) and 𝑢𝑧𝑚(\ = 𝜋/2, 𝑡) do523
not oscillate at late time in the DNS (black solid line). The agreement with (4.10a) and (4.21)524
or (4.23) are then excellent in the initial and saturation regimes, respectively. In addition,525
we see that the predictions of the non-linear equations (4.45,4.47) remain very close to the526
linear ones, i.e. (4.21), showing that non-linear effects are weak in this case.527

Figure 9 shows that the transition from the unsteady inviscid solution (4.10a) to the steady528
viscous one, (4.23), occurs in a short time range. Therefore, the unsteady viscous solution529
(4.21) can be well approximated by (4.10a) for 𝑡 ⩽ T and (4.23) for 𝑡 ⩾ T , where530

T = 2𝜋
𝑅𝑒1/3Hi(0)��2Ω′

𝑐

��2/3(1 + 1/𝑆𝑐)1/3
, (5.1)531

is the time when the overall maximum given by (4.10a) and (4.23) becomes equal. This time532
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Figure 9: Comparison between the maximum vertical velocity in the DNS (black solid
line), predicted by the unsteady inviscid solution (4.10a) (red dashed line), by the unsteady

viscous solution (4.16a,4.21) (yellow dashed line), by the steady viscous solution
(4.16a,4.23) (green dashed line) and by the non-linear equations (4.45,4.47) (blue dashed
line) for (𝑎) \ = 0 and (𝑏) \ = 𝜋/2 for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦ and for
(𝑐) \ = 0 and (𝑑) \ = 𝜋/2 for 𝑅𝑒 = 2000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2).

is independent of 𝑅𝑜 and depends only on the Reynolds number, the Froude number via Ω
′
𝑐533

and the Schmidt number.534
Figure 10 displays a detailed comparison of the radial profile of 𝑢𝑧 for \ = 0 and \ = 𝜋/2535

predicted by (4.10a) (red dashed line) and observed in the DNS (black solid line) for different536
instants in the inviscid regime, i.e. 𝑡 ⩽ T for the same parameters as figures 9(𝑎, 𝑏). We537
see that the agreement is excellent even when 𝑡 ≃ T (figures 10(𝑐, 𝑓 )). The approximation538
(4.21) and the solution of the non-linear equations (4.45,4.47) for the vertical velocity are539
also represented by yellow and blue dashed lines, respectively, in figures 10(𝑏, 𝑐, 𝑒, 𝑓 ). The540
approximation (4.14) is almost identical to (4.21) in this time range and not represented.541
As expected, the agreement between the DNS and (4.21) or (4.45,4.47) is very good near542
𝑟𝑐 but deteriorates away from 𝑟𝑐. We can notice that the blue and yellow dashed lines are543
superposed everywhere except close to the critical radius 𝑟𝑐 for 𝑡 = 40 (figures 10(𝑐, 𝑓 ) ). In544
this region, the blue dashed lines are in very good agreement with the DNS indicating that545
non-linear effects are important there. However, away from 𝑟𝑐, it is (4.10a) (red dashed line)546
which better agrees with the DNS. For 𝑡 = 5 (figures 10(𝑎, 𝑑)), the approximations (4.21)547
and (4.45,4.47) are not accurate and not shown. This is because the profile of 𝑢𝑧 is not yet548
sufficiently localized around 𝑟𝑐 at this early time and, therefore, it cannot be well described549
by a local approximation near 𝑟𝑐. Indeed, we can see in figures 10(𝑎, 𝑑) that the profiles of550
𝑢𝑧 are quite different from those in figures 10(𝑏, 𝑐, 𝑒, 𝑓 ).551

Figure 11 shows again the vertical velocity profiles observed in the DNS for the same552
parameters, but for 𝑡 ⩾ T this time they are compared to the unsteady and steady viscous553
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Figure 10: Comparison between the vertical velocity at \ = 0 (top row) and \ = 𝜋/2
(bottom row) in the DNS (black solid line), predicted by the unsteady inviscid solution

(4.10a) (red dashed line), by the unsteady viscous solution (4.21) (yellow dashed line) and
by the non-linear equations (4.45,4.47) (blue dashed line) at (𝑎, 𝑑) 𝑡 = 5, (𝑏, 𝑒) 𝑡 = 25 and

(𝑐, 𝑓 ) 𝑡 = 40 for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2). The circle
symbols represent the location of the critical radius in the unsteady inviscid solution

(4.10a).

solutions (4.21) (yellow dashed lines) and (4.23) (green dashed lines) as well as the predictions554
of the non-linear equations (4.45,4.47) (blue dashed lines). At 𝑡 = 40 (figures 11(𝑎, 𝑑)), the555
steady viscous solution (4.23) (green dashed lines) is already in good agreement with the DNS556
since 𝑡 = 40 is close to the time T where the transition from (4.10a) to (4.23) occurs (figures557
9(𝑎, 𝑏)). Nevertheless, it departs slightly from the DNS near 𝑟𝑐 unlike the unsteady viscous558
solution (4.21) and non-linear predictions from (4.45,4.47). At longer times, 𝑡 = 60 (figures559
11(𝑏, 𝑒)) and 𝑡 = 80 (figures 11(𝑐, 𝑓 )), (4.21) and (4.23) become almost identical and remain560
in satisfactory agreement with the vertical velocity profiles of the DNS. Nevertheless, we561
can see a shift between the numerical and theoretical profiles. In contrast, the solution of the562
non-linear equations (4.45,4.47) remains in very good agreement with the DNS and does not563
exhibit such shift. This indicates that the shift is due to the viscous and non-linear variations564
of the angular velocity. For example, this makes the critical radius where Ω(𝑟𝑐) = 1/𝐹ℎ to565
move towards the vortex center as seen in figure 11. This phenomenon is absent from the566
linear equations (4.21,4.23) since they do not take into account any variation of the angular567
velocity.568

5.2. Vertical vorticity569

The asymptotic analyses have shown that the axisymmetric component of the vertical velocity570
is given by Z = Z0(𝑟) +Y2Z20(𝑟, 𝑡) + ..., where Z20 follows (4.31) and (4.35) in the inviscid and571
viscous regimes, i.e. 𝑡 ⩽ T and 𝑡 ⩾ T , respectively. A global view of these two regimes and572
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Figure 11: Comparison between the vertical velocity at \ = 0 (top row) and \ = 𝜋/2
(bottom row) in the DNS (black solid line), predicted by the unsteady viscous solution
(4.16a,4.21) (yellow dashed line), by the steady viscous solution (4.16a,4.23) (green
dashed line) and by the non-linear equations (4.45,4.47) (blue dashed line) at (𝑎, 𝑑)
𝑡 = 40, (𝑏, 𝑒) 𝑡 = 60, (𝑐, 𝑓 ) 𝑡 = 80 for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦

(𝑅𝑜 = 115.2). The circle symbols represent the location of the critical radius in the
unsteady viscous solution (4.16a).

the associated approximations can be gained by plotting 𝜕Z20/𝜕𝑟 at 𝑟 = 𝑟𝑐 (figure 12). The573
black solid line shows the evolution of 𝜕Z20/𝜕𝑟 (𝑟𝑐, 𝑡) computed numerically from (4.35).574
𝜕Z20/𝜕𝑟 (𝑟𝑐, 𝑡) increases initially like 𝑡4 in agreement with the approximation (4.33) (red575
dashed line). Subsequently, for 𝑡 ≫ T , 𝜕Z20/𝜕𝑟 (𝑟𝑐, 𝑡) increases more slowly and saturates576

towards 𝜕Z (1)20 /𝜕𝑟 (𝑟𝑐) (black dashed line) for 𝑡 → ∞. The approximation (4.36) (blue dashed577
line) is in good agreement with the solution (4.35) (black line) in this regime. It will allow578
us to derive a theoretical criteria for the onset of non-axisymmetry in section 6.4.579

Figure 13 compares the radial profile of the theoretical vorticity Z = Z0(𝑟) +Y2Z20(𝑟, 𝑡) + ...580
with Z20 given by the unsteady inviscid solution (4.31) (red dashed line) to the DNS when581
𝑡 ⩽ T . The agreement is excellent and predicts very well the deformation of the vertical582
vorticity profile near 𝑟𝑐 ≃ 1.2. A similar comparison is displayed in figure 14 for three583
different times such that 𝑡 ≳ T and Z20 given by the unsteady viscous solution (4.35). The584
agreement continues to be very good even for 𝑡 = 85 (figure 14(𝑐)), confirming the validity585
of the solution (4.35). A slight shift can be however noticed near 𝑟𝑐 and near the vortex axis.586
In contrast, the predictions of the non-linear equations (4.45,4.47) (blue dashed lines) are in587
very good agreement with the DNS near 𝑟𝑐. This shows again that non-linear effects are not588
negligible in the critical layer.589

Finally, the prediction for late time 𝑡 ≫ T based on the steady viscous solution (4.36)590
has been compared to a DNS for a larger non-traditional Rossby number 𝑅𝑜 = 500, the591
other parameters being identical. The vortex remains then quasi-axisymmetric in the DNS592
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Figure 12: Comparison between the evolution of 𝜕Z20/𝜕𝑟 (𝑟𝑐 , 𝑡) from the theoretical
expressions: the unsteady viscous solution (4.35) (Black solid line), the unsteady inviscid

solution (4.31) (red dashed line), the viscous solutions (4.36) (blue dashed line) and
(4.37a) (black dashed line) for 𝑅𝑒 = 10000, 𝐹ℎ = 2.

(figure 8) allowing us to see the late evolution of the vorticity without the non-axisymmetric593
perturbations. Figure 15 shows that the deformation of the vorticity profile near 𝑟𝑐 is weak594
but well predicted by (4.36) although there is a shift for 𝑡 ⩾ 300. In this case, the predictions595
from the non-linear equations (4.45,4.47) (not shown) are identical to those from (4.36)596
indicating that the non-linear effects are weak. However, if we take also into account the597
global viscous decay of the leading order vorticity Z0 which is significant for these large598
times, then the agreement with the DNS is perfect (yellow dashed line)599

Besides, a feature of high interest is that the vertical vorticity profile exhibits two extrema600
near 𝑟𝑐, 𝑑Z/𝑑𝑟 = 0, as soon as 𝑡 ⩾ 40 (figures 13(𝑐) and 14). According to the Rayleigh’s601
inflectional criterion (Rayleigh 1880), this is a necessary condition for the shear instability.602
However, only the first extremum, where Z has a local minimum, satisfies the stiffer Fjørtoft603
(1950) instability condition [Ω(𝑟) −Ω(𝑟𝐼 )]𝜕Z/𝜕𝑟 < 0, where 𝑟𝐼 is the extremum. This gives604
us hindsight on the possible origin of the late non-axisymmetric evolution of the vertical605
vorticity. The next section will investigate whether or not this hypothesis is correct.606

6. Analysis of the non-axisymmetric evolution607

As seen in the previous sections, a ring of anomalous vertical vorticity develops near the608
critical radius and, subsequently, this ring may become non-axisymmetric when the non-609
traditional Rossby number 𝑅𝑜 is below a critical value depending on the Reynolds number610
(figure 8). In this section, the main question is: what is the origin of this non-axisymmetric611
evolution? Is it due to a shear instability associated to the inflection point in the vertical612
vorticity profile (see figure 14)? or is it an intrinsic behaviour of the vortex under the613
complete Coriolis force? Regarding the latter hypothesis, we have seen indeed from (4.27-614
4.29) that the vertical velocity field forces not only an axisymmetric vertical vorticity field615
but also a non-axisymmetric one with an azimuthal wavenumber 𝑚 = 2.616
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Figure 13: Comparison between the vertical vorticity at \ = 𝜋/2 in the DNS (black solid
line) and the asymptotic expressions Z = Z0 + Y2Z20 where Z20 follows the unsteady

inviscid solution (4.31) (red dashed line) and Z = Z0 + Z1 with Z1 given by the non-linear
equations (4.45,4.47) (blue dashed line) at (𝑎) 𝑡 = 25, (𝑏) 𝑡 = 35 and (𝑐) 𝑡 = 40 for

𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2). The circle symbols represent the
location of the critical radius in the unsteady inviscid solution (4.31).

Figure 14: Comparison between the vertical vorticity at \ = 𝜋/2 in the DNS (black solid
line) and the asymptotic expressions Z = Z0 + Y2Z20 where Z20 follows the unsteady

viscous solution (4.35) (red dashed line) and Z = Z0 + Z1 with Z1 given by the non-linear
equations (4.45,4.47) (blue dashed line) at (𝑎) 𝑡 = 50, (𝑏) 𝑡 = 65 and (𝑐) 𝑡 = 85 for

𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3, 𝜙 = 80◦ (𝑅𝑜 = 115.2). The circle symbols represent the
location of the critical radius in the unsteady inviscid solution (4.35).

6.1. Azimuthal decomposition of Z and 𝑢𝑧617

In order to better understand the onset of non-axisymmetric vertical vorticity, we have first618
decomposed Z thanks to an azimuthal Fourier transform619

Ẑ𝑚(𝑟, 𝑡) =
∫ 2𝜋

0
Z (𝑟, \, 𝑡)𝑒−𝑖𝑚\d\, (6.1)620

where Z (𝑥, 𝑦, 𝑡) has been first interpolated on a grid of cylindrical coordinates (𝑟, \). The621
same transform has been applied to 𝑢𝑧 in order to obtain �̂�𝑧𝑚 . The mean power in each622
azimuthal wavenumber is then defined as623

𝐸Z (𝑚, 𝑡) =

∫ 𝑙𝑥/2

0
Ẑ2
𝑚(𝑟, 𝑡)𝑟d𝑟∫ 𝑙𝑥/2

0
𝑟d𝑟

=
8
𝑙2𝑥

∫ 𝑙𝑥/2

0
Ẑ2
𝑚(𝑟, 𝑡)𝑟d𝑟, (6.2)624
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Figure 15: Comparison between the vertical vorticity at \ = 𝜋/2 in the DNS (black solid
line) and the asymptotic expressions Z = Z0 + Y2Z20 where Z20 follows the viscous

solution (4.36) (red dashed line) and Z = Z0 + Z1 with Z1 given by the non-linear equations
(4.45,4.47) and the viscous decay of Z0 also taken into account (yellow dashed line) at (𝑎)

𝑡 = 200, (𝑏) 𝑡 = 300 and (𝑐) 𝑡 = 400 for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.0, 𝜙 = 87.7◦
(𝑅𝑜 = 500). The circle symbols represent the location of the critical radius in the viscous

solution (4.36).

and625

𝐸𝑢𝑧 (𝑚, 𝑡) = 8
𝑙2𝑥

∫ 𝑙𝑥/2

0
�̂�2
𝑧𝑚

(𝑟, 𝑡)𝑟d𝑟. (6.3)626

Figure 16(𝑎) displays the evolution of the logarithm of the power of the first three azimuthal627
wavenumbers of the vertical vorticity. These are only even, i.e.𝑚 = 0,𝑚 = 2,𝑚 = 4. Similarly,628
figure 16(𝑏) shows the logarithm of the power of the first three azimuthal wavenumbers of629
𝑢𝑧 . They are odd in this case: 𝑚 = 1, 𝑚 = 3, 𝑚 = 5. It can be seen that 𝐸Z (0, 𝑡) and630
𝐸𝑢𝑧 (1, 𝑡) (black solid lines) remain approximately constant except that 𝐸𝑢𝑧 (1, 𝑡) sustains631
large oscillation after 𝑡 ≃ 120.632

It is also worth to point out that 𝐸Z (2, 𝑡) starts to grow at the beginning of the simulation633
since Z22 increases like 𝑡2 due to the forcing by the vertical velocity as shown in §4.3.1 (figure634
16 (𝑏)). However, when 𝑡 ⩽ 80, its power remains negligible compared to the one of the635
axisymmetric mode, 𝐸Z (0, 𝑡). In contrast, after 𝑡 ≃ 80, 𝐸Z (2, 𝑡) grows exponentially before636
saturating at 𝑡 ⩾ 120. There is therefore a clear transition towards an exponential growth, a637
feature consistent with the instability hypothesis. Nevertheless, we can see that the azimuthal638
mode 𝑚 = 3 of 𝑢𝑧 (figure 16(𝑏)) grows also exponentially at the same time. The higher639
modes, 𝑚 = 4 of Z and 𝑚 = 5 of 𝑢𝑧 , start to increase also exponentially but somewhat later.640
Thus, it is unclear if the growth of 𝐸𝑢𝑧 (3, 𝑡) is a consequence of the growth of 𝐸Z (2, 𝑡), if641
it is the opposite, or if the exponential growth is due to a coupling between 𝐸𝑢𝑧 (3, 𝑡) and642
𝐸Z (2, 𝑡).643

6.2. Truncated model644

To answer the latter question, we have derived a truncated model taking into account only the645
first azimuthal wavenumbers of each quantity. More precisely, the different variables have646
been written as647

𝑢𝑟 = �̂�𝑟2𝑐 (𝑟, 𝑡) cos (2\) + �̂�𝑟2𝑠 (𝑟, 𝑡) sin (2\), (6.4a)648
649

𝑢\ = �̂�\0 (𝑟, 𝑡) + �̂�\2𝑐 (𝑟, 𝑡) cos (2\) + �̂�\2𝑠 (𝑟, 𝑡) sin (2\), (6.4b)650
651

𝑝(𝑟, \) = 𝑝0(𝑟, 𝑡) + 𝑝2𝑐 (𝑟, 𝑡) cos (2\) + 𝑝2𝑠 (𝑟, 𝑡) sin (2\), (6.4c)652653
Z = Ẑ0(𝑟, 𝑡) + Ẑ2𝑐 (𝑟, 𝑡) cos (2\) + Ẑ2𝑠 (𝑟, 𝑡) sin (2\), (6.4d)654
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Figure 16: Evolution of the power (𝑎) 𝐸Z (𝑚, 𝑡) for the azimuthal wavenumbers 𝑚 = 0
(black solid line), 𝑚 = 2 (red dashed line) and 𝑚 = 4 (green dashed line) and the power
(𝑏) 𝐸𝑢𝑧 (𝑚, 𝑡) for the azimuthal wavenumbers 𝑚 = 1 (black solid line), 𝑚 = 3 (red dashed

line) and 𝑚 = 5 (green dashed line) for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3 and 𝜙 = 80◦
(𝑅𝑜 = 115.2).

𝑢𝑧 = �̂�𝑧1𝑐 (𝑟, 𝑡) cos (\) + �̂�𝑧1𝑠 (𝑟, 𝑡) sin (\), (6.4e)655

656

𝑏 = �̂�1𝑐 (𝑟, 𝑡) cos (\) + �̂�1𝑠 (𝑟, 𝑡) sin (\). (6.4f )657

These decompositions have been introduced in (4.1a-4.1e) and the following governing658
equations have been obtained for the vertical velocity and buoyancy by truncating all the659
higher modes:664

𝜕�̂�𝑧1𝑐

𝜕𝑡
= − 1

2

(
�̂�𝑟2𝑐

𝜕�̂�𝑧1𝑐

𝜕𝑟
+ �̂�𝑟2𝑠

𝜕�̂�𝑧1𝑠

𝜕𝑟

)
− 1
𝑟

(
�̂�\0 �̂�𝑧1𝑠 +

1
2
(�̂�\2𝑐 �̂�𝑧1𝑠 − �̂�\2𝑠 �̂�𝑧1𝑐 )

)
+ �̂�1𝑐 +

1
𝑅𝑒

∇2�̂�𝑧1𝑐 +
1
𝑅𝑜

(�̂�𝑟2𝑐 − �̂�\2𝑠 ),
(6.5a)665

𝜕�̂�𝑧1𝑠

𝜕𝑡
=

1
2

(
�̂�𝑟2𝑐

𝜕�̂�𝑧1𝑠

𝜕𝑟
− �̂�𝑟2𝑠

𝜕�̂�𝑧1𝑐

𝜕𝑟

)
+ 1
𝑟

(
�̂�\0 �̂�𝑧1𝑐 −

1
2
(�̂�\2𝑐 �̂�𝑧1𝑐 + �̂�\2𝑠 �̂�𝑧1𝑠 )

)
+ �̂�1𝑠 +

1
𝑅𝑒

∇2�̂�𝑧1𝑠 +
1
𝑅𝑜

(�̂�𝑟2𝑠 + �̂�\2𝑐 − 2�̂�\0),
(6.5b)666

𝜕�̂�1𝑐
𝜕𝑡

= − 1
2

(
�̂�𝑟2𝑐

𝜕�̂�1𝑐
𝜕𝑟

+ �̂�𝑟2𝑠

𝜕�̂�1𝑠
𝜕𝑟

)
− 1
𝑟

(
�̂�\0 �̂�1𝑠 +

1
2
(�̂�\2𝑐 �̂�1𝑠 − �̂�\2𝑠 �̂�1𝑐)

)
−
�̂�𝑧1𝑐

𝐹2
ℎ

+ 1
𝑅𝑒𝑆𝑐

∇2�̂�1𝑐,

(6.5c)667

𝜕�̂�1𝑠
𝜕𝑡

=
1
2

(
�̂�𝑟2𝑐

𝜕�̂�1𝑠
𝜕𝑟

− �̂�𝑟2𝑠

𝜕�̂�1𝑐
𝜕𝑟

)
+ 1
𝑟

(
�̂�\0 �̂�1𝑐 −

1
2
(�̂�\2𝑐 �̂�1𝑐 + �̂�\2𝑠 �̂�1𝑠)

)
−
�̂�𝑧1𝑠

𝐹2
ℎ

+ 1
𝑅𝑒𝑆𝑐

∇2�̂�1𝑠 .

(6.5d)668

669
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Applying the same truncation approach for the vertical vorticity gives673

𝜕Ẑ0
𝜕𝑡

= − 1
2

(
�̂�𝑟2𝑐

𝜕Ẑ2𝑐
𝜕𝑟

+ �̂�𝑟2𝑠

𝜕Ẑ2𝑠
𝜕𝑟

)
− 1
𝑟

(
�̂�\2𝑐 Ẑ2𝑠 − �̂�\2𝑠 Ẑ2𝑐

)
+ 1
𝑅𝑒

∇2 Ẑ0,

+ 1
𝑅𝑜

(
𝜕�̂�𝑧1𝑠

𝜕𝑟
+
�̂�𝑧1𝑠

𝑟

) (6.6a)674

𝜕Ẑ2𝑐
𝜕𝑡

= −�̂�𝑟2𝑐

𝜕Ẑ0
𝜕𝑟

−
2�̂�\0

𝑟
Ẑ2𝑠 +

1
𝑅𝑒

∇2 Ẑ2𝑐 −
1
𝑅𝑜

(
𝜕�̂�𝑧1𝑠

𝜕𝑟
−
�̂�𝑧1𝑠

𝑟

)
, (6.6b)675

𝜕Ẑ2𝑠
𝜕𝑡

= −�̂�𝑟2𝑠

𝜕Ẑ0
𝜕𝑟

+
2�̂�\0

𝑟
Ẑ2𝑐 +

1
𝑅𝑒

∇2 + 1
𝑅𝑜

(
𝜕�̂�𝑧1𝑐

𝜕𝑟
−
�̂�𝑧1𝑐

𝑟

)
, (6.6c)676

677

where678

Ẑ0 =
1
𝑟

𝜕𝑟�̂�\0

𝜕𝑟
, (6.7a)679

680

Ẑ2𝑐 =
1
𝑟

𝜕𝑟�̂�\2𝑐

𝜕𝑟
− 2
𝑟
�̂�𝑟2𝑠 , (6.7b)681

682

Ẑ2𝑠 =
1
𝑟

𝜕𝑟�̂�\2𝑠

𝜕𝑟
+ 2
𝑟
�̂�𝑟2𝑐 . (6.7c)683

The divergence equation also implies684

1
𝑟

𝜕𝑟�̂�𝑟2𝑐

𝜕𝑟
+ 2
𝑟
�̂�\2𝑠 = 0, (6.8a)685

686
1
𝑟

𝜕𝑟�̂�𝑟2𝑠

𝜕𝑟
− 2
𝑟
�̂�\2𝑐 = 0. (6.8b)687

Such truncated model can be seen as a heuristic extension of the asymptotic analyses.688
Indeed, it takes into account both time dependence and diffusive effects in the evolution of689
the vertical velocity and buoyancy (6.5). Moreover, the modifications of the axisymmetric690
flow field (�̂�\0) and the generated 𝑚 = 2 mode (�̂�𝑟2𝑐 , �̂�𝑟2𝑠 , �̂�\2𝑐 , �̂�\2𝑠 ) are also taken into691
account. The latter is governed by (6.6b-6.6c) and it appears also in the evolution of the692
axisymmetric flow field (6.6a). However, like in the asymptotic analyses, only the first693
azimuthal wavenumber of 𝑢𝑧 and 𝑏 are considered, i.e. the mode 𝑚 = 3, 𝑚 = 5, ... are694
neglected. Similarly, the higher modes 𝑚 = 4, 𝑚 = 6, ... are neglected in the evolution of the695
horizontal flow field (6.6).696

Figures 17 (𝑎, 𝑏) compares the power 𝐸Z (2, 𝑡) and 𝐸𝑢𝑧 (1, 𝑡), respectively, obtained in the697
DNS and in the truncated model. There are some differences for 𝑡 ⩾ 100 but, qualitatively, the698
same type of evolution as in the DNS is obtained with the truncated model. This is remarkable699
since the truncated model crudely neglects many azimuthal modes and, in particular, the700
azimuthal mode 𝑚 = 3 in the vertical velocity and buoyancy fields. Hence, this proves701
that the growth of 𝐸𝑢𝑧 (3, 𝑡) in figure 16(𝑏) does not play a key role in the onset of non-702
axisymmetry in the vertical vorticity.703

We can make a step further in the understanding of this phenomenon by freezing the704
axisymmetric velocity field. In other words, the time evolution of (�̂�\0 , Ẑ0) is suppressed705
after a given time 𝑡 𝑓 . We also set the forcing terms due to the non-traditional Coriolis force706
to be zero in (6.6b) and (6.6c). Hence, the latter equations become707

𝜕Ẑ2𝑐
𝜕𝑡

= −�̂�𝑟2𝑐

𝜕Ẑ0(𝑟, 𝑡 𝑓 )
𝜕𝑟

−
2�̂�\0 (𝑟, 𝑡 𝑓 )

𝑟
Ẑ2𝑠 +

1
𝑅𝑒

∇2 Ẑ2𝑐, (6.9a)708
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Figure 17: Evolution of the power (𝑎) 𝐸Z (2, 𝑡) and (𝑏) 𝐸𝑢𝑧 (1, 𝑡) in the DNS (black solid
line) and in the truncated model (red dashed line) for 𝑅𝑒 = 10000, 𝐹ℎ = 2, 𝑅𝑜 = 20.3 and

𝜙 = 80◦ (𝑅𝑜 = 115.2).

𝜕Ẑ2𝑠
𝜕𝑡

= −�̂�𝑟2𝑠

𝜕Ẑ0(𝑟, 𝑡 𝑓 )
𝜕𝑟

+
2�̂�\0 (𝑟, 𝑡 𝑓 )

𝑟
Ẑ2𝑐 +

1
𝑅𝑒

∇2 Ẑ2𝑠 . (6.9b)709

These equations describe simply the linear evolution of perturbations with azimuthal710
wavenumber 𝑚 = 2 on a steady axisymmetric vortex with azimuthal velocity �̂�\0 (𝑟, 𝑡 𝑓 ). The711
perturbations (�̂�𝑟2𝑐 , �̂�\2𝑐 ) and (�̂�𝑟2𝑠 , �̂�\2𝑠 ) are initialized by a white noise whose amplitude is712
adjusted so as to have a power of the same order as 𝐸Z (2, 𝑡 𝑓 ). Figure 18 shows the evolution713
of the power 𝐸Z (2, 𝑡) for different freezing time 𝑡 𝑓 ; 𝑡 𝑓 = 40 (yellow dashed line), 𝑡 𝑓 = 50714
(blue dashed line), 𝑡 𝑓 = 65 (red dashed line), 𝑡 𝑓 = 85 (green dashed line) compared to the715
evolution of 𝐸Z (2, 𝑡) in the truncated model (black solid line). Strikingly, we see that 𝐸Z (2, 𝑡)716
grows also exponentially regardless of the value of 𝑡 𝑓 investigated. Furthermore, the growth717
rate, i.e. the slope, increases with 𝑡 𝑓 . Most interestingly, the growth rate for 𝑡 𝑓 = 85 is close to718
the one observed in the truncated model (black solid line). This demonstrates that the onset719
of non-axisymmetry in the vertical vorticity is due to an instability of the vortex profile.720
When the anomaly of vertical vorticity is sufficient to have an extremum, a shear instability721
with an azimuthal wavenumber 𝑚 = 2 develops. Subsequently, this triggers the growth of722
higher azimuthal modes through the coupling with the non-traditional Coriolis force.723

6.3. Equivalent vortex with piecewise uniform vorticity724

A simple model of the instability can be obtained by considering the inviscid limit and by725
using a vortex with piecewise uniform vorticity with four concentric regions as considered726
by Carton & Legras (1994) and Kossin et al. (2000). As shown by two examples in figure727
19, the vorticity profile in the DNS can be crudely approximated by four levels of constant728
vorticity:729

Z =


Z1 = 2 0 < 𝑟 < 𝑟1
Z2 = Z𝑐 − 𝛿𝑣/2 𝑟1 < 𝑟 < 𝑟2
Z3 = Z𝑐 + 𝛿𝑣/2 𝑟2 < 𝑟 < 𝑟3
Z4 = 0 𝑟3 < 𝑟

(6.10)730

where 𝑟1 = 𝑟𝑐 − 𝛿ℎ, 𝑟2 = 𝑟𝑐 and 𝑟3 = 𝑟𝑐 + 𝛿ℎ where 𝛿𝑣 and 𝛿ℎ are the amplitude and size731
of the vorticity anomaly in the vicinity of the critical radius 𝑟𝑐. More explicitly, 𝛿𝑣 is the732
difference between the local maximum and minimum of the vorticity and 𝛿ℎ is the distance733
between these two extrema. The corresponding angular velocity of the vortex is continuous734
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Figure 18: Evolution of the power 𝐸Z (2, 𝑡) in the truncated model (black solid line) or
using (6.9) for different freezing times: 𝑡 𝑓 = 85 (green dashed line), 𝑡 𝑓 = 65 (red dashed

line), 𝑡 𝑓 = 50 (blue dashed line) and 𝑡 𝑓 = 40 (yellow dashed line) for 𝑅𝑒 = 10000, 𝐹ℎ = 2,
𝑅𝑜 = 20.3 and 𝜙 = 80◦ (𝑅𝑜 = 115.2).

and given by735

Ω(𝑟) = 1
2


Z1 0 < 𝑟 < 𝑟1
Z2 − (Z2 − Z1) (𝑟1/𝑟)2 𝑟1 < 𝑟 < 𝑟2
Z3 − (Z2 − Z1) (𝑟1/𝑟)2 − (Z3 − Z2) (𝑟2/𝑟)2 𝑟2 < 𝑟 < 𝑟3
−(Z2 − Z1) (𝑟1/𝑟)2 − (Z3 − Z2) (𝑟2/𝑟)2 + Z3(𝑟3/𝑟)2 𝑟3 < 𝑟

(6.11)736

For a given Froude number 𝐹ℎ, the position of the critical radius 𝑟𝑐 and the value of Z𝑐 are737
fixed. Hence, the problem has only two control parameters: 𝛿𝑣 and 𝛿ℎ. The stability of such738
vortex with respect to perturbations of the form 𝜓𝑒𝑖𝑚\+𝜎𝑡 is governed by the eigenvalue739
problem (Carton & Legras 1994; Kossin et al. 2000)740

©«
𝑚Ω(𝑟1) + 1

2 (Z2 − Z1) 1
2 (Z2 − Z1) (𝑟1/𝑟2)𝑚 1

2 (Z2 − Z1) (𝑟1/𝑟3)𝑚
1
2 (Z3 − Z2) (𝑟1/𝑟2)𝑚 𝑚Ω(𝑟2) + 1

2 (Z3 − Z2) 1
2 (Z3 − Z2) (𝑟2/𝑟3)𝑚

− 1
2 Z3(𝑟1/𝑟3)𝑚 − 1

2 Z3(𝑟2/𝑟3)𝑚 𝑚Ω(𝑟3) − 1
2 Z3

ª®¬ ©«
𝜓1
𝜓2
𝜓3

ª®¬ = 𝜎
©«
𝜓1
𝜓2
𝜓3

ª®¬ .
(6.12)741

Figure 20 (𝑎) shows the growth rate contours for the 𝑚 = 2 perturbations for 𝐹ℎ = 2742
as a function of (𝛿𝑣 , 𝛿ℎ). We see that the growth rate is positive only when 𝛿𝑣 and 𝛿ℎ are743
sufficiently away from zero in the ranges investigated. The symbols in figure 20(𝑎) indicate744
the parameters (𝛿𝑣 , 𝛿ℎ) estimated by fitting (6.10) to the vorticity field Ẑ0(𝑟, 𝑡 𝑓 ) at different745
times 𝑡 𝑓 for 𝐹ℎ = 2, for two different latitudes 𝜙 = 80◦ (red circles) and 𝜙 = 75◦ (black746
squares). For example, for 𝜙 = 80◦, the time 𝑡 𝑓 varies from 𝑡 𝑓 = 45 (leftmost point) to 𝑡 𝑓 = 85747
(rightmost point). The size of the vorticity anomaly 𝛿ℎ does not vary very much and is around748
𝛿ℎ ≃ 0.2 for both latitudes. In contrast, the amplitude of the anomaly 𝛿𝑣 increases with 𝑡 𝑓749
as expected. Figure 20(𝑏) displays the growth rate as a function of 𝛿𝑣 (circle and square750
symbols). The dashed lines show the corresponding growth rate computed from (6.9), i.e. by751
considering the continuous vorticity profile Ẑ0(𝑟, 𝑡 𝑓 ) and with the perturbations initialized752
by white noise. This shows that the piecewise vortex model is able to predict quite well753
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Figure 19: Examples of the piecewise uniform vorticity (red line) fitting the continuous
vertical vorticity profiles (black line) at (𝑎) 𝑡 = 40, (𝑏) 𝑡 = 50 for 𝑅𝑒 = 10000, 𝐹ℎ = 2,
𝑅𝑜 = 20.3 and 𝜙 = 80◦ (𝑅𝑜 = 115.2). The circle symbols represent the location of the

critical radius.

the growth rate of the instability observed in the truncated model, which is itself in good754
agreement with the DNS.755

Using (6.12), we have also computed the growth rate of higher azimuthal wavenumbers756
𝑚 > 2. The results show that the most unstable wavenumber is not 𝑚 = 2 but is between757
𝑚 = 3 and 𝑚 = 5 for the parameters indicated by the symbols in figure 20(𝑎). Three reasons758
might explain the actual dominance of 𝑚 = 2. First, the velocity jumps in the piecewise759
vortex model could favor larger wavenumbers compared to a continuous vorticity profile.760
Second, we have seen from (4.27-4.28) that the non-traditional Coriolis force generates761

not only an axisymmetric vorticity at order 1/𝑅𝑜2 but also a vorticity field with with an762
azimuthal wavenumber 𝑚 = 2. Figure 17(𝑎) shows that the latter is weak before the onset763
of the instability. However, it is not zero and, therefore, this small amplitude could favor764
its dominance over more unstable higher wavenumbers whose initial amplitudes are much765
lower (see 𝑚 = 4 in figure 17(𝑎)). Third, the vortex profile is continuously evolving with766
time while, in the stability problems (6.9) or (6.12), we have frozen this evolution. Hence,767
the 𝑚 = 2 wavenumber could be selected first when the vortex becomes slightly unstable.768
This early selection would then ensure its subsequent dominance even if it is no longer the769
most unstable wavenumber. Such effect has been evidenced by Wang & Balmforth (2021) in770
their study of the evolution of the wavenumber selection as the critical layer becomes finer.771

6.4. Theoretical criterion772

Even if the Rayleigh-Fjørtoft criterion is only a necessary condition for the shear instability773
in inviscid fluids, we can try to use it to establish a theoretical criterion for the onset of the774
shear instability in the DNS for finite Reynolds numbers. Since the radial derivative of the775
vorticity is maximum at 𝑟 = 𝑟𝑐 and is negative away from the critical radius, a necessary776
condition ensuring that there exists extrema, 𝑑Z/𝑑𝑟 = 0, reads777

dZ (𝑟𝑐, 𝑡𝑠)
d𝑟

⩾ 𝑐, (6.13)778

where 𝑐 = 0 is the minimum requirement for the existence of an inflection point, but we779
have explored also the consequences of larger values of 𝑐. Besides, the time 𝑡𝑠 will be set780
as 𝑡𝑠 = 𝑎T , where 𝑎 is a constant larger than unity. Indeed, the onset of the shear instability781
always occurs after the time T . Therefore, the vorticity Z will be taken as the asymptotic782
axisymmetric vorticity Z = Z0 + Y2Z20 where Z20 is given by (4.36). As seen in figure 12,783
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Figure 20:
(a) Growth rates contours of the piecewise vortex model as a function of 𝛿ℎ and 𝛿𝑣 for
𝐹ℎ = 2. The contour interval is 0.03. The bold line indicates the growth rate 𝜎 = 0. The
symbols correspond to the values of 𝛿ℎ and 𝛿𝑣 estimated at different freezing times for

𝜙 = 80◦ (𝑅𝑜 = 115.2) (red circles) and 𝜙 = 75◦ (𝑅𝑜 = 77.27) (black squares) for
𝑅𝑒 = 10000, 𝐹ℎ = 2.

(b) Growth rates as a function of 𝛿𝑣 obtained by the truncated model at different freezing
times (symbols) and given by (6.12) for 𝑚 = 2 (dashed lines) for 𝜙 = 75◦ (𝑅𝑜 = 77.27)

(black) and 𝜙 = 80◦ (𝑅𝑜 = 115.2) (red), 𝑅𝑒 = 10000 and 𝐹ℎ = 2.

𝜕Z20/𝜕𝑟 (𝑟𝑐, 𝑡) is indeed well predicted by (4.36) for large times. Then, (6.13) becomes784

𝑅𝑒2/3

𝑅𝑜
⩾

���2Ω′
𝑐

���1/3
(
1 + 1

𝑆𝑐

)1/6
√√√√√√√√ 𝑐 − 3Ω

′
𝑐 − 𝑟𝑐Ω

′′
𝑐

2𝜋𝑟𝑐Ω𝑐

(
Hi(0) −

(
1 + 1/𝑆𝑐

8𝑎𝜋2Hi(0)

)1/2
) . (6.14)785

Remarkably, the right-hand side depends only on the Froude number through 𝑟𝑐, the Schmidt786
number 𝑆𝑐 and the constants 𝑎 and 𝑐. The criterion (6.14) when 𝑐 = 0 and 𝑎 = ∞ is represented787
by a solid line in figure 8. It delimits quite well the quasi-axisymmetric/non-axisymmetric788
domains observed in the DNS, except for the lowest Reynolds number investigated 𝑅𝑒 = 2000.789
Such difference for moderate Reynolds and Rossby numbers is not surprising since the790
asymptotics have been derived for high Reynolds number and large Rossby number 𝑅𝑜.791
Furthermore, viscous effects might damp the shear instability growth when the Reynolds792
number is moderate.793

As seen from the piecewise vortex model, the shear instability for 𝑚 = 2 does not appear794
when 𝛿ℎ ≃ 0.2 as soon as 𝛿𝑣 > 0. It can be roughly estimated that the instability arises795
only when 𝛿𝑣 such that 𝛿𝑣/𝛿ℎ ≳ 0.4 (figure 20(𝑎)). Therefore, we can estimate 𝜕Z/𝜕𝑟 =796
𝑐 ≃ 𝛿𝑣/𝛿ℎ = 0.4. The criterion (6.14) with this value of 𝑐 and 𝑎 = ∞ is represented by a797
dashed line in figure 8. The agreement with the DNS is as good as the criterion (6.14) with798
𝑐 = 0. The actual threshold is likely to be in between these two curves, i.e. in the hatched799
region (figure 8). Finally, we stress that the criterion (6.14) applies only to the shear instability800
due to an inflection point and not to other types of instability that may exist in viscous shear801
flows.802

7. Late evolution of the vortex803

Finally, figures 21 and 22 show the late evolution of the angular velocity profile (bottom row)804
when the instability develops or not, respectively. The DNS are the same as those already805
presented in section §3 for 𝑅𝑒 = 2000, 𝐹ℎ = 2 and different latitudes: 𝜙 = 60◦ (𝑅𝑜 = 40)806
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Figure 21: Vertical vorticity (top) and angular velocity profile (bottom) obtained from
DNS (black line) at (𝑎, 𝑒) 𝑡 = 50 , (𝑏, 𝑓 ) 𝑡 = 80 , (𝑐, 𝑔) 𝑡 = 120 and (𝑑, ℎ) 𝑡 = 250 for

𝑅𝑒 = 2000, 𝐹ℎ = 2, 𝑅𝑜 = 23.1, 𝜙 = 60◦ (𝑅𝑜 = 40). The red dashed lines show the angular
velocity profile if only viscous diffusion were active. The horizontal green dashed line

represents the critical angular velocity value 1/𝐹ℎ.

(figures 4 and 21) and 𝜙 = 80◦ (𝑅𝑜 = 115.2) (figures 6 and 22). The corresponding807
vorticity fields are also shown again in the top row of figures 21 and 22 for convenience. In808
figures 21(𝑐, 𝑑, 𝑔, ℎ), we see that the instability ceases when the angular velocity is almost809
everywhere below 1/𝐹ℎ (horizontal green dashed line), i.e. when a critical radius no longer810
exists. Due to the development of the critical layer and resulting instability, the decay of811
the angular velocity in the vortex core is accelerated compared to a pure viscous decay812

Ω = 1
𝑟2 (1 − exp( −𝑟2

1+4𝑡/𝑅𝑒 )) (shown by red dashed lines in figures 21(𝑒, 𝑓 , 𝑔, ℎ)). When there813

is no instability (figure 22), the evolution of the angular velocity is slower and follows more814
closely a pure viscous diffusion law except in the vicinity of the critical radius where the815
decay is also slightly enhanced.816

8. Conclusion817

We have studied numerically and theoretically the evolution of a Lamb-Oseen vortex in a818
stratified-rotating fluid under the complete Coriolis force on the 𝑓 -plane. The problem is819
governed mainly by the Froude number 𝐹ℎ, the Reynolds number 𝑅𝑒 and the non-traditional820
Rossby number 𝑅𝑜 based on the horizontal component of the background rotation.821

Starting from a purely two-dimensional axisymmetric vortex, the DNS shows that a strong822
vertical velocity field with an azimuthal wavenumber 𝑚 = 1 is generated at a particular radius823
when the Froude number is larger than unity. This radius increases with the Froude number.824
Simultaneously, the vertical vorticity develops a quasi-axisymmetric anomaly near the same825
radius. Later, this anomalous ring may become fully non-axisymmetric with an azimuthal826
wavenumber 𝑚 = 2 when the Reynolds number is sufficiently large and the non-traditional827
Rossby number 𝑅𝑜 not too large. At late time, the vorticity returns to a quasi-axisymmetric828
shape. Even if the vertical velocity is non-zero, all the fields remain independent of the829
vertical coordinate. In other words, the flow is 2D3C, i.e. two dimensional but with 3830
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Figure 22: Vertical vorticity (top) and angular velocity profile (bottom) obtained from
DNS (black line) at (𝑎, 𝑒) 𝑡 = 50 , (𝑏, 𝑓 ) 𝑡 = 80 , (𝑐, 𝑔) 𝑡 = 120 and (𝑑, ℎ) 𝑡 = 250 for
𝑅𝑒 = 2000, 𝐹ℎ = 2, 𝑅𝑜 = 23.1, 𝜙 = 80◦ (𝑅𝑜 = 115.2). The red dashed lines show the

angular velocity profile if only viscous diffusion were active. The horizontal green dashed
line represents the critical angular velocity value 1/𝐹ℎ.

velocity components. For this reason, the dynamics is independent of the traditional Rossby831
number 𝑅𝑜 based on the vertical component of the background rotation.832

An asymptotic analysis for large non-traditional Rossby number 𝑅𝑜 has allowed us to833
unravel this evolution. First, it shows that the non-traditional Coriolis force generates a834
vertical velocity and buoyancy fields at order 1/𝑅𝑜 which are invariant along the vertical.835
When the Froude number 𝐹ℎ is larger than unity and in the absence of time dependence836
and viscous effects, these fields present a singularity at the radius where the angular velocity837
is equal to the Brunt–Väisälä frequency (i.e. the inverse of the Froude number in non-838
dimensional form). The asymptotic analyses show that this singularity is first regularized by839
the time dependence. This leads to a linear increase of the amplitude of the vertical velocity840
while the width of the critical layer shrinks at a rate inversely proportional to time. After a841
certain time, viscous effects saturate this evolution. The vertical velocity field is then steady842
with an amplitude proportional to 𝑅𝑒1/3 and a critical layer width scaling like 𝑅𝑒−1/3 as843
found by Boulanger et al. (2007) in the case of a tilted vortex in a stratified fluid. These844
asymptotic predictions are all in very good agreement with the DNS.845

In turn, the non-traditional Coriolis force due to the vertical velocity modifies the vertical846

vorticity field at order 1/𝑅𝑜2. The dominant effect is the development of an axisymmetric847
ring of anomalous vorticity near the critical radius. This leads to the development of extrema848
in the vorticity profile. Again, the asymptotic predictions for the axisymmetric component849
of the vorticity are in good agreement with the DNS. Following Wang & Balmforth (2020,850
2021), we have further carried out a non-linear asymptotic analysis that takes into account851
the effect of the anomaly of axisymmetric vorticity back on the evolution of the vertical852
velocity. The predictions of this non-linear analysis are in better agreement with the DNS853
than those of the linear analysis indicating that both viscous and nonlinear effects operate in854
the critical layer.855

In order to understand the origin of the subsequent non-axisymmetric evolution of the856
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vorticity field, we have first decomposed the vertical velocity and vorticity in the DNS by857
an azimuthal Fourier transform. This analysis shows that several azimuthal modes grow858
exponentially during the onset of non-axisymmetry: the odd modes 𝑚 = 3, 𝑚 = 5, etc for the859
vertical velocity and the even modes 𝑚 = 2, 𝑚 = 4, etc for the vertical vorticity. We have then860
introduced a highly truncated model which keeps only the 𝑚 = 1 azimuthal wavenumber of861
the vertical velocity and the 𝑚 = 0 and 𝑚 = 2 wavenumbers of the vertical vorticity. Such862
truncated model exhibits also an onset of non-axisymmetry like in the DNS demonstrating863
that this behavior is not due to an unstable coupling between azimuthal modes. Furthermore,864
we have shown that if we freeze the profile of the axisymmetric component of the vertical865
vorticity at the time where the non-axisymmetry starts to appear and initializes the 𝑚 = 2866
mode by white noise, the latter mode grows exponentially at a rate comparable to the one867
observed in the DNS. In addition, the stability of an equivalent piecewise vortex model868
with four levels of vorticity has been investigated and have been found to give growth rates869
for 𝑚 = 2 in agreement with those of the truncated model. Altogether, this proves that the870
onset of non-axisymmetry comes from a two-dimensional shear instability related to the871
presence of a minimum in the vorticity profile. Finally, using the asymptotic expression of872
the axisymmetric component of the vorticity at late time at leading orders, the necessary873
condition for the shear instability has been converted into an instability condition in terms of874
(𝑅𝑒, 𝑅𝑜). This condition delimits well the quasi-axisymmetric/non-axisymmetric domains875
in the parameter space (𝑅𝑒, 𝑅𝑜).876

The overall effect of the instability is to accelerate the decay of the angular velocity877
compared to a pure viscous diffusion. The instability ceases when the angular velocity is878
everywhere lower than the Brunt–Väisälä frequency (i.e. the inverse of the Froude number879
in non-dimensional form).880

In summary, we have seen that the dynamics of a vortex for large Reynolds number can881
be strongly affected by the non-traditional Coriolis force even if the non-traditional Rossby882
number 𝑅𝑜 is large, i.e. even for a small value of the horizontal component of the background883
rotation. Since the typical Reynolds number of geophysical vortices is generally huge, this884
means that the non-traditional Coriolis force might have much more impact than expected885
by just considering its order of magnitude through the non-traditional Rossby number 𝑅𝑜.886
It should be reminded however that another crucial condition is 𝐹ℎ > 1 that ensures the887
presence of a critical layer. Hence, such process might affect intense but not too large888
vortices in geophysical flows.889

In the future, we will investigate the effect of three-dimensional perturbations on this890
phenomenon. Indeed, the vertical velocity is also responsible for an axial shear that might891
lead to another kind of shear instability if small three-dimensional perturbations are present892
as observed by Boulanger et al. (2007) for the case of a tilted vortex. It could be interesting893
also to study the configurations where the vortex is initially aligned with the background894
rotation vector or not columnar.895
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Appendix A. Approximation of the solution of (4.34) for large time899

The solution (4.35) can be simplified for large time𝑇 ≫ 1, i.e. 𝑡 ≫ 𝑅𝑒1/3. It is first convenient900
to derive Z20 with respect to 𝑟 .901
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By using the change of variable 𝑧 = 𝑞/𝛾 for the first part of the integrand and 𝑥 = 𝑞
√
𝑇 for903

the second part, (A 1) can be rewritten904
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When 𝑇 ≫ 1, the first integral tends to the Scorer’s function (Abramowitz & Stegun 1972)907
whereas the terms proportional to 1/𝑇3/2 can be neglected compared to the other terms in908
the second integral. This yields909
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By introducing another change of variable911

𝑈 = 𝑥 − 𝑖𝑟

2
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, (A 4)912

(A 3) becomes913
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The imaginary terms in the integral cancel with those of the complex conjugate giving915
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The remaining integral can be approximated by
√
𝜋/2 since 𝑇 ≫ 1, leading finally to917
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Integrating back in 𝑟 gives the approximation (4.37).919
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