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ABSTRACT

Multimodal approaches for Earth Observations suffer from
both the lack of interpretability of SAR images and the high
sensitivity to meteorological conditions of optical images.
Translation methods were implemented to solve them for
specific tasks and areas. But these implementations lack of
generalizability as they do not include samples with chal-
lenging characteristics. Firstly, this paper sums up the main
problems that a general SAR to optical image translator
should overcome. Then, a SAR Distorted Image to optical
translator Network (SARDINet) alternating knowledgeable
channel-wise spatial convolutions and cross-channel convo-
lutions is implemented. It aims at solving a problem of major
concern in remote sensing: translating layover disturbed
SAR images into disturbance-free optical ones. SARDINet
is trained through a classical and an adversarial framework
and compared to cGAN and cycleGAN from the literature.
Experimental results prove that adversarial approaches are
more qualitative but worsen quantitative results.

Index Terms— Remote Sensing, Deep learning, Transla-
tor, Multimodal, SAR-Optical

1. INTRODUCTION

Synthetic Aperture Radar (SAR) and optical images have
been widely used for Earth Observation, not only indepen-
dently but especially jointly for their complementary repre-
sentations. In particular, multimodal approaches were ap-
plied for building damage mapping [1]], land cover mapping
[2} 3L 14} 5], change detection [6} [7]] and coarse segmentation
[8]. But, these applications are limited as optical images
are sensitive to meteorology and SAR images are hardly
interpretable for non-experts. To solve it, SAR to optical
translations - or reverse - were implemented and applied
for cloud removal in optical images [5]], for registration im-
provements [9, [10] or for the completion of time series with
missing records in time dependent approaches [11,[12]]. This
paper aims at revealing the major issues that a global SAR to
optical translator should overcome due to SAR particularities.
In addition, a SAR Distorted Image to optical translator Net-
work (SARDINet) trained to solve geometrical distortions is

implemented. Based on images from SpaceNet6 dataset [13]]
it aims at demonstrating that neural networks can tackle SAR
translation limitations.

The paper first introduces related works for SAR to op-
tical translation in Section[2] SAR limitations are developed
in Section 3] and Section [ describes the dataset used to train
SARDINet to correct geometrical effects. The latter is intro-
duced in Section dand conclusions are drawn in Section

2. RELATED WORKS

The introduction of Generative Adversarial Networks (GAN)
[[14] and conditional GAN (cGAN) [[15]] inspired methods for
translating an image from a modality to another. In particular,
pix2pix [L16] removed cGAN'’s dependency to a random vec-
tor and added L1 norm constraint to improve image fidelity.
On the other hand, [17] introduced cycleGAN designed in two
parallel cGANSs learning respectively the direct and reciprocal
translation based on the cycle consistency loss calculated be-
tween the input and the back and forth translated image.

cGAN and cycleGAN were of particular interest in re-
mote sensing domain for SAR to optical and reverse transla-
tions. For instance, cGAN architectures [16] were used by [5]]
for cloud removal in optical images using SAR. [9] and [10]
learnt optical to SAR translation to find ground control points
for high precision registration. [11] replaced the U-Net [18]]
generator by a CNN with Residual Blocks [[19] for SAR to op-
tical translation and showed performance improvements with
an adversarial training. [20] introduced two discriminators
to respectively improve image fidelity and global brightness,
contrast and colors. [21] set in place an additional constraint
based on Structural Similarity. [22]] modified the architecture
to enhance contour sharpness and improve texture generation.
They also calculated a chromatic loss for color fidelity im-
provements. [23] evaluated image quality on Discrete Cosine
Transforms and on features extracted by an aside network to
improve spectral and feature consistencies.

For unsupervised trainings, most of networks are based on
cycleGAN architecture [17]. Authors of [8] demonstrated the
possibility to transfer SAR to optical and reverse for urban
areas segmentation on SAR images. [24] improved results by
including Residual Blocks [19] in the generator. Similarly,
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authors from [25]] introduced cascaded-residual connections
between the input and each U-Net [18]] deconvolution stage
to reach a more qualitative high resolution translated image.

Several works intended to improve translation results us-
ing images from the past. In [11], a cGAN like network was
designed to take as input a past SAR-optical pair and the SAR
image to be translated. They showed significant improve-
ments in comparison with their mono-temporal equivalent.
[12] used an additional encoder network to extract features
from past images. These features acted as masks used to con-
dition the behaviour of the generator encoder to focus on ar-
eas of interest. They also shown that an adversarial training
increased qualitative results but decreased quantitative ones.

Indeed, adversarial trainings are not necessary to get
strong results. Given a pre- and a post-event image from
different modalities, [6] used reciprocal translation to de-
tect changes (e.g. floods, forest fires,...). They designed a
cyclic but non adversarial network and forced latent spaces
alignment with a specific loss. An improved version [7] de-
scribed Ace-Net and included a discriminator at latent space
level. Another representation learning framework has been
detailed in [26] for a classification task. They learnt a com-
mon representation by extracting modality specific features
with encoders and projecting one feature space to the other
using an additional network.

3. CHALLENGING SAR IMAGE PROPERTIES

The lack of interpretability of SAR images and the high sensi-
tivity to meteorological conditions of optical images encour-
age to focus on SAR to optical translation. This section dis-
cusses the main characteristics of SAR imagery that can lead
to intricacy in a large-scale translation framework.

3.1. Sensor Characteristics

Whether SAR images are obtained by satellites or airplanes,
both are dependent of the characteristics of the sensor on
board. The wavelength used for the acquisition modulates
the interpretation as a same area is different on X-band or
C-band images (resp. e.g. TerraSAR-X and Sentinel-1). The
pulse bandwidth and the height of the sensor affect image
resolution. The polarization used for emission or reception
(Horizontal or Vertical) also reveals different properties of the
area of interest. Thus, depending on sensor characteristics, an
area can be imaged differently but should be understood as
unique by a general translator framework. Multi-scale [22],
domain adaptation [27] and representation learning [6\ [7| 26|
could be further studied to overcome these issues.

3.2. Geometry of acquisition

Depending on the path followed by the sensor (orbit for satel-
lites), its altitude and its direction (ascending/descending), a

scene can be imaged with a different local incidence angle
(i.e. between the radar line of sight and the vertical at the
pixel location). The wavelength, the resolution and this inci-
dence angle have an impact on the backscattered signal and
especially on the speckle noise (see Section 3.3). In addi-
tion, range sampling of SAR images along the line of sight
is responsible for geometrical distortions: depending on the
slope and incidence angles, areas might be dilated or com-
pressed along the range direction [28]. Furthermore, slopes
oriented towards the sensor appear as brighter areas and the
fold-over (or layover) disturbance occurs when the slope an-
gle is greater than the incidence angle. On the opposite slopes
(oriented backwards the sensor) radar shadows may occur in
areas which are not reached by radar waves. Both phenom-
ena happen when an object is big enough (e.g. buildings or
mountains): the top of the object is imaged before its base re-
sulting in a shift and superposition artefact (layover) whereas
the non-illuminated distances result in dark areas (shadow),
as visible in SAR images of Figure[2]

Previous works are rarely influenced by geometrical dis-
tortions since flat areas are not affected by these phenomena.
But, in the perspective of a general translator, a dataset con-
taining all these challenging perturbations should be acquired
for a relevant training. Section [5]describes the proposed net-
work designed to be robust to geometrical distortions.

3.3. Spatiotemporality

The environment itself can be limiting as the sensor catches
not only the target backscattered signal but also echoes of the
surrounding distributed targets creating the so-called speckle
noise. Its statistical properties are affected by all sensor and
geometry characteristics aforementioned as echoes are linked
to object reflection ability with respect to the recording con-
figuration used. Finally, for time series studies, the delay
between two acquisitions is a major constraint. The shorter
satellite revisit time for now is 6 days for Sentinel-1 (SAR)
and 5 days for Sentinel-2 (optical) delaying the ground truth
correspondence from hours to three days. Depending on the
application and on the imaged scene the delay might not be
short enough. However, while free releases of satellites car-
rying both optical and SAR sensors are unavailable, this tem-
poral constraint cannot be overcome.

4. DATASET USED

The following study is based on the SpaceNet6 multi-sensor
dataset described in [13]] and composed by SAR and RGBNIR
images available at Kaggle repository. SAR data (provided
by Capella Space and Metasensing) were acquired in X-band
by a North- and South-facing airborne sensor over Rotterdam
on August 4'", 2374 and 24" 2019 with a relative off-nadir
look angle ranging from 53.4° to 56.6°. Intensity images are
available at a half-meter spatial resolution in full polarization
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(HH, HV, VH, and VV). The optical data (provided by Maxar
Worldview-2 satellite) are composed by four pan-sharpened
bands corresponding to Blue, Green, Red and Near Infrared
(NIR). These images were acquired on August 315, 2019 at
10:44 am with an off-nadir look angle of 18.4°.

The dataset is further preprocessed to coregister SAR and
RGBNIR images, remove mono-modal views and crop im-
ages to fit 450x900px resulting in 3338 multimodal matching
pairs. For this work, a sub-dataset available at [EEE Dataport
is extracted. It contains 333 images recorded over vertical
cylindrical tanks which create geometrical distortions (both
layover and shadow phenomena). To take the strong dynamic
of SAR images into account, each channel i is thresholded
between [u; — 30, p; + 30;] based on its mean and standard
deviation and normalized between 0 and 1.

5. SAR TO OPTICAL TRANSLATOR

This Section addresses a deep learning disintrication solution
based on a SAR Disturbed Image to optical translator Net-
work (SARDINet) trained on the challenging sub-dataset. Its
architecture is first introduced before presenting the results
for classical and adversarial trainings.

5.1. Architecture
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Fig. 1: Proposed SARDINet architecture. The encoder is divided in
three branches for a multi-scale feature extraction and the decoder
reconstructs optical channels with four independent branches.

The architecture of SARDINet visible in Figure[T|consists
in three main steps : an input conditioning, a multi-scale fea-
ture extractor and a channel-independent reconstruction.

Input conditioning: This encoder first step is used to take
full advantage of the early fusion of the polarizations. Succes-
sive 2D convolutions with Rectified Linear Unit (ReLU) ac-
tivations are implemented to extract the most relevant cross-
channel spatial features and to filter disturbing patterns.

Multi-scale feature extractor: The feature extractor is
divided in three independent branches to extract global, in-
termediate and fine features. Each branch is composed of

a succession of depthwise and pointwise convolutions (dark
green blocks in Figure |1) following Xception architecture
[29]. Depthwise convolutions extract channel specific spatial
features and pointwise convolutions focus on cross-channel
features. The scale of extracted features depends on the depth
of the branch and the subsampling positions - ensured by 2x2
Max Pooling. Features are finally summed to obtain the latent
features of the input image.

Channel-independent reconstructions: The decoder is
composed of four independent branches for channel specific
reconstruction. Each one is composed of three stages of 2x2
spatial upsampling and 2D convolutions demonstrating better
results than transpose convolutions. The resulting images are
concatenated to obtain the final optical image.

5.2. Experimental results
5.2.1. Training parameters

Results described in Section 5.2.2] are obtained with the fol-
lowing configuration. The dataset is divided in 80% training,
10% evaluation and 10% testing - i.e. respectively 266, 33
and 33 images. Mean squared error is calculated as loss func-
tion and an Adam optimizer with a learning rate of 1.1072 is
set for weights optimization. For computing time and mem-
ory issues and to increase dataset variability, five 200x200px
images are randomly extracted from each training at each
epoch which increases the training dataset to 1330 variable
images. The training is performed with a batch size of 32
on a NVIDIA RTX A3000 GPU and computes 100 epochs
within an hour and requires 3GB of memory.

SARDINet is trained for 200 epochs for fair comparison
with pix2pix [16] and cycleGAN [17] available on Github.
The comparisons are based on four metrics : RMSE, MAE
and Structural SIMilarity (SSIM) with a window size of 3 and
11. Those metrics are only calculated on RGB channels as
state of the art methods are limited to three input/output chan-
nels. To measure the impact of an adversarial framework, an
Adversarial (Adv-) SARDINet is trained from scratch with
a discriminator designed as three stages of 2D convolutions
ending by a fully connected and a Softmax layer.

5.2.2. Results

Table [T| compares SARDINet variants with state of the art on
images of size 200x200. Among experienced methods, Table
[ demonstrates that the non-adversarial SARDINet reaches
the best metric results. In contrast, Figure [2 shows that re-
sulting images are blurrier than adversarial approaches but is
better structured which explains the stronger SSIM-3 results
by about 0.06. Similar conclusions can be extracted from the
comparison with Adv-SARDINet as SARDINet quantitative
results are 0.01 and 0.016 better in MAE and RMSE and 0.05
better in terms of SSIM. But when it comes to qualitative re-
sults, adversarial ones are less blurry despite bright artefacts
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(a) SAR Input

(b) Optical GT (c) CycleGAN
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Fig. 2: Qualitative results comparisons of our networks with the state of the art for three testing images. SAR images channels are displayed
as (VV, %(VH+HV), HH) and RGB for optical images.

which appear on the ground. Depending on the application,
one may choose classical or adversarial training. But for most
of remote sensing applications, accurate results are privileged
against good-looking results denoting SARDINet relevancy.

Furthermore, training SARDINet for 200 more epochs
with a learning rate of 1.10~% demonstrates a decrease of
about 0.06 in terms of MAE and RMSE and a SSIM increase
of 0.01 and reach more qualitative results (last column of Fig-
ure[2). It means that the network does not suffer from overfit-
ting and can reach better results with a longer training.

The striking point with the current approach is its struc-
tural similarity fidelity. Indeed, even if adversarial approaches
look better in terms of color transitions, the shapes are de-
formed due to the geometrical distortions in the input SAR
images - a common SAR difficulty which SARDINet is able
to overcome. Further experiments will be conducted to con-
front these conclusions to larger datasets.

6. CONCLUSIONS AND PERSPECTIVES

The paper explored image modality translation for SAR lay-
over decompression issue. The network implemented suc-
cessfully de-distorted SAR characteristics that are so far con-
sidered as unrecoverable with standard SAR processing tech-
niques. Results were quantitatively better than the adversar-
ial frameworks and could still significantly be enhanced. Im-
provements can be reached not only with a longer training or
a further hyperparameter optimization but also by training on
the initial 450x900 images - at the expense of an increased
processing cost. This study is promising for the synthesis of a
general SAR to optical translator. The generalization requires
wider and more challenging training datasets to be relevant.

Network RMSE | MAE | SSIM-3 | SSIM-11
CycleGAN [17] | 0.163 | 0.102 | 0.780 0.800
Pix2pix [16] 0.155 | 0.098 0.79 0.814
SARDINet 0.080 | 0.053 | 0.850 0.813
Adv-SARDINet | 0.096 | 0.063 | 0.802 0.762
SARDINet 400 | 0.074 | 0.046 | 0.860 0.825

Table 1: Quantitative comparison of our methods with the
state of the art. Best 200 epochs results are displayed in bold.
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