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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Abstract13

Temporal variability in plankton community structure and biomass is often driven by14

environmental fluctuations: nutrient supplies, light, stratification and temperature. But15

plankton time series also exhibit variability that is not strongly correlated with key phys-16

ical variables and is distinctly nonlinear in nature. There is evidence, from both labo-17

ratory and modeling studies, that oscillations can arise from ecological interactions alone.18

In the open ocean, it is challenging to establish the roles and relative importance of en-19

vironmental versus intrinsic processes in generating the observed ecological variability.20

To explore this competition, we employ a marine plankton model that supports two mech-21

anisms of intrinsic ecological variability operating at distinct frequencies: predator-prey22

interactions between zooplankton and phytoplankton, with timescales of weeks, and re-23

source competition that occurs with multiple nutrients phytoplankton species, with timescales24

of years. The model is forced by imposing variable nutrient input rates. representing typ-25

ical open ocean situations, with periods ranging from subseasonal to multi-annual. We26

find that intrinsically-driven variability generally persists in the presence of extrinsic forc-27

ing, and that the interaction between the two can produce variability at frequencies that28

are not characteristic of either source. The intrinsic frequencies are found to be even more29

energetic when the extrinsic variability is augmented with stochastic noise. We conclude30

that interactions between intrinsic and extrinsic sources of variability may contribute to31

the wide range of observed frequencies in phytoplankton time series, and may explain32

why it is often difficult to relate planktonic variation to environmental variation alone.33

Plain Language Summary34

Phytoplankton play an important role in the oceanic carbon cycle, and providing35

nutrition to larger species in the oceanic food chain. For these reasons, it is important36

to understand the factors that drive variability in their abundance. There is often an (un-37

derstandable) focus on physical drivers of variability, as phytoplankton are often sub-38

ject to drastic changes in their environment. But phytoplankton communities also grow39

and shrink in size depending on the abundance of predators and the local abundance of40

particular nutrients. We are interested in understanding how environmental and ecolog-41

ical processes interact to shape time fluctuations in phytoplankton communities. By con-42

structing an ecological model and subjecting it to nutrient fluctuations, we find that each43

kind of process leaves a distinct imprint on the emerging ecosystem dynamics. We con-44

clude that one particular factor that influences a phytoplanktonic community will not45

necessarily overwhelm the others, and that there should be an emphasis on tailoring both46

physical and ecosystem models to accurately project changes in the face of climate change.47

1 Introduction48

At any given place in the ocean, phytoplankton exhibit complex changes in biomass49

and community composition over a variety of timescales. It is important to understand50

exactly what drives this natural variability in order to identify any ecological changes51

that may be attributed to anthropogenic factors. Ocean color observations of chlorophyll-52

a — a proxy for phytoplankton biomass — in the epipelagic zone indicate the presence53

of intraseasonal (weeks to months), seasonal, and interannual variability (Behrenfeld et54

al., 2006; Martinez et al., 2009; Resplandy et al., 2009; Vantrepotte & Mélin, 2011; Thoma-55

lla et al., 2011; Demarcq et al., 2012; Mayot et al., 2017; Salgado-Hernanz et al., 2019;56

Keerthi et al., 2020; Huisman et al., 2006). Abundances of phytoplankton functional types57

derived from ocean color remote sensing data suggest that community structure varies58

over a similar range of time scales (Alvain et al., 2008; D’Ovidio et al., 2010; Demarcq59

et al., 2012; Rousseaux & Gregg, 2015; Mayot et al., 2017; Dakos et al., 2009). This broad60

range of observed frequencies in phytoplankton communities is also seen in global bio-61

geochemical models of the ocean (Aumont et al., 2018; Dutkiewicz et al., 2019).62

–2–



manuscript submitted to JGR: Biogeosciences

Many of these patterns of variability can be attributed to specific physical processes63

in their environment. Annual blooms in phytoplankton biomass correlate with a vari-64

ety of seasonal factors (Lévy, 2015) such as the shoaling of the mixed layer (Sverdrup,65

1953), a reduction of turbulent mixing (Huisman et al., 1999), and a shutdown of atmo-66

spheric cooling (Taylor & Ferrari, 2011). Subseasonal variability is associated with basin-67

scale climate modes such as the Madden-Julian oscillation (Resplandy et al., 2009), at-68

mospheric forcing via storms (Fauchereau et al., 2011; Carranza & Gille, 2014) and trop-69

ical cyclones (Menkes et al., 2016), and oceanic mesoscale and submesoscale processes (Mahadevan70

et al., 2012; Lévy et al., 2018; Poggiale et al., 2013; Keerthi et al., 2020). And interan-71

nual oscillations are explained by large-scale climate modes such as the El Niño-Southern72

Oscillation, Pacific Decadal Oscillation, and Atlantic Multidecadal Oscillation (Chavez73

et al., 2011).74

However, there is evidence from laboratory data that variability can also emerge75

from ecological interactions. Predator-prey oscillations between phytoplankton and zoo-76

plankton have been observed to persist in a laboratory environment (Blasius et al., 2019;77

Hastings, 2020). Benincà et al. (2008) conducted a multiyear laboratory mesocosm ex-78

periment where the constituent functional groups fluctuated with periodicities ranging79

from 15 days to 225 days due to various food web interactions. Thus, while physical pro-80

cesses likely explain much of the observed variability in phytoplankton time series, eco-81

logical contributions cannot be entirely discounted.82

Furthermore, observations of phytoplankton variability do not always neatly align83

with that of the dominant physical phenomena. For example, the annual spring bloom84

has wide variations in timing, amplitude, and ecological diversity (Smayda, 1998; Har-85

ris & Baxter, 1996; Talling, 1993). While this variability is often associated with annual86

variations in mixed layer shoaling and a seasonal reduction in turbulence, Dakos et al.87

(2009) have hypothesized — and demonstrated with their own ecosystem model — that88

intrinsic variability can interact with seasonal forcings to produce these interannual vari-89

ations. There is supporting evidence for this hypothesis from empirical dynamical mod-90

eling (EDM) studies that show phytoplankton time series may be generated by dynam-91

ical systems that are inherently nonlinear and even chaotic in nature (Sugihara & May, 1990).92

In an EDM study by Hsieh et al. (2005), the authors demonstrated that time series of93

physical variables such as sea surface temperatures and climate indices in the North Pa-94

cific exhibited linear stochasticity, while ecological variables such as diatoms, fish and95

copepods showed signs of a low-dimensional nonlinearity. This could potentially explain96

why interannual variability can emerge in ecosystems even under seasonal forcings.97

Disentangling the physical (extrinsic) and ecological (intrinsic) drivers of phyto-98

plankton variability is difficult in observational data, but much can be learned from a99

modeling approach. Mayersohn et al. (2021) developed an intermediate-complexity chemostat-100

like ecosystem model with six phytoplankton species, two zooplankton species, and three101

nutrients. In the presence of steady external forcing, the model exhibits two distinct mech-102

anisms of intrinsic variability: oscillations driven by differences in stoichiometry and the103

nutrient uptake curves between competing species (termed R-oscillations), and predator-104

prey interactions between zooplankton and phytoplankton (termed Z-oscillations). R-105

oscillations are characterized by response frequencies on the order of years, and are ex-106

pressed as community structure variability with nearly constant net phytoplankton biomass.107

Z-oscillations occur on faster timescales, of order weeks to months, and generate vari-108

ability in total biomass. When both mechanisms are active and interacting, community109

structure varies as well. Each mechanism can be suppressed (e.g. Z-oscillations can be110

omitted by turning off the zooplankton compartments), and when both are present, the111

response can be broadband and complex, and yet still exhibit a spectral gap between the112

two responses.113

In the present paper, we make use of the same model, and examine how this emerg-114

ing variability is affected when external conditions are varied in time, and consider the115
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following questions: if the system is subjected to time-varying external forcings with dom-116

inant frequencies that differ from the frequencies that emerge from intrinsic processes,117

which frequencies will emerge in the phytoplankton populations? Will the external fre-118

quencies dictate the behavior of the ecosystem and wash away any previously-existing119

intrinsic variability? Will the interactions between the different sources of variability pro-120

duce frequencies that are uncharacteristic of either? Does this potentially explain mis-121

alignments between observed variability in chlorophyll and the dominant physical drivers122

of variability? We consider first periodic external conditions with frequencies ranging from123

days to years, and then explore more realistic external forcings with noise and broad-124

band forcing.125

In section 2, we present and explain the model equations, including the numerical126

model and analysis methods used for our experiments. Section 3 considers the effects of127

single-band periodic forcings, with a range of forcing periods and maximum dilution rates,128

and section 4 considers more realistic broadband, stochastic forcings. Section 5 consid-129

ers the effect of light limitation and nutrient supply, varying together in a manner re-130

flective of an idealized North Atlantic bloom scenario. Section 6 expands upon and sum-131

marizes the results of the aforementioned sections, and suggests some additional lines132

of investigation that could be pursued in future work.133

2 Ecosystem model134

We summarize here our chemostat-like ecosystem model (Mayersohn et al., 2021;135

Mayersohn & Mangolte, 2022), which was developed to have the minimum complexity136

necessary to capture the essence of full fledged biogeochemical components of an Earth137

system model (e.g. PISCES, Aumont et al., 2015), while still being tractable. The model138

includes six phytoplankton species, three small (P s
1 through P s

3 ) and three large (P l
1 through139

P l
3). Two grazers — one microzooplankton (Zs) and one mesozooplankton (Zl) — are140

also included: Zs exclusively consumes small phytoplankton, while Zl is an omnivore141

that consumes Zs and the large phytoplankton. The model includes three dissolved in-142

organic resource compartments Rj , representative of nitrogen (R1, µM N), phosphorus143

(R2, µM PO4), and iron (R3, µM Fe). Phytoplankton and zooplankton compartments144

have units of µM C, with stoichiometric conversions for the phytoplankton compartments145

described in Mayersohn et al. (2021). The model simulates a chemostat setting, where146

each nutrient Rj is relaxed toward its target value Sj at a dilution rate τ that can be147

held constant or varied in time. Phytoplankton and zooplankton are removed from the148

system through natural mortality and also via an outflow at the dilution rate τ . Explicit149

remineralization and gravitational export are omitted. While the model lacks a detri-150

tal compartment, prior studies show that predator-prey cycles can persist in models that151

do have explicit remineralization (Edwards, 2001), and oscillations driven by competi-152

tion for resources have been observed in planktonic mesocosm experiments with heterotrophic153

bacteria (Heerkloss & Klinkenberg, 1998). Thus, we choose to omit a detrital compart-154

ment for simplicity. Phytoplankton mortality is linear, while zooplankton mortality is155

quadratic to parameterize density-dependent losses such as viral infection, as well as un-156

represented trophic levels (Aumont et al., 2015). In most of our experiments light and157

temperature are kept constant in time.158
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The equations are159

dRj

dt
= τ(t) (Sj −Rj)−

3∑
i=1

Cji

[
µs min

j

Rj

Ks
ji +Rj

P s
i + µl min

j

Rj

Kl
ji +Rj

P l
i

]
, (1a)160

dP s
i

dt
= −τ(t)P s

i +

[
µs min

j

Rj

Ks
ji +Rj

−mP − gsZs

KZ + P s
tot

]
P s
i , (1b)161

dP l
i

dt
= −τ(t)P l

i +

[
µl min

j

Rj

Kl
ji +Rj

−mP − glZl

KZ + Zs + P l
tot

]
P l
i , (1c)162

dZs

dt
= −τ(t)Zs +

gsZs

KZ + P s
tot

P s
tot −

[
glZl

KZ + Zs + P l
tot

+mZZ
s

]
Zs, (1d)163

dZl

dt
= −τ(t)Zl +

glZl

KZ + Zs + P l
tot

(
Zs + P l

tot

)
−mZ(Z

l)2, (1e)164

where i, j = 1, 2, 3, and P s,l
tot =

∑3
i=1 P

s,l
i . The values of the model parameters are pre-165

sented in Mayersohn et al. (2021) and repeated in Table 1. The parameters Cji and Ks,l
ji166

denote the stoichiometric composition and nutrient limitation of each phytoplankton with167

respect to nutrient Rj . These parameters control the rate and existence of R-oscillations,168

which we summarize below. The grazing terms, which are proportional to a maximum169

grazing rate gs,l, control the rate and existence of Z-oscillations. Mayersohn et al. (2021)170

uses two configurations for the maximum grazing rate: a weak predation configuration171

(gs, gl = 1.5, 0.5), and a strong predation configuration that scales these values by 1.15.172

In this study, we use the strong predation configuration to explore a full range of dynamic173

possibilities (chaotic interactions were not present in the weak predation configuration).174

Numerical model and analysis method175

All simulations presented are run for 200 years, with each year containing 360 days,176

and the last 150 years of each simulation used for analysis. This long analysis timespan177

is chosen not because of the spinup time (which is typically a few years), but because178

some simulations exhibit periods on the order of decades, or even aperiodic behavior. All179

simulations are integrated in time using the SciPy odeint library (Millman & Aivazis,180

2011), with the model written in Python 3.9.181

In most plots, we consider the total biomass of the six phytoplankton species, and182

the biomass of a single species; because all six phytoplankton species have similar time183

variability, we show results for only one of them, P s
1 . We include the individual phyto-184

plankton because it gives us a sense of how the evolution of an single functional type would185

affect the community composition over time.186

The time-averaged, or global wavelet spectra were computed using the waipy library,187

which relies on the work of Torrence and Compo (1998). We use the Morlet wavelet with188

a wavenumber of 6. The resolved periods of the spectrum (octaves) are represented by189

powers of 2, with 32 suboctaves per octave. In other words, for j = 0, 1, 2, . . . such that190

21+j/32 ≤ 54000,191

Wj = 21+j/32 days. (2)192

This gives us 471 resolved periods TW = {W0, . . . ,W470} (TW will be used from here193

on to refer to periods in the wavelet spectrum.)194

While the continuous wavelet transform results in a function of both time and fre-195

quency, we only use the time-averaged wavelet spectra. We have chosen this method over196

the more common Fourier transform because of the aperiodic nature of the phytoplank-197

ton time series. Fourier spectra tend to be especially broadband and noisy due to the198

wide variety of frequencies present in the ecosystem. In contrast, the global wavelet spec-199

tra are smooth and easier to interpret.200
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Fundamental modes of internal variability201

When τ(t) is held constant Mayersohn et al. (2021) showed that intrinsic variabil-202

ity can occur via two distinct mechanisms:203

R-oscillations: Differences in stoichiometry and nutrient limitation between compet-204

ing species drive an oscillation in a system with at least three nutrients and three205

phytoplankton species (Tilman, 1985; Huisman & Weissing, 1999). Suppose at a206

given time that P1 is most abundant, so that it removes the nutrient for which it207

has the greatest stoichiometric need at the fastest rate. A competitor, say P2, that208

is least limited by this depleted nutrient then grows rapidly, overtaking P1, set-209

ting up an analogous scenario for P3 to invade, and so on, in an endless cycle of210

rock-paper-scissors. With the parameters used in our model, these oscillations tend211

to occur with frequencies on the order of months for the total phytoplankton and212

years for the individual phytoplankton. This oscillation can be suppressed by keep-213

ing only one small and one large species of phytoplankton.214

Z-oscillations: In systems with zooplankton and phytoplankton, predator-prey cycles215

emerge, with or without the presence of multiple nutrients. In our model, micro-216

zooplankton control small phytoplankton from the top down, but are limited in217

growth by mesozooplankton, whereas mesozooplankton graze on large phytoplank-218

ton and are limited only by the quadratic mortality term. Microzooplankton are219

therefore somewhat restricted in growth, typically confined to short bursts follow-220

ing a bloom in their prey. These oscillations are faster than R-oscillations, and typ-221

ically have frequencies on the order of months for both the total and individual222

phytoplankton. This oscillation can be suppressed by omitting the zooplankton223

species.224

To summarize the findings of Mayersohn et al. (2021) and to provide a constant-225

forcing reference case, Figure 1 shows the time variability for the total and individual226

phytoplankton for three cases under constant forcing: R-only, which omits zooplankton227

species to allow only R-oscillations; Z-only, which keeps only one large and one small phy-228

toplankton species, thereby admitting only Z-oscillations; and R+Z, which corresponds229

to the strong predation case in Mayersohn et al. (2021). Panel F of Figure 1, which shows230

the individual phytoplankton P s
1 in the R+Z case, can be seen as a combination of the231

dominant modes of P s
1 exhibited in panels D (R-only) and E (Z-only).232

3 Periodic forcing233

We first consider a range of single-band periodic forcings, imposing sinusoidal vari-234

ation on the dilution rate τ(t), with forcing periods ranging between 10 and 1800 days.235

The periods are chosen in order to cover sub-seasonal nutrient supplies in response to236

events such as storms or eddies, seasonal fluctuations in nutrient delivery due to season-237

ally varying entrainment or upwelling, and interannual fluctuations associated with El238

Niño or the Southern Annular Model. The forcing also varies in maximum amplitude239

to represent different efficiencies in nutrient supplies, and in minimum amplitude to ac-240

count for periods with little or no nutrient supply. The variable dilution rate takes the241

form242

τ(t) =
1

2

[
τmax + τmin + (τmax − τmin) sin

(
2πt

Tfor

)]
, (3)243

where τmin and τmax are the minimum and maximum dilution rates, respectively, and244

Tfor is the forcing period.245

Figure 2 shows the wavelet spectra of the total phytoplankton (A) and an individ-246

ual phytoplankton P s
1 (B) in the R+Z scenario under constant forcing and sinusoidal forc-247

ing periods Tfor = 18, 120, and 1800 days. For the constant forcing scenario, we see two248

dominant subseasonal peaks in the total phytoplankton; these are the Z-oscillations, and249
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most of the variability is contained there. The individual small phytoplankton also ex-250

hibit Z-oscillations in the same frequency range, one of the peaks is more dominant than251

the other. R-oscillations, which appear as a bump at roughly 600 days, are present in252

the individual phytoplankton but not the total. We can clearly see that the individual253

phytoplankton have a much more broadband spectrum than the total, with visible en-254

ergy over a broad range of frequencies. Furthermore, for the individual phytoplankton,255

the constant forcing scenario achieves a maximum value at the longest wavelet (i.e. the256

length of the analysis window), which is strong indicator of aperiodicity in the system.257

In general, the presence of significant broadband low frequency energy in the spectrum258

implies an irregular peak structure in the time series, which is likely chaotic or quasiperi-259

odic.260

When the external variability has a short period of 18 days, the emerging variabil-261

ity in the total phytoplankton occurs on a broad spectrum, with a wide region of low fre-262

quency energy not present in the constant forcing scenario. At 120 days, there is some263

degree of phase locking: the frequency of the forcing is dominant in the emerging phy-264

toplankton spectra for both the total and individual series. At 1800 days, the Z-oscillations265

persist as well in both series. The Z-oscillations exhibit a diminished representation in266

the spectrum as the forcing period increases, but this is an effect of averaging the wavelet267

representation over the time domain to obtain the global wavelet spectrum; the Z-oscillations268

are suppressed whenever the external forcing reaches low values of τ , and the length of269

these oligotrophic time spans increases with the period of the external forcing. But the270

Z-oscillations are still active during the eutrophic (large τ) time spans. Therefore, the271

high frequency variability in both the individual and total phytoplankton is preserved.272

Figure 3 presents stacked wavelet spectra of total phytoplankton (upper row) and273

P s
1 (lower row) for a range of forcing periods Tfor (see caption). The three columns cor-274

respond to R-only (left), Z-only (middle) and R+Z (right) cases. In the R-only case, to-275

tal phytoplankton shows a degree of phase-locking for all forcing periods, indicated by276

the alignment between the wavelet period TW and the forcing period Tfor. For the sce-277

narios with Z-oscillations (panels B and C), the extrinsic forcing begins to have a vis-278

ible impact on the emerging frequencies in total phytoplankton when the forcing period279

exceeds 30 days. But the high-frequency Z-oscillations persist across the full span of forc-280

ing periods. For the R+Z simulations (panel C), the R-oscillations seen in panel A are281

nowhere to be found. This is not surprising, as R-oscillations are primarily fluctuations282

in individual species, while Z-oscillations are biomass fluctuations. In addition, for ex-283

ternal forcings ranging from roughly 10 to 120 days, low frequencies emerge that are not284

characteristic of either the intrinsic or extrinsic sources of variability.285

For the single phytoplankton species P s
1 in the R-only case, the R-oscillations are286

dominant when the forcing frequency is high. Once the forcing period exceeds a thresh-287

old of roughly 200 days, the emerging dominant period of the phytoplankton becomes288

proportional to the forcing period. The forcing period thus controls the rate of species289

succession. When the forcing period exceeds 1000 days, a bifurcation occurs and the emerg-290

ing phytoplankton spectrum develops additional low frequency energy indicative of chaos.291

The Z-only case looks functionally similar to that of the total phytoplankton. For the292

most part, the R+Z case looks like a superposition of the R-only and Z-only cases with293

more broadband low frequency energy emerging across a range of forcing periods. One294

notable exception is for forcing periods that exceed 1000 days. Whereas the R-only case295

in this regime had an emerging band of low frequencies, this is not present in the R+Z296

case. It appears that for low forcing frequencies — lower than the individual phytoplank-297

ton’s R-oscillation frequency — the Z-oscillations do not strongly interact with the R-298

oscillations, and they simply coexist.299

A common theme in most of the above cases is that the effect of the forcing on the300

emerging dynamics depends on how frequency of the forcing compares with those of the301

intrinsic mechanisms. In the Z-only and R+Z cases for the total phytoplankton, there302
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is a significant region of low frequency (interannual) energy whenever the external forc-303

ing oscillates at a frequency similar to the Z-oscillations. When the external forcing is304

slower than the Z-oscillations, the interannual variability is reduced. The same is true305

for the individual species. In the R+Z case, there is a broad region of interannual vari-306

ability when the R-oscillations occur on slower time scales than the forcing. As the forc-307

ing period increases, the R-oscillations begin to follow that of the forcing, and the in-308

terannual variability is reduced. This phenomenon, where phase-locking occurs when the309

external forcing is slower than the intrinsic frequencies, also emerges in much simpler lin-310

ear systems. In Appendix A, we introduce an equation for biomass under sinusoidal forc-311

ing that exhibits this property.312

Figure 4 is similar to Figure 3, but here the forcing period is fixed at 360 days and313

τmax is varied (see caption for details), allowing us to see how emerging frequencies change314

as the system moves from an oligotrophic region, with small annual nutrient pulses, to315

a highly seasonal one, with strong nutrient bursts. For the total phytoplankton (top row),316

we see that while the forcing frequency is dominant for the full range of τmax, one can317

observe the emergence of several regimes from secondary frequencies in the spectra. For318

the R-only case, we see that decreasing τmax to values below 0.01 day−1 leads to the pres-319

ence of energy in interannual wavelet periods. Limiting the nutrient supply leads to longer320

timescales of variability in the total, driven by longer periods of succession between in-321

dividual species (compare panels A and D). For the Z-only case, we can observe that the322

modes associated with Z-oscillations (high-frequencies) shifts towards the forcing frequency323

as τmax decreases; this is due to the weakening of predator-prey cycles when less nutri-324

ent is available in the system to sustain the phytoplankton.325

The same observations about the total phytoplankton are present for the individ-326

ual species P s
1 , but are much more pronounced. The R+Z scenario once again resem-327

bles a superposition of the R-only and Z-only cases, with some additional low frequency328

energy when τmax is sufficiently large. For the R-only case, an increase in τmax leads to329

a stabilization in the dominant period as a multiple of the forcing period, as expected.330

4 Stochastic Forcing331

Here we examine the effects on plankton population variability of more realistic,332

stochastically-varying dilution rates, in three cases where the dominant frequencies are333

(A) mostly seasonal, (B) seasonal mixed with a subseasonal band, and (C) multi-annual.334

We model these forcing scenarios by constructing linear combinations of Gaussian noise,335

centered on various frequencies. In cases A and B, these are added to a weighted sinu-336

soidal annual forcing term. The specific form of the variable dilution rate is337

τ(t) = τmin +
τ̂(t)−mint(τ̂(t))

maxt(τ̂(t))−mint(τ̂(t))
(τmax − τmin) (4)338

where τ̂(t) is a time-series given by339

τ̂(t) = w0 sin

(
2πt

T3

)
+

4∑
i=1

wiηi(t;Ti, Ti+1). (5)340

The forcing periods are {Ti}i=1...5 = {30, 180, 360, 720, 1800} days and ηi(t;Ti, Ti+1)341

is a time-indexed standard normal distribution that is bandpass-filtered between peri-342

ods Ti and Ti+1. The three forcing scenarios are distinguished by their choice of weights343

wi, with344

{wi}i=0...4 =
1

32


{4, 4, 14, 10, 0} A: Mostly seasonal

{2, 10, 16, 4, 0} B: Seasonal with subseasonal band

{0, 0, 0, 8, 24} C: Multiannual.

(6)345
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Note that the weights obey the constraint
∑4

i=0 wi = 1.346

The temporal wavelet spectra of the forcing signals corresponding to cases A through347

C are shown in Figure 5, panels A to C, respectively. The middle and lower rows show348

the stacked wavelet spectra for simulations of the ecosystem model in the R+Z case, sub-349

jected to the three cases of stochastic variability, and for the same range of maximum350

dilution rates used in Figure 4 (see caption for details). Panels D and G of Figure 5 are351

similar to panels C and F of Figure 4, as the forcing contains primarily annual energy.352

In this case, we can see that the emerging frequencies and their dependence on τmax are353

similar, though the different shape of the forcings (one is sinusoidal, while the other is354

a linear combination of bandpass-filtered stochastic terms that are scaled between τmin355

and τmax) introduces some discrepancies in the spectra. In general, for the total phyto-356

plankton, an increase in the τmax leads to an increase in the dominant subseasonal fre-357

quency. Values of τmax less than 0.02 day−1 produce a distinct low frequency oscillation358

whose frequency decreases as τmax decreases.359

For the individual phytoplankton P s
1 , the mostly-annual stochastic case is again360

similar to the annual sinusoidal case, but the dominant frequency tends to vary more smoothly361

with τmax in the stochastic case compared with the sinusoidal case. In the sinusoidal case,362

for τmax > 0.02, the dominant period shifts between harmonics of the forcing period363

as τmax increases. In the stochastic case, the harmonics are still present, but the dom-364

inant period follows a smoother trajectory. The stochastic noise may act as a stabiliz-365

ing factor to reduce the parameter sensitivity, but the two plots tell largely the same story.366

The spectra that emerge in the case with significant annual and subseasonal noise367

are not so different from those in the mostly-annual case. The additional subseasonal368

noise leads to a strengthening of the non-annual frequencies (both the high frequency369

Z-oscillations and the low frequency oscillations that appear for smaller values of τmax).370

But in both cases the same dominant frequencies are active and vary in the same man-371

ner with τmax. As for the multiannual case, the low frequency oscillations seen in the pre-372

vious two cases are present, albeit while sharing considerable overlap with the forcing373

frequencies. The high frequency Z-oscillations remain intact when the nutrient supply374

is sufficient, but these are suppressed for a small enough value of τmax; this represents375

an oligotrophic region with slow changes in nutrient supply, and the zooplankton can-376

not be sustained.377

In all three cases for the individual phytoplankton, the dominant emerging frequency378

follows a curve that increases with τmax and then asymptotes at a wavelet period of roughly379

1000 days. There is also significant energy at the highest wavelet periods, indicative of380

low frequency aperiodicity in the system. In the multiannual case, the dominant curve381

is quite noisy and broadband, especially for values of τmax at or above 0.02 day−1. This382

appears to be driven by interactions between the forcing and R-oscillations, which oc-383

cur on roughly the same timescale. This noise is not present in the mostly-annual case,384

and is present to a much lesser degree in the annual/subseasonal case. The takeaway from385

these results is that both the total and individual phytoplankton in the full R+Z model386

exhibit variability over a consistent set of dominant frequencies in a variety of scenar-387

ios, with and without noise. Furthermore, these emerging frequencies align with the in-388

trinsic mechanisms that generate them — R-oscillations for the individual species, and389

both R- and Z-oscillations for the total. The individual phytoplankton exhibit signifi-390

cant interannual variability in all cases, but the spectrum also greatly depends on the391

on the frequency ranges of the forcings. This implies that the community composition392

can vary strongly year-to-year, but it depends on both the amount of nutrient available393

year-round and the dominant frequencies of this nutrient supply.394
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5 Varying Light395

In the real ocean, light and nutrient supply are often anti-correlated, especially in396

highly seasonal regions such as the North Atlantic. To check the robustness of our re-397

sults, here we present an additional experiment with plankton growth rates limited by398

light, and varying both light and dilution rate in an idealized fashion representative of399

a high-latitude bloom, following the series C simulations of Lévy (2015). The effects of400

light are parameterized by multiplying µs and µl in equations 1a, 1b and 1c by I(t), spec-401

ified as402

I(t) = 0.3 + 0.7
e1−r(t) − 1

e− 1
, where r(t) =


t+60
120 0 ≤ t < 60 days
90−t
30 60 ≤ t < 90 days

0 90 ≤ t < 300 days
t−300
120 300 ≤ t < 360 days

(7)403

is a ramp function that mimics mixed layer deepening and shoaling. The dilution rate404

in this experiment is τ(t) = 0.01 + 0.03r(t).405

Figure 6 shows the forcing structures (panel A) and the individual and total wavelet406

spectra (panel B) for the R+Z case when subjected to the highly seasonal forcing sce-407

nario above. We observe that the high frequency variability seen in the previous simu-408

lations is preserved, for both the individual and total phytoplankton. But the low fre-409

quency, interannual variability is only preserved in the individual species spectra. Ad-410

ditional work should be done to incorporate light as another dimension in parameter space.411

But we expect that the results in this study will translate even to highly seasonal cases412

with variable light.413

6 Discussion and Conclusion414

In this study, we have explored how interactions between extrinsic and intrinsic vari-415

ability might influence the dynamics of a phytoplanktonic ecosystem by using a biogeo-416

chemical model with time-varying forcings. We found that the emerging frequencies in417

the total biomass depend on the timescale of the forcing relative to that of the intrin-418

sic frequency. When the forcing period is on the same order as the intrinsic period, the419

intrinsic frequencies remain dominant. When the forcing period is longer than the in-420

trinsic period, then the ecosystem exhibits stronger phase-locking to this extrinsic pe-421

riod, but typically retains any existing predator-prey cycles. Low-amplitude nutrient fluc-422

tuations tend to produce low frequency variability, especially at the individual level, in-423

dicating slower timescales of community evolution. These observations hold under both424

deterministic and forcings with stochastic noise.425

We can use these results to revisit the questions that posed earlier in the study. First,426

are intrinsic oscillations typically eliminated in the presence of extrinsic variability? Or427

do the frequencies associated with the intrinsic and extrinsic mechanisms coexist? Our428

results primarily support coexistence. Intrinsic variability is typically robust to the ex-429

ternal variability we impose. The exception is under low-amplitude, low-frequency nu-430

trient fluctuations, where phytoplankton are not sustained at sufficient levels of biomass431

to enable predator-prey oscillations. Second, do the interactions between the sources of432

variability produce previously unseen frequencies? Our observation, which is most plainly433

visible from Figure 2, is that extrinsic and intrinsic variability can interact to produce434

strong interannual variability that is uncharacteristic of either component in isolation.435

This happens when the forcing occurs on an intraseasonal-seasonal timescale. This lines436

up with the hypothesis of Dakos et al. (2009) that interannual variability could emerge437

from ecological interactions in diverse communities even under regular (seasonal) forc-438

ing.439
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Our results indicate that intrinsic variability is not necessarily dwarfed by exter-440

nal forcings, and the two may work in concert to produce the wide variety of timescales441

observed in phytoplankton time series. We expect that both regional differences in nu-442

trient availability (in magnitude and frequency of delivery) and ecological community443

structure will play a role in shaping the observed variability in phytoplankton time se-444

ries. This is an important factor to consider when working with climate projection mod-445

els, as climate change will impact sources of variability that are both extrinsic and in-446

trinsic to planktonic communities. Of course, more work needs to be done to better un-447

derstand the interplay between intrinsic and extrinsic variability. In particular, our phys-448

ical framework only includes temporal variations in nutrient supply, without consider-449

ing light or any spatial variability. In Section 5 we demonstrated a short experiment that450

confirms intrinsic variability should persist in the presence of light variations, but much451

more work remains to be done. We hope to introduce a more complex physical model452

in a future study.453

7 Open Research454

The ecosystem model (Mayersohn & Mangolte, 2022) is a modified version of the455

model used in Mayersohn et al. (2021) and is available on Github. It is also archived in456

a Zenodo repository with DOI 10.5281/zenodo.6347768. The waipy wavelet package,457

written by Mabel Calim Costa and inspired by the work of Torrence and Compo (1998),458

is available in a Github repository: https://github.com/mabelcalim/waipy.459
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8 Figures628
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Figure 1. Three cases demonstrating intrinsic oscillations in the total phytoplankton and

an individual small phytoplankton P s
1 : Oscillations generated by competition for resources, or

R-oscillations (R-only); predator-prey oscillations between zooplankton and phytoplankton, or

Z-oscillations (Z-only); and both kinds of oscillations (R+Z). The dilution rate (τ) is set to a

constant value of 0.04 day−1, which is typical of an upwelling region (Messié et al., 2009). The

other parameter values correspond to the strong predation case of Mayersohn et al. (2021).
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Figure 2. Global wavelet spectra of total phytoplankton (top row) and a single species P s
1

(bottom row) for sinusoidally-varying dilution rates, with τmin = 0 day−1, τmax = 0.04 day−1,

and forcing periods Tfor = 18, 120, 1800 days. Also shown is a case with constant dilution rate τ

= 0.04 day−1. Intraseasonal, near-annual, and multiannual variability is indicated by the blue,

green, and yellow shadings, respectively. Wavelet periods to the right of the vertical gray dashed

line fall within the wavelet transform’s “cone of influence”, which means that they are poten-

tially distorted by boundary effects. Curves that achieve their maximum value within the cone

of influence are normalized in two parts — one to the left of the dashed line and the other to the

right — in order to ensure significant emerging periods are not overwhelmed by artifacts of the

transform.
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Figure 3. Wavelet spectra of the total phytoplankton (panels A-C) and individual phyto-

plankton (panels D-F) for forcing periods Tfor ranging across 30 logarithmically-spaced (rounded

to the nearest day) values between 10 days−1 and 1800 days−1, with 10 additional values at key

periods of 30, 90, 120, 180, 270, 360, 540, 720, 1080, and 1440 days. The maximum dilution rate

τmax = 0.04 day−1 and the minimum dilution rate τmin = 0 day−1. Each row represents the nor-

malized wavelet spectrum of a single simulation: the grayscale represents the wavelet amplitude

and the x-axis is the wavelet period. The spectra of these individual simulations are stacked ver-

tically in increasing order of the sweep parameter value. For each value of the sweep parameter,

we normalize the square root of the wavelet spectrum between 0 and 1. The meaning of the verti-

cal gray dashed line is explained in the caption of Figure 2.
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Figure 4. Wavelet spectra of the total phytoplankton (panels A-C) and individual phyto-

plankton (panels D-F) for maximum dilution rates τmax ranging across 40 linearly-spaced values

between 0 day−1 and 0.04 day−1. The forcing period Tfor = 360 days and the minimum dilution

rate τmin = 0 day−1. Each row represents the normalized wavelet spectrum of a single simulation:

the grayscale represents the wavelet amplitude and the x-axis is the wavelet period. The spectra

of these individual simulations are stacked vertically in increasing order of the sweep parameter

value. For each value of the sweep parameter, we normalize the square root of the wavelet spec-

trum between 0 and 1. The meaning of the vertical gray dashed line is explained in the caption

of Figure 2.
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Figure 5. Normalized wavelet spectra for the R+Z ecosystem subjected to stochastically-

generated forcings, with τmin = 0 day−1 and τmax ranging across 40 linearly-spaced values

between 0 day−1 and 0.04 day−1. The top row shows the forcing spectra, which correspond to

predominantly annual (A), strong annual and subseasonal components (B), and predominantly

multiannual (C) frequencies, corresponding to entries in Table 4. The bottom two rows show

normalized spectra of total phytoplankton (D-F) and individual phytoplankton P s
1 (G-I). The

grayscale represents the wavelet amplitude and the x-axis is the wavelet period TW . The spectra

of these individual simulations are stacked vertically in increasing order of the sweep parameter

value. For each value of the sweep parameter, we normalize the square root of the wavelet spec-

trum between 0 and 1. The meaning of the vertical gray dashed line is explained in the caption

of Figure 2.
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Figure 6. Global wavelet spectra of total phytoplankton and individual phytoplankton

biomass (panel B) in a simulated ecosystem in the R+Z scenario, subjected to seasonally-varying

light and nutrient supply (panel A), characteristic of highly seasonal regions such as the North

Atlantic Ocean. The total phytoplankton exhibits a strong annual peak, along with subseasonal

variability typical of Z-oscillations. The interannual component seen for some simulations is not

present. The individual phytoplankton most strongly oscillates at a period three times that of the

annual peak due to the cycle in species composition between blooms. A strong interannual com-

ponent remains, indicating that the addition of seasonality in light still permits chaotic/aperiodic

changes in species composition.
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9 Tables629

Parameter Value Units Description

Sj 18.1, 1.21, 1.21× 10−3 [Rj ] Deep nutrient source values1

µs, µl 0.308, 0.616 day−1 Maximum phytoplankton growth rates2

mP 0.1 day−1 Phytoplankton mortality rate2

rj 0.15, 0.01, 1× 10−5 [Rj ]

µM C
Nutrient : Carbon ratios3

cmin, cmax 0.9, 1.3 Stoichiometric scaling factors
κs
j =

1
4κ

l
j 0.15, 0.01, 1× 10−5 [Rj ] Nutrient uptake half-saturation constants2

kmin, kmax 0.7, 1.1 Nutrient half-saturation scaling factors
gs, gl 1.5, 0.5 day−1 Grazing rates4

KZ 10 µM C Grazing half-saturation constant4

mZ 0.015 (µM C · day)−1 Zooplankton mortality rate5

1 Messié et al. (2009)
2 Follows et al. (2007)
3 r1 = N:C, r2 = PO4:C, r3 = Fe:C (Redfield, 1934)
4 Aumont et al. (2015)
5 Messié and Chavez (2017)

Table 1. Definitions and default values for model parameters. Subscript j = 1,2,3. The nota-

tion [Rj ] means ‘the units of Rj ’, which are [R1] = µM N, [R2] = µM PO4, and

[R3] = µM Fe. References for default values are given where appropriate in footnotes.

Appendix A First-Order Autoregressive Biomass Equation630

We observed in Figure 3 in Section 3 that a bifurcation occurred when the forc-
ing period Tfor began to exceed the dominant intrinsic period in the system. When the
forcing period increased, the emerging wavelet period became locked to that of the forc-
ing. When the forcing period decreased, the intrinsic period dominated the emerging spec-
trum. This relationship can also be found in much simpler linear systems. Consider an
equation for biomass C(t) that responds to external forcing with a fixed response rate
γ. The external forcing Cforcing(t) fluctuates sinusoidally at a frequency f . The optimal
value of C at any given time is Cforcing(t), but C is limited by the rate γ at which it can
respond to this forcing. The equations are

dC

dt
= γ [Cforcing(t)− C] where Cforcing(t) = C0 [1 + sin (ft)]

The solution to this equation is

C =
C0

γ2 + f2

[
γ2(1 + sin(ft))− fγ cos(ft) + f2

]
+A exp(−γt)

where A depends on the initial value of C. The initial condition becomes less relevant631

as t → ∞, and there exist two main outcomes depending on the relative values of γ and632

f :633

1. If f ≫ γ, C cannot respond quickly enough to the fluctuations, and as f → ∞,634

the solution approaches C0. Thus the external forcing loses its influence if it is too635

fast.636

2. If f ≪ γ, then the solution approaches C0[1 + sin(ft)] = Cforcing(t). In other637

words, the solution phase locks to the external forcing.638

–21–



manuscript submitted to JGR: Biogeosciences

Our ecosystem model contains many additional complexities that are not captured by639

this simple system, but the influence of the forcing period on the emerging wavelet pe-640

riod is captured by this heuristic model.641
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