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Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full
Configuration Interaction Quality
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3)Institut Universitaire de France (IUF), F-75005 Paris, France

We report ground- and excited-state dipole moments and oscillator strengths (computed in different “gauges” or
representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known
as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI). Thanks to a set encompassing 35
ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess
the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we
show that incrementing the excitation degree of the CC expansion (from CCSD to CCSDT or from CCSDT to CCSDTQ)
reduces the average error with respect to the near-FCI reference values by approximately one order of magnitude.
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I. INTRODUCTION

The study of electric dipole moments and oscillator strengths
is a major endeavor in electronic structure theory. The electric
dipole moment is a vector that characterizes the intensity and
the orientation of an electric dipole, and its direction and mag-
nitude are dictated by the distribution of the electric charges.
In a chemical system, it corresponds to the charge distribution
of the electrons and nuclei and is consequently related to its
electronic structure.

From an experimental point of view, the dipole moment is
a physical “signature” of a system in a given electronic state.
Thus, it can be used to characterize unknown species or a
specific isomer.1–3 In addition, the electric dipole moment is
central in spectroscopy. For example, vibrational modes are

a)Electronic mail: yann.damour@irsamc.ups-tlse.fr
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said to be infrared-active if they are accompanied by a change
in the electric dipole moment.4

From a more theoretical point of view, combining dipole
moment and potential energy surfaces allows us to model en-
ergies and intensities of vibrational-rotational transitions, and
is then useful for rovibrational spectroscopy.5–7 Furthermore,
because the dipole moment is intimately linked to the charge
distribution of the system in a given state, it is closely related to
its electronic density and wave function. Consequently, dipole
moments are often considered descriptors of the quality of the
electronic density for both ground and excited states.8,9

Another interesting physical quantity also classified as dipo-
lar is the oscillator strength.10 Because the oscillator strength is
linked to the transition probability between two states (i.e., the
transition dipole moment), it tells us whether or not a transition
is allowed. Indeed, the magnitude of the oscillator strength is
directly connected to the intensity of the peaks in ultraviolet-
visible spectra.

One of the main goals in theoretical quantum chemistry
is to describe accurately the electronic structure of chemical
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systems by solving the Schrödinger equation, which gives
access to experimentally measurable properties such as dipole
moments and oscillator strengths. Unfortunately, an accurate
description of the electronic structure requires one to approach
satisfactorily the solution of the Schrödinger equation through
an appropriate and judicious set of approximations.11–13

The mean-field Hartree-Fock (HF) approximation11 is a rel-
atively cheap method and is the starting point of correlated
treatments in wave function methods. HF is known to produce
reasonably accurate properties but breaks down when corre-
lation effects become predominant. One textbook example is
the ground-state dipole moment of CO which is predicted with
the wrong orientation at the HF level.11,14 This disagreement
disappears when one takes into account correlation effects.
On the opposite side, the full configuration interaction (FCI)
method provides the exact solution of the Schrödinger equa-
tion within a given one-electron basis set, by constructing the
wave function as a linear combination of all possible electronic
configurations.15–19 All these configurations, which can be rep-
resented as Slater determinants, form the so-called Hilbert
space that, unfortunately, grows exponentially fast with the
system size, leading to a prohibitive computational cost for
real-life molecules. Thankfully, between these two extremes,
HF and FCI, a plethora of methods, some with systematic
improvability, have been developed.

To reach FCI from HF, the most natural route is likely to
increase systematically the maximum excitation degree of the
configuration interaction (CI) wave function with respect to
a reference configuration (usually taken as the HF ground-
state determinant). This leads to excitation-based CI which
has polynomial scaling but lacks size extensivity/consistency.
By taking into account all single and double excitations, one
gets CI with singles and doubles (CISD) with a computational
cost scaling as O(N6) (where N is the number of one-electron
basis functions), while adding the triples yields CI with sin-
gles, doubles, and triples (CISDT) scaling as O(N8), and so
on. Alternatively, one can systematically increase the seniority
number (i.e., the number of unpaired electrons) or the hierarchy
parameter (average of the excitation degree and half the se-
niority number).20–22 Unfortunately, all these methods require
considering a huge number of electronic configurations, most
of them contributing very little to the energies and/or properties
of interest.

This suggests the need for a selection of determinants based
on an adequate predetermined criterion to capture effectively
the electronic configurations contributing the most to a given
quantity. The use of such criteria to build CI wave functions is
the central idea of a general class of iterative methods known
as selected CI (SCI), which sparsely explores the Hilbert space
by selecting only the “most important” determinants for a
target property.23–28 In most of them, this iterative selection
process is performed via an energetic perturbative criterion,
and determinants with the largest contributions are added to
the variational space.23–25,29–38 A second-order perturbative
correction (PT2) is usually computed on top of this variational
treatment.30,31,34,37,39–41 The resulting SCI+PT2 methods pro-
vide a much faster energy convergence with the size of the
wave function than standard CI approaches.30,35,39,42–51 Impor-

tantly, as a post-treatment, the SCI+PT2 energy and proper-
ties are usually extrapolated to the FCI limit using various
strategies.42,46,52

Relying on an exponential ansatz of the wave function,
coupled cluster (CC) methods provide an alternative, size-
extensive, and systematically improvable route (with poly-
nomial scaling) to the FCI limit.53–58 Following a similar
philosophy as excitation-based CI, by adding successively
higher excitation levels, one gets CC with singles and dou-
bles (CCSD),59–63 CC with singles, doubles, and triples
(CCSDT),64–67 CC with singles, doubles, triples, and quadru-
ples (CCSDTQ),68–72 with respective computational cost scal-
ing as O(N6), O(N8), and O(N10). Furthermore, each of these
methods can be made cheaper without altering too much their
accuracy via the CCn family of methods: CC2 (N5),73,74 CC3
(N7),75–79 and CC4 (N9).80–83

Excited-state energies and properties can be straightfor-
wardly obtained within the CI formalism by looking for higher
roots of the CI matrix and their corresponding eigenvectors.
Likewise, one can access excited states at the CC level in
the equation-of-motion (EOM)62,66,84–88 or linear-response
(LR)61,86,89–91 frameworks. Although they yield identical ex-
citation energies, the excited-state properties produced by
these two formalisms differ and are only equal when the FCI
limit is reached.57 For the same excitation degree (hence the
same computational scaling), the (non-variational) CC meth-
ods are more accurate than their (variational) CI counterparts
for the computation of ground- and excited-state energies and
properties.71,72,80 This explains why high-order CC methods
have now become the workhorse of electronic structure the-
ory when one is looking for high accuracy. Nonetheless, their
overall accuracy (with respect to FCI) remains very hard to
assess, especially in the case of properties that are usually more
sensitive than excitation energies to the level of theory and the
one-electron basis set.9,92–95

Another feature that makes the calculation of electric (and
magnetic) properties challenging is that there exist two differ-
ent pathways for computing them which only become equiv-
alent in the FCI limit but generally differ for approximate
methods.13,96,97 The first and most natural way consists in cal-
culating the properties as expectation values of the correspond-
ing operator associated with the physical observable of interest.
The second approach, based on the Hellman-Feynman theorem,
requires the derivative of the energy with respect to a given
external perturbation linked to the observable.96,98,99 Impor-
tantly, none of these formalisms can claim to be superior in
general. The energy derivative technique has been first devel-
oped by Pulay in the context of self-consistent field methods,98

followed by others in many-body perturbation theory,96,100–103

CI,104–112 and CC methods.71,113–119 Recently, several groups
have reported the implementation of nuclear gradients (i.e.,
energy derivatives with respect to the nuclear displacements)
for SCI120–122 and related123 methods.

The expectation value route is usually more straightforward
in terms of implementation but one must have access explic-
itly to the wave function and/or to the corresponding reduced
density matrices, which is not always possible. For approxi-
mate wave functions, it has been observed that the derivative
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formalism is likely to lead to more accurate properties because
additional contributions are taken into account.124,125 In this
context, the Lagrangian formalism, developed by Helgaker and
coworkers,97,126–128 provides a rigorous mathematical frame-
work to take into account the variation of the wave function
parameters. For example, taking or not into account the re-
sponse of the orbital coefficients to the external perturbation
leads to the so-called “orbital-relaxed” and “orbital-unrelaxed”
properties.129 The Lagrangian formalism is employed exten-
sively in LR-CC where the relaxation of the ground-state CC
amplitudes is considered, in contrast to the cheaper EOM-CC
method, resulting in size-intensive transition properties.130

Unfortunately, orbital relaxation effects may cause small
discrepancies when employed within the frozen-core approxi-
mation since the orbital response depends on all the orbitals,
even those that are frozen.131 Therefore, within the frozen core
approximation, the orbital-relaxed and orbital-unrelaxed dipole
moments can slightly differ even at the FCI level. This is typ-
ically the case when one considers small molecules with a
significant number of frozen orbitals compared to the number
of active ones.

Another degree of flexibility in the calculation of properties
concerns the “gauges” or, more correctly, representations132

(length, velocity, or mixed) chosen to compute quantities like
the oscillator strength, which are only equal for the exact wave
function, i.e., at the FCI limit and in a complete basis set92,133

(or in the complete basis set limit for approximate methods134

which fulfill the Thomas-Reiche-Kuhn sum rule135–137). Ac-
cordingly, gauge invariance can be employed to evaluate the
degree of completeness of the one-electron basis set.138

The present work reports ground- and excited-state dipole
moments as well as oscillator strengths (computed in different
representations) of FCI quality obtained with the SCI method
known as Configuration Interaction using a Perturbative Selec-
tion made Iteratively (CIPSI)24 for a set of 11 small molecules
extracted from the recent work of Chrayteh et al.139 Thanks
to the high accuracy of the present results, we can systemati-
cally assess the overall accuracy of high-order CC methods for
these properties and validate the quality of the theoretical best
estimates (TBEs) reported in Ref. 139.

At this stage, it is worth mentioning that works on dipole
moments at the SCI level have been previously reported in
the literature. For example, the seminal work of Angeli and
Cimiraglia reports a tailored selection procedure for dipole mo-
ments via a modification of the CIPSI algorithm.27 Although
restricted to small wave functions, these authors achieved a
significant speed-up of the convergence of the latter property
and generalized it to other one-electron properties. On the
other hand, Giner et al. studied the effect of self-consistency
in the context of density-based basis-set corrections94,140–142

on ground-state dipole moments using very accurate CIPSI
calculations.9 Another study worth mentioning is the work
of Eriksen and Gauss143 who reported (transition) dipole mo-
ments of LiH and MgO in large augmented basis sets using
the many-body expanded FCI method144–147 which provides
an interesting alternative to SCI methods.52

Additionally, benchmark studies of wave function and
density-based methods have been reported for both dipole

moments and oscillator strengths. For example, Hait et al. pro-
duced 200 benchmark values of ground-state dipole moments
using CCSD(T) and basis set extrapolation to assess 88 popular
or recently developed exchange-correlation functionals.8 More
recently, Chrayteh et al.139 reported very accurate ground-
and excited-state dipole moments, in addition to oscillator
strengths, using LR-CC up to quintuples and applying basis
set extrapolation for a set of small molecules. In a follow-up
paper, using these reference data, Sarkar et al. reported an
extensive benchmark study of several single-reference wave
function methods and time-dependent density-functional the-
ory for several exchange-correlation functionals.93 The impact
of the representations, the formalism (LR vs EOM), and the
effect of orbital relaxation (relaxed vs unrelaxed) were care-
fully analyzed. Besides these three works focussed on very
accurate values for small molecules, one can also find a large
panel of benchmark studies devoted to larger compounds for
which it is obviously harder to establish indisputable reference
values.129,148–166

The present manuscript is organized as follows. Section
II recalls the working equations of the CIPSI algorithm and
how one computes dipole moments and oscillator strengths at
the SCI level. Section III reports our computational details,
while, in Sec. IV, we discuss the present results and explain
in detail how we reach the FCI limit via tailored extrapolation
procedures. Our conclusions are drawn in Sec. V. Unless
otherwise stated, atomic units are used throughout.

II. THEORY

A. Selected Configuration Interaction

As mentioned above, SCI methods are part of the family
of truncated CI methods. Usually, their energy is defined as
the sum of a variational part and a second-order perturbative
contribution. The definition of each contribution is provided
below.

The (zeroth-order) variational wave function associated with
the kth state (k = 0 being the ground state) is

|Ψvar
k 〉 =

∑
I∈I

cIk |I〉 (1)

where |I〉 are determinants belonging to the internal (or model)
space I. Assuming that it is normalized, this wave function
has the variational energy

Evar
k = 〈Ψvar

k |Ĥ|Ψ
var
k 〉 (2)

where Ĥ is the usual (non-relativistic) molecular Hamiltonian

Ĥ = −
∑

i

∇2
i

2
−
∑

i

∑
A

ZA

|ri − RA|
+
∑
i< j

1
|ri − r j|

+
∑
A<B

ZAZB

|RA − RB|

(3)
and ri is the coordinate of the ith electron while ZA and RA are
the charge and position of the Ath nucleus, respectively. The
associated (first-order) perturbative wave function is

|Ψ
pert
k 〉 =

∑
α∈A

cαk |α〉 (4)
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Initial model space I

Diagonalize Ĥ in I
to get |Ψvar〉 and Evar

Find |α〉 ∈ A such
that 〈Ψvar|Ĥ|α〉 6= 0

Select |α〉’s with largest
|ePT2

α | to form A∗
Compute

EPT2 =
∑

α∈A e
PT2
α

I ← I ∪ A∗ Exit

FIG. 1. Iterative procedure followed by the CIPSI algorithm in the
case of a single-state calculation. See Ref. 167 for a description of
the multi-state version.

where the determinants |α〉, known as perturbers, belong to the
external (or outer) spaceA.

Employing the Epstein-Nesbet partitioning, i.e.,

Ĥ(0) =
∑
IJ

|I〉HIJ 〈J| +
∑
α

|α〉Hαα 〈α| (5a)

Ĥ(1) = Ĥ − Ĥ(0) (5b)

with HIJ = 〈I|Ĥ|J〉 and Hαα = 〈α|Ĥ|α〉, we have
〈Ψvar

k |Ĥ
(1)|Ψvar

k 〉 = 0 and

EPT2
k = 〈Ψ

pert
k |Ĥ

(1)|Ψvar
k 〉 (6)

where the second-order perturbative energy can be conve-
niently recast as

EPT2
k =

∑
α

ePT2
αk =

∑
α

〈α|Ĥ|Ψvar
k 〉

2

Evar
k − Hαα

(7)

The SCI+PT2 energy of the kth excited state is thus given by
the sum Evar

k + EPT2
k . The iterative procedure of the CIPSI

algorithm is schematically represented in Fig. 1 in the case
of a single-state calculation. We refer the interested reader to
Ref. 37 for additional details.

B. Properties as expectation values

Here we follow the approach based on the expectation value
of the corresponding operator to compute properties at the SCI
level.

In the case of a globally neutral system, the dipole operator
is

µ̂ = −
∑

i

ri +
∑

A

ZARA (8)

and the dipole moment computed from the zeroth-order wave
function associated with the kth state is consequently

µk = 〈Ψvar
k |µ̂|Ψ

var
k 〉 = −

∑
i

〈Ψvar
k |ri|Ψ

var
k 〉 +

∑
A

ZARA (9)

while the oscillator strength computed in the so-called length
representation is given by

f L
k =

2∆Evar
k

3
λk · λk (10)

where

λk = −
∑

i

〈Ψvar
0 |ri|Ψ

var
k 〉 (11)

is the transition dipole moment and ∆Evar
k = Evar

k − Evar
0 is

the vertical excitation energy associated with the kth excited
state. It is also possible to compute the oscillator strength in
the velocity representation. In this case, it reads

f V
k =

2
3∆Evar

k
νk · νk (12)

where

νk = −
∑

i

〈Ψvar
0 |pi|Ψ

var
k 〉 (13)

and pi = −i∇i is the momentum operator of electron i. It is also
useful to compute the mixed length-velocity representation

f LV
k = −

2i
3
µk · νk (14)

which does not involve the energy difference between the two
electronic states. The quantities µk, λk, and νk defined in
Eqs. (9), (11), and (13) are easily computed using the Slater-
Condon rules.11,168

For practical purposes, it is convenient to recast Eq. (9) as

µk = −
∑
pq

γk
pq 〈φp|r|φq〉 +

∑
A

ZARA (15)

where

γk
pq = 〈Ψvar

k |â
†
qâp|Ψ

var
k 〉 (16)

are the elements of the one-electron density matrix associ-
ated with the kth state, and â†p (âp) is the second quantization
creation (annihilation) operator that creates (annihilates) an
electron in the spatial orbital φp(r). Similarly, for the oscillator
strengths, νk and λk can be computed with the one-electron
transition density matrix, γ0k, as follows

νk = −
∑
pq

γ0k
pq 〈φp|r|φq〉 (17a)

λk = −
∑
pq

γ0k
pq 〈φp|p|φq〉 (17b)

with

γ0k
pq = 〈Ψvar

0 |a
†
qap|Ψ

var
k 〉 (18)
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B H 1Σ+, 1Π H2C O 1A1, 1A2

Cl H 1Σ+, 1Π H2C S 1A1, 1A2

O
H H

1A1, 1B1, 1A2, 1A1 N
O H

1A′, 1A′′

S
H H

1A1, 1A2, 1B1 F
C

H 1A′, 1A′′

B F 1A1, 1Π H2C Si 1A1, 1A2, 1B2

C O 1Σ+, 1Π

FIG. 2. List of molecules and states studied in the present study.

III. COMPUTATIONAL DETAILS

The molecules and states considered in this paper are rep-
resented in Fig. 2. The geometries (computed at the CC3/aug-
cc-pVTZ level) and the CC results reported here have been
taken from the work of Chrayteh et al.139 All these calculations
have been performed within the frozen (large for third-row
atoms) core approximation with the MRCC software.169 For
the sake of completeness, these geometries as well as the cor-
responding HF energies in the different basis sets are reported
in supporting information.

Concerning the properties, the CC dipole moments have
been computed within the LR formalism and are the so-called
“orbital-relaxed” ones, which are known to be more accurate
as the orbital response is properly taken into account. The SCI
oscillator strengths have been computed in the length, velocity,
and mixed representations, while their CC counterparts are
only available in the length representation. All the SCI+PT2
calculations have been performed with quantum package,37

where the CIPSI algorithm (see Sec. II A) is implemented
and where we have implemented the calculation of dipole
moments and oscillator strengths at the SCI level using the
expectation value formalism presented in Sec. II B. The raw
data associated with each figure and table can be found in
supporting information.

For each system, starting from the HF orbitals, a first multi-
state SCI calculation is performed to generate wave functions
with at least 5 × 106 determinants, or large enough to reach
a PT2 energy smaller than 1 × 10−6 Eh. These wave func-
tions are then used to generate state-averaged natural orbitals.
For the smallest molecules (BH, HCl, H2O, H2S, and BF),
state-averaged optimized orbitals have been computed starting
from these state-averaged natural orbitals via minimization of
the variational energy at each CIPSI iteration until reaching
at least 2 × 105 determinants or an energy gain between two
successive iterations smaller than 1 × 10−6 Eh. More details
about the orbital optimization in SCI can be found in Refs. 48
and 49. For the remaining larger systems, we did not see
any improvement going from natural to optimized orbitals.
Consequently, the calculations on the second set of molecules
have been performed using the state-averaged natural orbitals.
Our goal is to reach a variational space with at least 5 × 107

determinants or large enough to reach a PT2 energy smaller
than 1 × 10−6 Eh. The energies, dipole moments, and oscilla-
tor strengths are computed at each CIPSI iteration using the
variational wave function and are extrapolated to the FCI limit,
i.e., EPT2

k → 0, by fitting a second-degree polynomial using the
last 4 points, i.e., corresponding to the four largest variational
wave functions (see Sec. IV A for additional details about the
extrapolation procedure). We refer to these results as extrapo-
lated FCI (exFCI) values in the following. Note that excitation
energies are computed as differences of extrapolated (total)
energies.42,44,170–175

In the statistical analysis presented below, we report the
usual indicators: the mean signed error (MSE), the mean ab-
solute error (MAE), the root-mean-square error (RMSE), the
standard deviation of the errors (SDE) as well as the largest
positive and negative deviations [Max(+) and Max(−), respec-
tively].

IV. RESULTS AND DISCUSSION

The dipole moments of the 26 states investigated in the
present study alongside the oscillator strengths (in the length,
velocity, and mixed representations) of the 9 dipole-allowed
electronic transitions are listed in Table I. We also report in
parentheses an estimate of the extrapolation error associated
with each value (see below). The TBEs taken from the work
of Chrayteh et al.139 are listed as well.

A. Extrapolation procedure

As discussed above, in the CIPSI method, the wave function
is built iteratively. At each iteration, the determinants with
the largest contributions to the second-order perturbative en-
ergy, |ePT2

α | , are added to the variational space (see Fig. 1). In
practice, we double the size of the variational space at each
iteration and include the additional determinants required to
obtain eigenstates of the Ŝ 2 spin operator.176 As a consequence
of this growth, the variational energy decreases as the number
of iterations increases. This is, of course, not strictly true for
properties that are not directly linked to the variational princi-
ple. However, even if there is no direct relationship between
the quality of the variational energy and a given property, the
important determinants for the description of this property
will eventually enter the variational space as it grows. Conse-
quently, although it is possible to directly select determinants
for a given property as shown by Angeli and coworkers,177

the determinant selection based on an energy criterion is, in
practice, a reasonable and universal way of producing accurate
properties at the SCI level.

To illustrate these points, we report in the left panel of Fig. 3
the evolution of the ground-state variational energy Evar

0 and
the norm of the ground-state dipole moment ‖µ0‖ as functions
of the number of determinants in the variational space for the
BF molecule computed in the aug-cc-pVDZ basis. As one
can see, while Evar

0 decreases monotonically towards the FCI
limit (blue curve), the convergence of ‖µ0‖ (red curve) is more
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TABLE I. Dipole moment of 26 electronic states and oscillator strengths in the length (L), velocity (V), and mixed (LV) representations for the 9
dipole-allowed transitions computed at the exFCI/aug-cc-pVTZ level. The TBEs extracted from the work of Chrayteh et al.139 and computed in
the same basis are also listed. An estimate of the extrapolation error associated with each value is reported in parentheses. V and R stand for
valence and Rydberg excited states, respectively.

exFCI TBE
Molecule Excitation Nature ‖µ‖ f L f V f LV ‖µ‖ f L

BH 1Σ+ 1.408(0) 1.409
1Π V 0.554(0) 0.048(0) 0.057(0) 0.052(0) 0.559 0.048

HCl 1Σ+ 1.084(0) 1.084
1Π V 2.501(0) 0.055(0) 0.054(0) 0.054(0) 2.501 0.055

H2O 1A1 1.840(0) 1.840
1B1(n→ 3s) R 1.558(0) 0.054(0) 0.056(0) 0.055(0) 1.558 0.054
1A2(n→ 3p) R 1.105(1) 1.106
1A1(n→ 3s) R 1.214(1) 0.100(0) 0.102(0) 0.101(0) 1.213 0.100

H2S 1A1 0.977(0) 0.977
1A2(n→ 4p) R 0.499(1) 0.498
1B1(n→ 4s) R 1.866(1) 0.063(0) 0.063(0) 0.063(0) 1.865 0.063

BF 1A1 0.824(1) 0.824
1Π1(σ→ π∗) V 0.294(1) 0.468(0) 0.490(1) 0.479(0) 0.299 0.468

CO 1Σ1 0.116(1) 0.115
1Π1(n→ π∗) V 0.130(0) 0.166(0) 0.173(0) 0.170(1) 0.126 0.166

H2CO 1A1 2.384(5) 2.375
1A2(n→ π∗) V 1.325(2) 1.325

H2CS 1A1 1.695(3) 1.694
1A2(n→ π∗) V 0.839(6) 0.840

HNO 1A′ 1.676(1) 1.674
1A′′(n→ π∗) V 1.675(3) 1.676

FCH 1A′ 1.439(2) 1.438
1A′′ V 0.958(5) 0.006(0) 0.008(0) 0.007(0) 0.964 0.006

H2CSi 1A1 0.137(3) 0.142
1A2 R 1.933(2) 1.924
1B2 R 0.042(1) 0.034(1) 0.032(0) 0.033(0) 0.039 0.034

erratic but ‖µ0‖ eventually stabilizes for large enough wave
functions and converges smoothly to its FCI limiting value.

To have a closer look at the region where one performs
the extrapolation, we have plotted in the right panel of Fig. 3
the evolution of the same quantities (for the same system) as
functions of the second-order perturbative energy E(2)

0 . As
empirically observed, the behavior of Evar

0 for small EPT2
0 is

linear as expected from basic perturbative arguments (see blue
curve in Fig. 3). One can therefore safely extrapolate Evar

0
to EPT2

0 = 0 using the largest variational wave functions (or
equivalently the smallest EPT2

0 values) using a first- or second-
order polynomial in EPT2

0 to estimate the FCI energy. A similar
observation holds for the dipole moment (red curve) but the
corresponding curve shows a significant quadratic character
and the asymptotic regime usually appears for larger wave func-
tions (see below). Nonetheless, we employ the same procedure
as for the energy and estimate the FCI value of the dipole mo-
ment using a quadratic fit in EPT2

0 based on the four largest
variational wave functions. A rough error estimate is provided
by the largest difference in extrapolated values between this
4-point fit and its 3- and 5-point counterparts.

This procedure is performed independently for each elec-
tronic state in the case of the energy and the dipole moment.
For the oscillator strength that is naturally related to the ground
and the target excited state, the extrapolation procedure in-

TABLE II. Dipole moments of the ground-state of H2C –– O obtained
at the exFCI/aug-cc-pVDZ level and the second excited state of H2S
obtained at the exFCI/aug-cc-pVQZ level as functions of the number
of points included in the extrapolation procedure. ∆ is the deviation
to the four-point extrapolation.

Number of H2C –– O H2S
points ‖µ0‖ (D) ∆ (D) ‖µ2‖ (D) ∆ (D)

3 2.3544 0.0004 1.8082 0.0040
4 2.3548 1.8122
5 2.3549 0.0001 1.8210 0.0088

volves a second-order polynomial in the averaged second-order
perturbative energies (EPT2

0 + EPT2
k )/2.

Illustrative examples for dipole moments are reported in
Fig. 4 and the corresponding numerical values are gathered in
Table II. The left panel of Fig. 4 shows a well-behaved case
where the data are fitted quite well by a quadratic polynomial
and the extrapolated value is fairly independent of the number
of points. The right panel shows an ill-behaved case where
our procedure can hardly model the evolution of the dipole
moment and the error is of the order of 0.01 D. Problematic
cases are hard to detect a priori and depend on the selected
system, state, and basis set.
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FIG. 3. Ground-state variational energy Evar
0 of BF (obtained with the aug-cc-pVDZ basis) and its corresponding dipole moment ‖µ0‖ as

functions of the number of determinants in the variational wave function (left) and the second-order perturbative energy EPT2
0 (right).
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FIG. 4. Left: Ground-state dipole moment of H2C –– O (obtained with the aug-cc-pVDZ basis), ‖µ0‖ , as a function of the second-order
perturbative energy EPT2

0 . Right: Second excited-state dipole moment of H2S (obtained with the aug-cc-pVQZ basis), ‖µ2‖ , as a function of the
second-order energy EPT2

2 . The corresponding quadratic fits obtained with 3, 4, and 5 points are also reported. The raw data associated with
these extrapolations can be found in Table II.

Figure 5 reports the oscillator strength between the ground
and first excited states of H2S computed with the aug-cc-pVDZ
basis set, in the length, velocity, and mixed representations.
In the case of oscillator strengths, we also rely on quadratic
fits to estimate the FCI limiting values and the corresponding
fitting errors. The different limiting values reached with the
three representations are clearly visible on the left panel. We
underline that these differences remain fairly small (below 10−3

in this particular case). The right panel shows the extrapolation
(with different numbers of points) of f L

1 as a function of (EPT2
0 +

EPT2
1 )/2.

B. Dipole moments

Our goal is to gauge the quality of the (orbital-relaxed)
dipole moments obtained at various LR-CC levels for our set
of 11 molecules, by comparing them to our near-FCI estimates.
The box plot representations of the error in ground- and excited-
state dipole moments computed at the CCSD (blue), CCSDT
(red), and CCSDTQ (green) levels for all basis sets listed in
the supporting information are represented in Fig. 6. The
corresponding statistical quantities are reported in Table III.
We decided not to report any trends on CCSDTQP as the error
between the latter method and exFCI is of the same order of
magnitude as the extrapolation errors.

Considering both the ground- and excited-state dipoles, the
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FIG. 5. Oscillator strength of H2S for the transition between the ground and lowest excited state (obtained with the aug-cc-pVDZ basis), f1, in
the length (L), velocity (V), and mixed (LV) representations, as a function of the averaged second-order perturbative energies (EPT2

0 + EPT2
1 )/2.

For the length representation, a zoom of the region where the extrapolation is performed is shown in the right panel. The corresponding quadratic
fits obtained with 3, 4, and 5 points are also reported.
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FIG. 6. Box plots of the error in the ground- and excited-state dipole moments (with respect to exFCI) obtained with the CCSD (blue), CCSDT
(red), and CCSDTQ (green) levels for all basis sets listed in the supporting information.

usual trend of systematic improvement is nicely illustrated
with the MAEs going down from 4.5 × 10−2 D for CCSD to
1.8 × 10−3 D for CCSDTQ. The inclusion of triples already
provides an accuracy below 10−2 D (MAE of 9.1 × 10−3 D for
CCSDT), which would be classified as very accurate for most
applications. In other words, going from one excitation degree
to the next one (from CCSD to CCSDT or from CCSDT to
CCSDTQ) reduces most of the statistical indicators by approx-
imately one order of magnitude. The MSEs are positive for
both ground and excited states, meaning that the magnitudes
of the dipole moments tend to be overestimated by LR-CC, at
least for the present set of compounds. In addition, the largest
errors are generally positive and obtained for the excited-state

dipoles. An analysis of the other statistical quantities leads
to similar conclusions. As one notices by comparing the cen-
tral and right panels of Fig. 6, CC methods are more accurate
for ground-state dipole moments than for excited-state ones,
which is expected since the LR (as well as EOM) formalism is
naturally biased towards the ground state.

The exFCI/aug-cc-pVTZ values can also be compared to
the orbital-relaxed TBEs obtained by Chrayteh et al.139 for
the dipole moments computed in the same basis. The differ-
ences between these two sets of accurate data are reported
in Fig. 7 (see Table I for the raw data). Small differences
are observed for BH and BF between the orbital-relaxed and
orbital-unrelaxed dipole moments of the first excited state due
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TABLE III. Statistical measures associated with the errors (with respect to exFCI) of ground-state (GS) and excited-state (ES) dipole moments
computed at the CCSD, CCSDT, and CCSDTQ levels for all basis sets listed in the supporting information.

Statistical quantities (in D)
Method State # states MSE MAE SDE RMSE Max(+) Max(−)
CCSD All 78 1.3 × 10−2 4.5 × 10−2 5.5 × 10−2 5.7 × 10−2 1.5 × 10−1 −1.8 × 10−1

GS 33 2.2 × 10−2 3.8 × 10−2 3.9 × 10−2 4.5 × 10−2 9.8 × 10−2 −6.6 × 10−2

ES 45 6.8 × 10−3 5.0 × 10−2 6.3 × 10−2 6.4 × 10−2 1.5 × 10−1 −1.8 × 10−1

CCSDT All 78 4.5 × 10−3 9.1 × 10−3 1.1 × 10−2 1.2 × 10−2 3.3 × 10−2 −2.8 × 10−2

GS 33 3.7 × 10−3 5.9 × 10−3 7.1 × 10−3 8.1 × 10−3 1.7 × 10−2 −1.2 × 10−2

ES 45 5.2 × 10−3 1.1 × 10−2 1.3 × 10−2 1.4 × 10−2 3.3 × 10−2 −2.8 × 10−2

CCSDTQ All 52 8.9 × 10−4 1.8 × 10−3 2.2 × 10−3 2.4 × 10−3 5.3 × 10−3 −6.3 × 10−3

GS 22 4.0 × 10−4 1.1 × 10−3 1.5 × 10−3 1.5 × 10−3 3.8 × 10−3 −2.9 × 10−3

ES 30 1.3 × 10−3 2.3 × 10−3 2.6 × 10−3 2.9 × 10−3 5.3 × 10−3 −6.3 × 10−3

to the frozen core approximation (see Sec. I).131 For formalde-
hyde, fluorocarbene, and silylidene, the convergence of the
CIPSI calculations for the different states is not completely
satisfactory, leading to larger uncertainties on the exFCI values,
hence explaining the difference with the TBEs. Excluding
these cases, the TBEs are found to be in excellent agreement
with the exFCI results with differences of few mD only.

C. Oscillator strengths

Let us now focus on the performance of CC methods for
oscillator strengths by comparing them to exFCI. The corre-
sponding statistical analysis considering length representation
(for all basis sets listed in the supporting information) can be
found in Table IV. The box plots of the errors associated with
CCSD, CCSDT, and CCSDTQ are represented in Fig. 8.

Concerning the statistics, the results gathered in Table IV
show that the MSEs of the different CC methods are close to
zero, sometimes positive and sometimes negative, meaning
that one cannot conclude if the oscillator strengths tend to be
overestimated or underestimated. Also, similarly to the dipole
moments, going from one excitation degree to the next one
reduces the error and all the statistical quantities by approxi-
mately one order of magnitude (see Fig. 8). Overall, we have
found that the oscillator strengths are easier to converge at the
SCI level than the individual dipole moments. We note that
CCSDT provides a MAE well below 10−3, which is sufficient
for most applications.

Table I reports the oscillator strengths at the exFCI/aug-cc-
pVTZ level in the different representations for the 9 dipole-
allowed transitions considered in the present study. The corre-
sponding TBEs extracted from the work of Chrayteh et al.139

and computed in the length representation are also listed for
comparison purposes. As one would see, there is a perfect
agreement between the two sets of data, which confirms the
quality of the TBEs reported in Ref. 139. In Table I, we also
report the oscillator strengths computed in the velocity and
mixed representations. Except for a few valence transitions,
they do not significantly differ from their length counterparts.
In each case, f LV can be fairly well approximated by the aver-

aged value of f L and f V, as expected from their mathematical
definitions (see Sec. II B).

V. CONCLUDING REMARKS

In this work, we have implemented the computation of the
ground- and excited-state dipole moments, as well as the oscil-
lator strengths, at the SCI level using the expectation value for-
malism. Thanks to an efficient implementation of the SCI+PT2
method known as CIPSI and tailored extrapolation procedures,
we have been able to reach near-FCI accuracy for these prop-
erties in the case of 11 small molecules. In most cases, the
magnitude of the dipole moments was computed with an ac-
curacy of few mD. Similarly, we have reached an accuracy
of the order of 10−4 for the oscillator strengths in the length,
velocity, and mixed representations. Of course, the accuracy
is constrained by the size of the Hilbert space, and reaching
such a level of precision is hence limited to compact systems.
Nevertheless, the principal ambitions of the present work are (i)
to illustrate how one can reach near-FCI quality for electronic
properties with SCI+PT2 methods, and (ii) how they can be
useful to estimate errors in state-of-the-art CC models which
are usually challenging to assess due to the lack of reference
data. The main highlights of the present benchmark are that
CCSDT is accurate enough for most practical applications,
while CCSD produces MAEs of 3.8 × 10−2 D (5.0 × 10−2 D)
and 2.4 × 10−3 for ground-state (excited-state) dipole moments
and oscillator strengths, respectively.

As a perspective, the present strategy could be further im-
proved by taking into account the (perturbative) first-order
wave function in the computation of the expectation values.
This would be particularly useful to tackle larger systems.
Work along these lines is currently in progress in our group.

SUPPORTING INFORMATION

See the supporting information for the raw data associated
with each figure and table, the molecular geometries, and the
Hartree-Fock energies corresponding to the different basis
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FIG. 7. Comparison between the orbital-relaxed TBE dipole moments from Chrayteh et al.139 and the present exFCI values for the 26 states
considered in the present study. The estimated extrapolation error associated with each exFCI value is also reported. All these quantities have
been computed in the aug-cc-pVTZ basis.

TABLE IV. Statistical measures associated with the errors (with respect to exFCI) of the oscillator strengths computed in the length representation
at the CCSD, CCSDT, and CCSDTQ levels for all basis sets listed in the supporting information.

Statistical quantities
Method # states MSE MAE SDE RMSE Max(+) Max(−)
CCSD 27 5.0 × 10−4 2.4 × 10−3 3.2 × 10−3 3.2 × 10−3 7.1 × 10−3 −7.2 × 10−3

CCSDT 27 −1.6 × 10−4 4.1 × 10−4 6.1 × 10−4 6.3 × 10−4 6.8 × 10−4 −1.9 × 10−3

CCSDTQ 18 −4.4 × 10−5 7.0 × 10−5 1.2 × 10−4 1.3 × 10−4 8.9 × 10−5 −3.8 × 10−4
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FIG. 8. Box plots of the error in oscillator strengths (with respect to
exFCI) computed at the CCSD (blue), CCSDT (red), and CCSDTQ
(green) levels for various basis sets.

sets. The dipole moments and oscillator strengths of the 11
molecules are also reported for all levels of theory and basis
sets considered in the manuscript.
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