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Artificial intelligence approaches have vastly improved the health care field in several tasks such as image processing and information extraction. These techniques assist experts to predict and diagnose the risk of certain diseases earlier and more efficiently, such as cardiovascular disease through the evaluation of cardiac function. This paper presents a segmented private dataset for Right Ventricle, as well as associated the manual annotation method. In addition, we propose an adapted U-Net architecture for automatic RV contours segmentation. This approach ensures high accuracy while minimizing the manual evaluation time for this cavity.

Introduction

The heart is a small organ. It represents a sign of life for humans. Its dysfunction represents the first cause of death according to the "World Health Organization". Previously, the right ventricular (RV) was considered the in-essential cardiac chamber. Although, in recent years, the significance of the right ventricle is increasingly recognized for pulmonary circulation and cardiac function [START_REF] Murphy | The right ventricle-structural and functional importance for anaesthesia and intensive care[END_REF]. Therefore, RV segmentation is an essential step for cardiovascular disease diagnosis. As well manual segmentation is time-consuming and depends on the expert's observation due to its complex and variable shape. In contrast, the results provided by fully convolutional encoder-decoder architecture are highly encouraging [START_REF] Adegun | Fully Convolutional Encoder-Decoder Architecture (FCEDA) for Skin Lesions Segmentation[END_REF]. Several imaging modalities are available for the evaluation of cardiac function [START_REF] Boukhris | U-Shaped Densely Connected Convolutions for Left Ventricle Segmentation from CMR Images[END_REF]. Magnetic resonance imaging (MRI) is a gold standard technique for the visualization and diagnosis of RV disease using a short-axis view. An important advantage of MRI is that the patient is not exposed to radiation through the use of a magnetic field produced by a magnet and radiofrequency waves.

In this paper, we propose a right ventricular segmentation algorithm using a private base of MRI scans. Our model presents a modified U-Net architecture to obtain fewer parameters while ensuring more accuracy.

In the following: section 2 proposes a brief overview of the existing study. The architecture and dataset adopted are detailed in the next section. Section 4 includes the experimental results provided. Finally, section 5 presents the conclusion and future work.

State of the art

Recently, the work on RV segmentation has become more and more varied and developed. A number of researchers have chosen to use traditional segmentation algorithms. Deformable models are widely used [START_REF] Sun | Automatic cardiac MRI segmentation using a biventricular deformable medial model[END_REF], [START_REF] Yang | Right ventricle segmentation by temporal information constrained gradient vector flow[END_REF], [START_REF] Wang | Fully automatic segmentation of 4D MRI for cardiac functional measurements[END_REF], [START_REF] Liu | Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI[END_REF] due to their efficient detection of boundaries and variation in shape or complex geometry. Arrieta et al. suggested a TPLS technique based on the saved structure level sets using a restricted base of 35 pathological patients and 6 healthy cases. The DM is the metric used for the evaluation of the proposed model. The results show an efficiency during segmentation of the LV comparably with the RV due to its complex shape [START_REF] Arrieta | Simultaneous left and right ventricle segmentation using topology preserving level sets[END_REF].

The graph-guided segmentation method is considerably applied for the segmentation of medical imaging [START_REF] Maier | Segmentation of RV in 4D cardiac MR volumes using regionmerging graph cuts[END_REF], [START_REF] Mahapatra | Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors[END_REF]. In [START_REF] Mahapatra | Cardiac MRI segmentation using mutual context information from left and right ventricle[END_REF], a contextual Graph-Cuts approach is proposed for the segmentation of two ventricular cavities. Learning and testing are done using data provided by STACOM challenge in 2011. DM and HD are the evaluation metrics used.

The 30 subjects used are divided equally between the training set and the test set. For the RV, the test is done only on the median slices of 3 patients. For this reason, the results cannot be qualified because of the limited data used for the RV test. Medical imaging segmentation using the Atlas model is used extensively with standard models. The authors of [START_REF] Ou | Multi-atlas segmentation of the cardiac MR right ventricle[END_REF] offer a 3D multi-atlas method for the segmentation of the RV. The proposed semi-automatic technique takes advantage of the data provided by MICCAI 2012 challenge. To measure the effectiveness of this method, Ou et al. evaluates DM and HD metrics in 20 cases and the learning was done using 15 subjects from the challenge. The performance of the model for RV is influenced by the cardiac cycle. Several proposed approaches have proven ineffective for RD segmentation. To improve the accuracy of this task, in recent years, most scientific papers rely on artificial intelligence techniques.

In 2014, the use of the ML Random Forest algorithm for the segmentation of the right ventricle was introduced [START_REF] Cabitza | Machine learning in orthopedics: a literature review[END_REF]. A right ventricle segmentation approach based on a fivelayer deep convolutional neural network (CNN) is developed by Luo et al [START_REF] Luo | A deep learning network for right ventricle segmentation in shortaxis MRI[END_REF]. For proper segmentation and better extraction of the pixel mask, a region of interest (ROI) localization task is performed. This approach is trained and evaluated using the basis offered by the MICCAI 2012 challenge. 16 patients were used for training and 32 patients for the resulting evaluation. Using DM and HD, including clinical parameters, we notice a low correlation obtained for systolic volume versus epicardium. Therefore, it can be concluded that the segmentation method presented in this article shows that the segmentation process of the endocardium is more efficient than in the epicardium. "Ronneberger et al" developed an alternative architecture to the FCN architecture called "U-Net" which is mainly developed for segmentation in biomedical imaging [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. It is composed of two main branches "encoder" or "contraction path" and "decoder" or "expansion path". This U-Net is characterized by a large number of filters. A modified U-Net approach is proposed by Nagaraj V. et al in 2021 for automatic RV segmentation. [START_REF] Huang | Densely connected convolutional networks[END_REF]. This architecture is defined by dense blocks. Each layer in a dense block receives feature maps from all previous layers and passes its output to all subsequent layers. The feature maps received from other layers are merged by concatenation. Due to the dense connections, the model requires fewer layers because it doesn't need to learn from duplicate maps, allowing the reuse of collective knowledge. The feature dimensions remain the same in a dense block. To prevent the network to become too large, a 1x1 convolutional bottleneck layer to reduce the number of feature maps before the costly 3x3 convolution is used. Zhao et al. proposed a Dilated-DenseNet architecture for VR segmentation. This method combines the DenseNet architecture with dilated convolution. An increase to the receiver field of the convolution kernel is guaranteed by the dilated convolution while keeping the number of parameters unchanged. For the test set, the DC metric gives a value of 0.90. Therefore, the suggested method is an important efficiency for VR segmentation [START_REF] Xingrong | Segmentation of right ventricular MR image based on deep neural network: Dilated DenseNet of two level losses[END_REF].

Methodology

DataSet

Until now, the ground truth of public RV sets is still poorly available to assist us in solving variable shape problems. During RV segmentation learning, we need large labeled images, while the available datasets are still limited, as well as it requires several processing steps and data augmentation to become usable. That's why we propose a private database in collaboration with the hospital Fattouma Bourguiba Monastir, Tunis. The following presents an explanation involved steps in preparing a new right ventricle data set. In clinical routine, cardiac MRI (cMRI) is currently applied due to its high spatial resolution (which is important for morphological assessment of small structures) and high temporal resolution (which is necessary to assess motion). The cMRI modality initiates a sequence of slices to specify standard planes. They are mainly three in total: long-axis 4 cavity slice, long-axis 2 cavity slice, and short-axis slice. The short axis slice is essential to offer an excellent view of both ventricles left and right. This view is specified by the perpendicular plane of the long-axis view of the heart and the axis that aligns the heart from the base to the apex [START_REF]Cardiac MRI -Short Axis Ventricle View | Atlas of Human Cardiac Anatomy[END_REF], as illustrated in fig. 1.

Figure 2 illustrates the 3 spatial fractions of the cardiac ventricles for the short-axis slice. The upper part of the ventricle is called the basal slices. It extends to the valvular plane. The middle part is called the central slices. The visualization of the chambers is the greatest. The lower part is referred to by apical slices. For this region, the cavities are little or not observed. Two basic phases are present in a cardiac cycle: the systole phase, the phase of myocardial contraction, and pressure for blood ejection. The diastole phase, or grand silence, is the relaxation phase allowing entry into the heart chamber. Systolic slices are smaller than diastolic slices because of the ejection of blood during this phase. An example that illustrates this is exposed in figure 2 for the central slice. The dataset consists of 300 MRI scans acquired from healthy subjects and pathological patients. The various cardiovascular diseases included in this dataset are hypertrophic cardiomyopathy, dilated cardiomyopathy, coronary artery disease, abnormal right ventricle, myocarditis, and ischemic cardiomyopathy. The acquisition is done at the CHU Fattouma Bourguiba Hospital (Monastir, Tunisia) using 1.5T MRI scanners. The parameters are set by the SSFP cine-MRI for the image sequences and a thickness of the slices between 7 mm and 10 mm. To cover the entire heart, the cardiac MRI includes approximately 360 to 420 images for each patient. A black slice removal step is established to obtain between 12 and 36 slices for each subject during the ES and ED phases. In the end, we obtain a total of 6470 slices. Under the supervision of two experts, manual annotation of the VR dataset is performed using the ImageJ segmentation tool [START_REF] Grünberg | Annotating medical image data[END_REF]. ImageJ has several segmentation algorithms based on intensity thresholds. The steps required to obtain the VR annotation using the ImageJ segmentation tool are described in Figure 3. First, we begin by importing the slices as an "image sequence". Next, we delete the exterior. Next, the thresholding step is controlled by adjusting the "contrast" and "brightness". Finally, the recording is done as sequential images. Currently, the labeled data are ready. For the evaluation of our model, we randomly divide the data set into 80% for training, 10% for validation, and 10% for testing. This proposal provides 5176 images for the train, 647 slices for the test and validation sets.

Fig 3. Descriptive diagram of the RV annotation steps using ImageJ

To validate our proposed methods, we used another database "Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI (M&Ms-2)" provided by "MICCAI2021" challenge. The public database used consists of 160 patients with 3554 slices. The annotation of the slices integrates RV, LV, and LV myocardium. In addition, we randomly split our data into 80% for training, 10% for validation and 10% for testing. 355 slices are selected for each test and validation set. 2844 images are left for the training set.

Preprocessing

Due to the large variety of data, some preprocessing techniques are applied. Firstly, for private data sets, all the images are cropped to obtain a square image. Then, a resizing step to 384*384 is performed. Moreover, we apply a normalization technique to solve the problem of large pixel intensity plagiarism. Before the learning process, a Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to ensure a better contrast of the images.

For the M&M dataset, we start the preprocessing task by applying a binarization algorithm to remove the ground truth of LV and myocardium. Subsequently, we cropped all slices and also we resized them to 256*256. Lastly, we have realized the CLAHE method.

Data augmentation

The private dataset is considerably large, as it contains healthy patients and patients with various cardiovascular diseases. For this reason, the data augmentation technique is not employed. However, the number of annotated slices for the public dataset is limited. To avoid overfitting during learning process of the Convolutional Neural Network, we implement translations, random rotations, zooms, and horizontal and vertical Random Flip. After data augmentation process, 5688 slices are used to train our model.

Inter-expert similarity

The assessment of the RV is a difficult task because of its complex and variable shape.

Even the segmentation of the same patient by two different experts may be inconsistent. Therefore, we propose an inter-expert comparative study for a pathological patient and a healthy volunteer from our private dataset. This task is guided by three different experts from our original university hospital. Two metrics are used for the inter-expert similarity evaluation. The first metric provides an overlap measure named "Dice coefficient" which quantifies the similarity between two binary regions. The results are between 0 and 1. Values near 1 are the best [START_REF] Shamir | Continuous dice coefficient: a method for evaluating probabilistic segmentations[END_REF], presented by formula 1. In addition, the second expression, the MSE (mean squared error), is used to measure the variability. This evaluation metric depends on the predicted variable. The evaluation results vary between 0 and 1. The value around 0 is the most favorable, illustrated by Equation 2.

𝐷𝐶 = 2|𝐴∩𝐵| |𝐴|+|𝐵| (1) 𝑀𝑆𝐸(𝑈, 𝑉) = 1 𝑛 * ∑ (𝑈 𝑖 -𝑉 𝑖 ) 2 𝑛 𝑖=1 (2) 
The table below includes a comparison of the manual segmentation results between our experts. The significant variation between the results is noticeable. The assessment metrics show that the variance is higher for the healthy patient than for the pathological patient. For example, the average MSE for a healthy patient is equal to 0.002 while for a pathological patient is equal to 0.012. Also, the dice value varies between 0.82 and 0.86 for the pathological patient. However, between 0.87 and 0.90 for the healthy patient. 

Algorithm

In this section, we suggested an extended U-Net model in order to reduce the number of parameters while guaranteeing better accuracy. We illustrate the adopted U-Net model in Figure 4.

As presented in figure 4, our modified U-Net architecture consists of 4 encoder blocks, one base block, and 4 decoder blocks [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. Each encoder block consists of a convolution with a 5×5 kernel, a BatchNormalization layer, and the ReLu activation function. This block is repeated two times. The number of filters is reduced from 64 to 32 for the first encoder block. For each encoder block, the number of filters is duplicated by reducing the image size to half using maxPooling convolution. Then the base block consists of only two conv2D blocks, a BatchNormalization and the ReLu function. For the decoder blocks, we applied a Conv2DTranspose layer with a stride of 2, weights of 1, and kernel size equal to 2. This convolution is performed for oversampling, Also for multiplying the kernel with the pixel values of the image based on the stride in order to double the number of features. The size of the output image depends to the stride size. A very important concatenation step specific only to the U-Net model to make the semantic segmentation applicable. The encoder output convolution block is the one that will be concatenated with the output of the decoder block in order to obtain the context of the different levels. Finally, the block consisting of conv2D, BatchNormalization, and the ReLu function is repeated twice. After several iterations, the best hyper-parameters for learning our model are set to an Adam optimizer with a Learning Rate of 0.001 using an automatic reduction for the Learning Rate of a constant factor of 0.5 to 1e-7 for all epochs.

Result

To evaluate applied architectures, we adopted the Keras library and the Tensorflow backend which are commonly used for Deep Learning. Nvidia GeForce RTX 3090 Graphics Processing Unit (GPU) with 24GB memory is used for powerful data computation acceleration. Python environment is used on Windows 11th generation with 32Gb of RAM with the Intel® core i9 processor. As evaluation metrics, we applied the same techniques used for manual segmentation. As well as the accuracy and precision metrics. Equations 3 and 4 were employed for the measurement of these metrics. Table 2 shows test results obtained for the 3 models using private and public datasets. The same preprocessing, batchSize, number of epochs, as well as the same hyperparameters, loss function, and Learning Rate, were used for training all models. According to the table above, all the evaluation metrics used show that the best results are given by our model. Using our modified U-Net model, the values of DM, and MSE metrics are respectively 0.903, 0.0017 for the private dataset, and 0.894, 0.0019 for the public dataset. Figures 5 and6 displays the DC and MSE graphs of our model for the evaluation and validation sets using private and public datasets. We notice a remarkable stability during learning and validation phases of the private dataset compared to the training history of the public dataset. The prediction time of segmentation for a single patient is about one minute. But, training a model is a time-consuming step. To test it, we used two identical machines, one with the Windows environment, as described at the beginning of this section. On the second machine, we install the Ubuntu operating system with the same libraries and the same programming language. Table 3 summarizes the results obtained: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁+𝑇𝑃 FN+TN+FP+TP (3) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 FP+TP (4) 

Conclusion

In this paper, we propose a simple and efficient adapted U-Net approach for the segmentation of short-axis MRIs of the RV while ensuring the minimization of model complexity. We evaluate our proposed method on a private basis using 300 MRI scans acquired from healthy and pathological subjects. In order to train our model, we used 5176 slices. 647 slices are used for validation. In addition, 647 slices are employed to test the performance of our architecture. Experimental results show the efficiency of our model compared to other models. As a result, the RV segmentation assessment metrics DC, MSE, and Accuracy were provided respectively 0.903, 0.0017, and 0996 for the private dataset, as well as, these metrics were given respectively 0.894, 0.0019, and 0.995 for the public dataset.

For future work, we will prepare the ground truth of 32 patients with various pathologies to test the segmentation prediction of two databases used on the same set.
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  This approach uses only 3 layers for each branch and one layer at the bottom. Dice Metric and Jaccardindex are the two metrics used for the evaluation of this network. The proposed model gives an important accuracy compared to the manual segmentation performed by the expert. A new challenge "Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI (M&Ms-2)" is launched by "MICCAI2021" for the segmen-

	The dataset used for training the model is proposed by the MICCAI'12 challenge. It
	consists of 48 patients (16 for training, 16 for the first test set, and 16 for the second
	test set). 243 slices of size 216 × 256 pixels are retrieved after manual segmentation by
	the doctor of the treatment set. The test sets are unlabeled and consist of 514 images.
	The architecture of this model is slightly rectified compared to the U-Net architecture.

tation of the various cardiac chambers, specifically for the RV

[START_REF] Campello | Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge[END_REF]

. The proposed dataset contains 160 annotated subjects for model training, 40 unannotated patients for the validation set, and 160 subjects for testing. Using these data, M. Saber et al. applied the modified U-Net model. The original resolution of the images is kept. The proposed preprocessing is 15° spatial rotation, normalization, and cropping to make the images square. The model learning time is about 8h using a GTX 1080 TI GPU. DC and HD are applied to evaluate this approach. The results provided are very encouraging. In 2016, "Huang et al." developed the DenseNet approach

Table 1 .

 1 DC and MSE metrics for inter-expert similarity assessment.

		Pathological Patient		Healthy Patient	
	Metrics	DC	MSE	DC	MSE
	Experts				
	Expert 1	0.86	0.003	0.89	0.002
	Expert 2				
	Expert 1	0.85	0.013	0.87	0.003
	Expert 3				
	Expert 2	0.82	0.021	0.90	0.002
	Expert 3				
	Average	0.84	0.012	0.89	0.002

Table 2 .

 2 Various metrics to evaluate models

	Models		Private Dataset			Public Dataset	
		DM	MSE	Acc	DM	MSE	Acc
	U-Net 2015	0.892	0.0021	0.995	0.886	0.0022	0.994
	DenseNet	0.896	0.0018	0.996	0.891	0.0020	0.995
	Our model	0.903	0.0017	0.996	0.894	0.0019	0.995

Table 3 .

 3 Training Time evaluation models using different OS.As shown in table3, for all models, the training time for Ubuntu is faster than for Windows. There is a difference of approximately 5 minutes/hour. This approximate value is impacted by the architecture's complexity. The performance of the Ubuntu OS is noticeable compared to windows in the deep learning field.

	Models	Model Param. (mil)	Training Time using	Training Time using
			Windows OS	Ubuntu OS
	U-Net2015	32	3.36	3.16
	DenseNet	16	4.18	3.49
	Our model	20	3.06	2.51