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ON SDEs FOR BESSEL PROCESSES IN LOW DIMENSION AND

PATH-DEPENDENT EXTENSIONS

ALBERTO OHASHI1, FRANCESCO RUSSO2, AND ALAN TEIXEIRA3

Abstract. The Bessel process in low dimension (0 ≤ δ ≤ 1) is not an Itô process

and it is a semimartingale only in the cases δ = 1 and δ = 0. In this paper we first

characterize it as the unique solution of an SDE with distributional drift or more

precisely its related martingale problem. In a second part, we introduce a suitable

notion of path-dependent Bessel processes and we characterize them as solutions of

path-dependent SDEs with distributional drift.

Key words and phrases. SDEs with distributional drift; Bessel processes; path-

dependent stochastic differential equations.

2020 MSC. 60G99; 60H10.

1. Introduction

The class of Bessel processes is one of the most important classes of diffusion pro-

cesses with values in R+. It is a family of strong Markov processes parameterized by

δ ∈ R+ (called the dimension), which has deep connections with the radial behavior

of the Brownian motion, square-root diffusions, conformally invariant processes, etc.

Bessel processes have been largely investigated in the literature, we refer the reader to

e.g [15, 20, 17] (Section 2.3, Chapter 3 and Chapter XI, respectively) for an overview

on Bessel processes.

Let x0 ≥ 0. We recall that a Bessel process X (with initial condition x0, dimen-

sion δ ≥ 0 and denoted by BESδ(x0)) is defined as the square root of the so-called

squared Bessel process (with initial condition s0 = x2
0, dimension δ ≥ 0 and denoted by

BESQδ(x2
0)), which is characterized as the pathwise unique solution of the SDE

dSt = 2
√

|St|dWt + δt, S0 = x2
0, (1.1)

where W is a standard Brownian motion.

Date: August 10th 2023.
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On SDEs for Bessel Processes in low dimension and path-dependent extensions

When δ > 1 it is possible to characterize X as (pathwise unique non-negative)

solution of

dXt =
δ − 1

2
X−1

t dt+ dWt, (1.2)

where W is again a standard Brownian motion, see for instance Exercise (1.26) of

Chapter IX in [17]. From now on the letter W will always denominate such a process.

In particular X is an Itô process. For 0 ≤ δ ≤ 1, the integral
∫ t

0
X−1

s ds does not

converge and BESδ(x0) is a non-semimartingale process, except for δ = 1 and δ = 0,

see [17, 10], Chapter XI Section 1 and Section 6.1, respectively. If 0 < δ < 1, see for

instance [4] it is known that

Xt = x0 +
δ − 1

2
p.v.

∫ t

0

ds

Xs

ds+Wt, t ≥ 0, (1.3)

where p.v. stands for principal value defined by

p.v.

∫ t

0

ds

Xs

ds :=

∫

R+

(LX
t (a)− LX

t (0))a
δ−2da,

where LX is the local time of X , defined as a density occupation measure. For details,

see e.g. [15].

The drift in decomposition (1.3) is a zero energy additive functional in the language of

Markov processes and BESδ(x0) is a Dirichlet process, i.e. the sum of a local martingale

and a zero quadratic variation process. As a consequence, in the low dimensional

regime, (1.2) does not correctly represent the paths of BESδ(x0). Representation (1.3)

can be interpreted as the Dirichlet process decomposition of BESδ(x0). For further

details, we refer the reader to the works [20, 6, 15] and other references therein.

Typical examples of low-dimensional Bessel processes appear in the theory of Schramm-

Loewner evolution, see e.g. [13]. Two-parameter family of Schramm-Loewner evolution

SLE(κ, κ−4) defined in [12] provides a source of examples of BESδ flows with very sin-

gular behavior when δ = 1− 4
κ
, κ > 4. In fact, the final right-boundary of SLE(κ, κ−4)

processes is described by the excursions of BESδ(x0). We refer the reader to [5] for more

details. We also drive attention to [3] for more recent applications of low-dimensional

Bessel processes starting at the origin.

In this work, we characterize BESδ(x0), for 0 ≤ δ ≤ 1, as the unique solution

of an SDE with distributional drift. The main result of this paper states that one

natural way to investigate the SDE dynamics of low-dimensional Bessel processes is

the interpretation of the singular drift x 7→ 1
x
as the derivative in the sense of Schwartz

distributions of the function x 7→ log|x| rather than principal values via local times. For
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On SDEs for Bessel Processes in low dimension and path-dependent extensions

this purpose, we interpret (1.2) as a strong-martingale problem previously introduced

by [18]. In this case, for 0 ≤ δ ≤ 1, we prove BESδ(x0) is the unique non-negative

solution of a suitable strong-martingale problem starting at x0 ≥ 0. A non-Markovian

extension is also considered for SDEs with singular drifts of the form

δ − 1

2

1

Xt

+ Γ(t, X t),

where Γ is a path-dependent non-anticipative functional satisfying some technical con-

ditions and X t will be given in (2.2). Our analysis is inspired by the series of works

[7, 8, 18] which treat Markovian SDEs of the form

dXt = σ(Xt)dWt + b′(Xt)dt, X0
d
= δx0 , (1.4)

where σ and b are continuous functions on R. Moreover σ is strictly positive and one

supposes the existence of the function

Σ(x) := 2

∫ x

0

b′

σ2
(y)dy, x ∈ R, (1.5)

as a suitable limit via regularization. We stress that b′ is the derivative of some function

b in the sense of distributions. Assuming (1.5), the Markovian operator L is defined

by the authors as

Lf = (eΣf ′)′
e−Σσ2

2
, (1.6)

where f belongs to the domain

DL = {f ∈ C1(R)|f ′eΣ ∈ C1(R)},

see e.g. [7], Section 2 and also [16] Proposition 4.1.

When σ and b′ are functions then previous expression equals

Lf =
σ2

2
f ′′ + b′f ′. (1.7)

In [16], we have studied the class of SDEs

dXt = σ(Xt)dWt + b′(Xt)dt+ Γ(t, X t)dt, X0
d
= δx0 , (1.8)

for some classes of functionals Γ.

In this paper, we will investigate existence and uniqueness of an SDE of the type

(1.8), where σ = 1, but b is no more a continuous function. More precisely, we focus

on the SDE

dXt = dWt + b′(Xt)dt+ Γ(t, X t)dt, X0
d
= δx0 , (1.9)
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where b is given by

b(x) =

{
δ−1
2

log |x|, x ∈ R∗ | δ 6= 1

H(x), x ∈ R | δ = 1,
(1.10)

and H is the Heaviside function and R∗ = R − {0}. Then, (1.3) is considered as a

particular case of the SDE (1.9) with distributional drift b′ and Γ = 0. Even though b

is no longer a continuous function, (1.5) can still be defined in such a way that Σ ≡ 2b

and (1.6) holds. We distinguish the two cases: 0 ≤ δ < 1 and δ = 1.

• 0 ≤ δ < 1. If b is given by (1.10), then (1.5) implies

exp(−Σ(x)) = |x|1−δ. (1.11)

At this point, representation (1.6) for Lδ = L yields

Lδf(x) =
f ′′(x)

2
+

(δ − 1)f ′(x)

2x
, x 6= 0. (1.12)

• δ = 1. In this case, b(x) = H(x). So (1.6) yields

L1f(x) =
f ′′(x)

2
+ δ0f

′(x), x 6= 0, (1.13)

where δ0 is the Dirac measure at zero. Those expressions are perfectly well-

defined for f ∈ DLδ defined in Section 3.2 below. The product δ0f
′ for f ∈ DL

is necessarily zero.

We then study the (possibly non-Markovian) martingale problem associated with

the operator

Lδf = Lδ + Γf ′,

in a suitable domain. The notion of martingale problem related to Lδ is given by

Definition 2.2. The notion of strong martingale problem related to the domain of Lδ

and an underlying Brownian motion W is given by Definition 2.3, which borrows the

one in [18]. It has to be compared with the notion of strong existence and pathwise

uniqueness of an SDE. In particular, it represents the corresponding notion of strong

solution of SDEs in the framework of martingale problems.

Sections 3.2, 3.3, 3.4 present a series of results concerning existence/uniqueness for

the SDE (1.9) in Markovian case, for 0 ≤ δ < 1. In particular, Propositions 3.6 and

3.15 show the low-dimensional Bessel process BESδ(x0) as the unique non-negative

solution of the strong martingale problem associated with Lδ for 0 < δ < 1 and x0 ≥ 0.

A similar discussion concerns the case δ = 1, see Section 3.7, Propositions 3.23 and
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On SDEs for Bessel Processes in low dimension and path-dependent extensions

3.24. We remark that in the case δ = 1, results for pathwise uniqueness, see [9] were

already available in the literature.

In Section 3.5 we connect the martingale problem related to Bessel processes to one

related to an extended domain which includes the harmonic function

h(x) = sign(x)
|x|2−δ

2− δ
, x ∈ R. (1.14)

We also give general conditions on the marginal law of a generic process which is

solution of the basic martingale problem to solve the one with extended domain. This is

fulfilled for instance by the Bessel process with dimension δ > 0. Related considerations

are discussed when δ = 0.

In Section 4, we establish existence and uniqueness of the martingale problem asso-

ciated with the non-Markovian SDE (1.9) under the condition that Γ is bounded; see

Propositions 4.2 and 4.11. Proposition 4.8 proves existence when Γ is unbounded with

some technical conditions. Theorem 4.16 illustrate sufficient conditions on Γ to have

well-posedness of the strong martingale problem.

We highlight that [2] has established uniqueness for (1.3) of non-negative solutions

X , when 0 ≤ δ ≤ 1, under the condition that the solution X spends zero time at the

point zero, i.e.,

E

[ ∫ ∞

0

1{0}(Xs)ds
]
= 0. (1.15)

In contrast to [2] we do not suppose that assumption and we provide uniqueness among

all non-negative solutions.

One important objective of the paper is the definition of path-dependent Bessel pro-

cess. Let δ ≥ 2 be an integer. Similarly to the classical Markovian case with integer

dimension, a path-dependent Bessel type process (as solution of (1.9)) appears consid-

ering the dynamics of a δ-dimensional Brownian motion β with drift having a radial

intensity proportional to a non-anticipative functional Γ.

More precisely, let Y be a solution to

dYt = dβt + Γ(t, ‖Ys‖Rδ , s ≤ t)
Yt

‖Yt‖Rδ

dt, (1.16)

Then Xt := ‖Yt‖Rδ , i.e. the Euclidean norm in Rδ, solves (1.9). Indeed, if Y is a

solution of (1.16), then a formal application of Itô’s formula to ρt := ‖Yt‖2Rδ and Lévy’s

characterization theorem for local martingales show that

dρt = 2
√
ρtdWt + 2

√
ρtΓ(t,

√
ρs, s ≤ t)dt + δdt. (1.17)
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On SDEs for Bessel Processes in low dimension and path-dependent extensions

A subsequent formal application of Itô’s formula shows that Xt =
√
ρt solves (1.9).

Our result concerns the extension of that model to the singular case represented by

δ ∈ [0, 1].

The paper is organized as follows. After this Introduction we recall the notations

and some important results from [16]. Then we introduce specific preliminary con-

siderations. Section 3 is devoted to the case of Bessel processes in low dimension,

under the perspective of strong martingale problems. Section 4 discusses the case of

non-Markovian perturbations of Bessel processes.

2. About path-dependent martingale problems

2.1. Preliminary notations, definitions and results.

In this section we recall the general notation and some necessary results from [16].

Let I be an interval of R. For k ∈ N, Ck(I) will denote the space of real functions

defined on I having continuous derivatives till order k. Such space is endowed with the

uniform convergence topology on compact sets for the functions and all derivatives.

Generally I = R, R+ := [0,+∞[, R− :=]−∞, 0], [0, T ], for some fixed positive real T .

If there is no ambiguity Ck(R) will be simply indicated by Ck. The space of continuous

functions on I will be denoted by C(I). Given an a.e. bounded real function f , |f |∞
will denote the essential supremum.

We recall some notions from [7]. For us all filtrations F fulfill the usual conditions.

When no filtration is specified, we mean the canonical filtration of an underlying pro-

cess. Otherwise, the canonical filtration associated with a process X is denoted by

FX .

A sequence (Xn) of continuous processes indexed by [0, T ] is said to converge u.c.p.

to some process X whenever sup
t∈[0,T ]

|Xn
t −Xt| converges to zero in probability.

We consider a locally bounded functional

Γ : Λ → R, (2.1)

where

Λ := {(s, ηs), s ∈ [0, T ], η ∈ C([0, T ])}

and

ηts =

{
ηs, if s ≤ t

ηt, if s > t.
(2.2)
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By convention, we extend Γ from Λ to [0, T ] × C([0, T ]) by setting (in a non-

anticipating way)

Γ(t, η) := Γ(t, ηt), t ∈ [0, T ], η ∈ C([0, T ]).

All along the paper E will denote R or R+.

Let us consider some locally bounded Borel functions σ, b′ : E → R. In this case the

path-dependent SDE
{

dXt = σ(Xt)dWt + b′(Xt)dt+ Γ(t, X t)dt

X0 = ξ,
(2.3)

for some deterministic initial condition ξ taking values in E, makes perfectly sense, see

Section 5 of [16], in particular one can speak about strong existence, pathwise unique-

ness, existence and uniqueness in law. (2.3) is denominated by E(σ, b′,Γ). Proposition

3.2 in [16] implies the following.

Proposition 2.1. Let b′ : E → R be a locally bounded function. We set Lf = σ2

2
f ′′ +

b′f ′, f ∈ C2(E). A couple (X,P) is a solution of E(σ, b′,Γ), if and only if, under P,

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds−
∫ t

0

f ′(Xs)Γ(s,X
s)ds (2.4)

is a local martingale, where Lf = σ2

2
f ′′ + b′f ′, for every f ∈ C2(E).

In this paper, we will be interested in a formal E(σ, b′,Γ) where σ = 1 but b′ is the

derivative of some specific Borel discontinuous function. The formulation is inspired

by Proposition 2.1 which states that the SDE is equivalent to a specific martingale

problem. We will consider formal PDE operators of the type L : DL(E) ⊂ C1(E) →
C(E), where Lf gives formally σ2

2
f ′′ + b′f ′. When b′, σ are locally bounded functions

then DL(E) = C2(E). In that case, the notion of martingale problem is (since the

works of Stroock and Varadhan [19]) is a concept related to solutions of SDEs in law.

Definition 2.2. (1) We say that a continuous stochastic process X solves (with

respect to a probability P on some measurable space (Ω,F)) the martingale

problem related to

Lf := Lf + Γf ′, (2.5)

with initial condition ν = δx0 , x0 ∈ E, with respect to a domain DL(E) if

M
f
t := f(Xt)− f(x0)−

∫ t

0

Lf(Xs)ds−
∫ t

0

f ′(Xs)Γ(s,X
s)ds, (2.6)

is a P-local martingale for all f ∈ DL(E).

7
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We will also say that the couple (X,P) is a solution of (or (X,P) solves) the

martingale problem with respect to DL(E).

(2) If a solution exists we say that the martingale problem above admits existence.

(3) We say that the martingale problem above admits uniqueness if any two solu-

tions (X i,Pi), i = 1, 2 (on some measurable space (Ω,F)) have the same law.

In the sequel, when the measurable space (Ω,F) is self-explanatory it will be often

omitted.

Below we introduce the analogous notion of strong existence and pathwise uniqueness

for our martingale problem, see also [16] for the case when b′ is the derivative of a

continuous function and [18] for the case Γ = 0. In both cases we had E = R.

Definition 2.3.

(1) Let (Ω,F ,P) be a probability space and let F = (Ft) be the canonical filtration

associated with a fixed Brownian motion W . Let x0 ∈ E. We say that a

continuous F-adapted E-valued process X such that X0 = x0 is a solution to

the strong martingale problem (related to (2.5), σ) with respect to DL(E)

and W (with related filtered probability space), if

f(Xt)− f(x0)−
∫ t

0

Lf(Xs)ds−
∫ t

0

f ′(Xs)Γ(s,X
s)ds =

∫ t

0

f ′(Xs)σ(Xs)dWs, (2.7)

for all f ∈ DL(E).

(2) We say that the martingale problem related to (2.5) and σ with respect to DL(E)

admits strong existence if for every x0 ∈ E, given a filtered probability space

(Ω,F ,P,F), where F = (Ft) is the canonical filtration associated with a Brow-

nian motion W , there is a process X solving the strong martingale problem

(related to (2.5) and σ) with respect to DL(E) and W with X0 = x0.

(3) We say that the martingale problem (related to (2.5)) with respect to DL(E)

admits pathwise uniqueness if given (Ω,F ,P) and a Brownian motion W

and X i, i = 1, 2 are solutions to the strong martingale problem with respect to

DL(E) and W with P[X1
0 = X2

0 ] = 1 then X1 and X2 are indistinguishable.

The mention E will be often omitted when E = R. For instance C1(E), C2(E),DL(E),

will be simply denoted by C1, C2,DL.

3. Martingale problem for Bessel processes

8



On SDEs for Bessel Processes in low dimension and path-dependent extensions

3.1. Preliminary considerations.

In this section, we are going to introduce and investigate well-posedness for a mar-

tingale problem related to a Bessel process. In this section again W will denote a

standard Brownian motion. We recall that the rigorous definition of the Bessel process

is the following. A non-negative process X is said to be a Bessel process starting at

x0 with dimension δ ≥ 0 (notation BESδ (x0)) if S = X2 is a squared Bessel process

starting at s0 = x2
0 of dimension δ. S is denoted by BESQδ (s0) , we recall in particular

that it is the pathwise unique solution of (1.1).

As is shown in Proposition 2.13 in Chapter 5 of [11] (see also [20, Chapter 3]) (1.1)

admits pathwise uniqueness. Since x 7→
√
|x| has linear growth it has weak existence

and so by Yamada-Watanabe theorem it also admits strong existence.

Remark 3.1. For δ > 1, we know that the Bessel process X fulfills

Xt = x0 +
δ − 1

2

∫ t

0

X−1
s ds+Wt. (3.1)

We recall that for δ > 2, X is even transient and it never touches zero, see [17, Chapter

XI]. As anticipated, when δ = 1 or δ = 0 X is still a semimartingale. Unfortunately if

0 < δ < 1 that is no more the case, see Chapter 10 of [15], and X is just a Dirichlet

process, i.e. the sum of a local martingale and a zero quadratic variation process.

Our point of view consists in rewriting (3.1) under the form

Xt = x0 +

∫ t

0

b′(Xs)ds+Wt, (3.2)

where W is a Brownian motion and b′ is the derivative of the function b(x) = δ−1
2

log |x|,
at least when δ < 1. In other words we make use of the ”analytical” p.v. of x 7→ 1

x

which is the derivative of log . That object is, on R, a Schwartz distribution and not a

function, which nevertheless coincides with x 7→ 1
x
on R∗. This indeed explains (3.1)

and takes into account the “relevant” time spent by the Bessel process at zero.

In the case δ = 1, for similar reasons, and taking into account the fact that the

Bessel process is a reflected Brownian motion, we naturally choose b to be a Heaviside

function so that b′ is the δ-Dirac measure at zero.

We are going to construct two settings: one for 0 ≤ δ < 1 and another one for δ = 1.

In what follows, we should recall R∗ = R− {0}.

3.2. The framework for 0 ≤ δ < 1.
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According to the considerations in Section 3.1, the natural form of the operator

Lδ := L (outside zero) is expected to be of the form

Lδf(x) =
f ′′(x)

2
+

(δ − 1)f ′(x)

2x
, (3.3)

for f ∈ C2(R∗).

As anticipated, we fix b : R → R, b(x) = δ−1
2

log |x|, x 6= 0 and σ ≡ 1. x 7→ δ−1
2x

,

appearing in (3.3) coincides with b′ restricted to R∗. Formally speaking, Σ as in (1.5)

gives Σ(x) = 2b(x), so

exp(−Σ(x)) = |x|1−δ, x ∈ R. (3.4)

The expression (3.3) can also be expressed as

Lδf(x) =
|x|1−δ

2
(|x|δ−1f ′)′, x 6= 0. (3.5)

The problem is to provide a natural extension for x = 0, which constitutes the critical

point.

We have now to specify the natural domain of Lδ, in such a way that it is compatible

with (3.5).

Definition 3.2. We will denote by DLδ the set of f ∈ C(R) ∩ C2(R+) ∩ C2(R−) such

that the following holds.

(a) There is a continuous function g : R → R extending x 7→ f ′(x)|x|δ−1, x 6= 0.

(b) There is a continuous function G : R → R, extending x 7→ g′(x)|x|1−δ, x 6= 0,

(i.e. 2Lδf(x), according to (3.5)) to R.

We define then

Lδf :=
G

2
. (3.6)

Proposition 3.3. (1) Suppose δ > 0. Then DLδ = Dδ := {f ∈ C2(R)|f ′(0) = 0}
and

Lδf(x) =

{
f ′′(x)

2
+ (δ−1)f ′(x)

2x
: x 6= 0

δ
f ′′(0)

2
: x = 0.

(3.7)

(2) Suppose δ = 0. Then DL0 = D0, where

D0 := {f ∈ C1(R) ∩ C2(R+) ∩ C2(R−)|f ′(0) = 0} (3.8)

and

L0f(x) =

{
f ′′(x)

2
− f ′(x)

2x
: x 6= 0

0 : x = 0.
(3.9)

10
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Proof. We first show the inclusion DLδ ⊂ Dδ. Suppose f ∈ DLδ . We have

lim
x→0

f ′(x) = lim
x→0

|x|1−δg(x) = 0. (3.10)

This obviously implies that f ∈ C1(R) and f ′(0) = 0. Taking into account (3.3), we

have

f ′′(0+) := lim
x→0+

f ′′(x) = lim
x→0+

(
G(x)− (δ − 1)

f ′(x)

x

)

= G(0)− (δ − 1) lim
x→0+

f ′(x)

x
= G(0)− (δ − 1)f ′′(0+),

f ′′(0−) := lim
x→0−

f ′′(x) = lim
x→0−

(
G(x)− (δ − 1)

f ′(x)

x

)

= G(0)− (δ − 1) lim
x→0−

f ′(x)

x
= G(0)− (δ − 1)f ′′(0−),

by L’Hospital rule. This implies that

δf ′′(0+) = G(0) = δf ′′(0−). (3.11)

To show that f ∈ Dδ, it remains to show that f ′′(0+) = f ′′(0−) when δ 6= 0. This

obviously follows from (3.11), which shows the inclusion DLδ ⊂ Dδ for all δ ∈ [0, 1[.

Now, (3.11), (3.3) and (3.6) show in particular (3.7) and (3.9).

We prove now the opposite inclusion Dδ ⊂ DLδ . Let f ∈ Dδ, in particular such that

f ′(0) = 0. We need to prove that it fulfills the properties (a) and (b) characterizing

DLδ . We set g(x) := f ′(x)|x|δ−1, x 6= 0 and g(0) := 0. By L’Hospital rule we can

show that lim
x→0

g(x) = 0, so that g is continuous at zero. This proves property (a)

characterizing DLδ . Taking the derivative of g on R∗ we get

g′(x) = f ′′(x)|x|δ−1 + (δ − 1)f ′(x) sign(x)|x|δ−2. (3.12)

Concerning property (b), as x 7→ G(x) := g′(x)|x|1−δ is continuous on R∗ it is enough

to show that lim
x→0

G(x) exists. By (3.12) we obtain

G(x) = f ′′(x) + (δ − 1) sign(x)
1

|x|f
′(x) = f ′′(x) + (δ − 1)

f ′(x)

x
, x 6= 0.

We recall that f ′′(0+) and f ′′(0−) exist. Taking the limit when x goes to zero from

the right and from the left, by L’Hospital rule, we get

G(0+) = f ′′(0+) + (δ − 1)f ′′(0+) = δf ′′(0+),

G(0−) = f ′′(0−) + (δ − 1)f ′′(0−) = δf ′′(0−).

11
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Distinguishing the cases δ > 0 (in this case f ′′(0+) = f ′′(0−)) and δ = 0, we show that

G(0+) = G(0−) and finally G extends continuously to 0. This concludes the proof of

the two properties (a) and (b) and so the inclusion Dδ ⊂ DLδ . �

Remark 3.4. In fact one could consider a larger domain D̂Lδ constituted by the func-

tions f ∈ C(R)∩C2(R∗) fulfilling the conditions (a) and (b) before (3.6). Consider for

instance the Lδ-harmonic function h defined in (3.36). That function does not belong to

DLδ because it has no second left and right-derivative in 0, but it is an element of D̂Lδ .

In fact that domain is too large for our purposes of investigation of well-posedness.

Formulating the martingale problem replacing DLδ with D̂Lδ , it will be easier to show

uniqueness, but more difficult to formulate existence. Suppose that (X,P) is a solution

to previous martingale problem, making use of the domain DLδ . The natural question

is to know if (X,P) is still a solution to the martingale problem formulated making use

of D̂Lδ instead of DLδ . This will be possible under a restricting condition on the law of

X, see Section 3.5; this condition will be fulfilled by the Bessel process starting from a

point x0 6= 0 for instance.

In the sequel we will denote by DLδ(R+) the set of functions f : R+ → R which are

restrictions of functions f̂ belonging to DLδ . We recall that, sometimes, we will also

denote DLδ(R) := DLδ . We will also denote Lδf as the restriction to R+ of Lδf̂ . (3.7)

shows that this notation is coherent. This convention will be made also for δ = 1 in

Section 3.7.

Starting from Section 3.3, we will make use of convergence properties for functions

and processes according to the remark below.

Remark 3.5.

(1) If g : R → R is continuous (therefore uniformly continuous on compacts) then

gn(x) = f
(
x+ 1

n

)
converges to g uniformly on compacts.

(2) Let (Ω,F ,P) be a probability space and X a continuous stochastic process on

(Ω,F ,P). If gn : R → R is a sequence of functions that converges uniformly on

compacts of R to a function g then gn(X) converges to g(X) u.c.p.

3.3. The martingale problem in the full line case when 0 ≤ δ < 1.

Proposition 3.6. Let (Ω,F ,P) be a probability space and a Brownian motion W .

Let x0 ≥ 0, 0 ≤ δ < 1. Let S be the solution of (1.1) (necessarily non-negative by

comparison theorem) with s0 = x2
0, so that X =

√
S is a BESδ(x0) process.

12
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Then X solves the strong martingale problem with respect to DLδ and W . In partic-

ular, for every f ∈ DLδ

f(Xt)− f(X0)−
∫ t

0

Lδf(Xs)ds =

∫ t

0

f ′(Xs)dWs. (3.13)

Remark 3.7. (1) Suppose that S is a non-negative solution of an SDE of the type

(1.1), where the Brownian motion W is replaced by a continuous semimartingale

whose martingale component is a Brownian motion. Then (3.13) still holds for

every f ∈ DLδ .

(2) For δ = 0 and x0 = 0, BESQ0(0) is the null process. By Proposition 3.3

L0f(0) = 0 for all f ∈ DL0, obviously f(0)− f(0)−
∫ t

0
Lδf(0)ds ≡ 0 and (3.13)

holds.

Proof (of Proposition 3.6).

We consider immediately the case of Remark 3.7 (1) and suppose W to be a semi-

martingale such that [W ]t ≡ t. Let X =
√
S, where S is a BESQδ(s0), let f ∈ DLδ

and define fn : R+ → R as fn(y) = f
(√

y + 1
n

)
. Clearly fn ∈ C2(R+). Applying Itô’s

formula we have

fn(St) = fn(S0) +

∫ t

0

f ′
(√

Ss +
1
n

)

√
Ss +

1
n

√
SsdWs +

∫ t

0

δ
f ′
(√

Ss +
1
n

)

2
√
Ss +

1
n

ds

+

∫ t

0



1

2
f ′′

(√
Ss +

1

n

)
− 1

2

f ′
(√

Ss +
1
n

)

√
Ss +

1
n



[

Ss

Ss +
1
n

]
ds, (3.14)

which can be rewritten as

fn(St) = fn(S0) +

∫ t

0

f ′
(√

Ss +
1
n

)

√
Ss +

1
n

√
SsdWs +

∫ t

0

1

2
f ′′

(√
Ss +

1

n

)[
Ss

Ss +
1
n

]
ds

+
1

2

∫ t

0

f ′
(√

Ss +
1
n

)

√
Ss +

1
n

[
δ − Ss

Ss +
1
n

]
ds. (3.15)

The first integral converges to
∫ t

0

f ′
(√

Ss

)
dWs, (3.16)

u.c.p. by Remark 3.5, with g = f ′ ∈ C(R+).

13
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Secondly, applying Remark 3.5 with g = f ′′ and, taking into account the fact that
Ss

Ss+
1
n

≤ 1, together with Lebesgue’s dominated convergence theorem, the second inte-

gral in (3.15) converges u.c.p. to

1

2

∫ ·

0

f ′′
(√

Ss

)
ds. (3.17)

We set now ℓ : R+ −→ R, the continuous function defined by

ℓ(x) =

{
f ′(x)
x

: x 6= 0.

f ′′(0+) : x = 0.

The third integral can be rewritten as

1

2

∫ t

0

ℓ

(√
Ss +

1

n

)[
δ − Ss

Ss +
1
n

]
ds.

By Remark 3.5 with g = ℓ and, similarly as above, again Lebesgue’s dominated con-

vergence the previous expression converges u.c.p. to
∫ t

0

ℓ
(√

Ss

)(δ − 1

2

)
ds. (3.18)

Finally (3.16), (3.17) and (3.18) allow to conclude the proof of (3.13). ✷

Corollary 3.8. Let x0 ∈ R, 0 ≤ δ < 1. The martingale problem with respect to DLδ ,

with initial condition X0 = x0 admits strong existence. More precisely we have the

following. If x ≥ 0, we denote by Xx the BESδ(x) process, being the square root of a

solution of (1.1) with s0 = x2.

(1) If x0 ≥ 0, Xx0 solves the strong martingale problem with respect to DLδ and W .

(2) If x0 ≤ 0, −X−x0 solves the same strong martingale problem with respect to

DLδ and −W .

Proof.

Let (Ω,F ,P) be a probability space and a Brownian motion W . We set s0 = x2
0.

We know that (1.1) admits a strong solution S. Then, by Proposition 3.6 X =
√
S is

a solution for the strong martingale problem with respect to DLδ and W with initial

condition |x0|.
So, if x0 ≥ 0 then strong existence is established. If x0 < 0 then we show below that

−X also solves the strong martingale problem with respect to DLδ and −W .

14
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Let f ∈ DLδ . Then obviously f−(x) := f(−x) ∈ DLδ and

Lδf−(x) = Lδf(−x).

Therefore, since X solves the strong martingale problem with respect to DLδ and W ,

for all f ∈ DLδ we have

f−(Xt)− f−(x0)−
∫ t

0

Lf−(Xs)ds =

∫ t

0

f ′
−(Xs)dWs,

which implies

f(−Xt)− f(−x0)−
∫ t

0

Lδf(−Xs)ds =

∫ t

0

f ′(−Xs)d(−W )s.

Thus −X also solves the strong martingale problem with respect to DLδ and −W .

✷

Proposition 3.9. Let us suppose 0 < δ < 1. The martingale problem with respect to

DLδ does not admit (in general) uniqueness in law.

Proof.

Let S be the BESQδ(0). By Corollary 3.8, we know that X+ =
√
S and X− = −

√
S

solve the martingale problem with respect to an underlying probability P.

Obviously X does not have the same law as −X since X is positive and −X is

negative. ✷

Remark 3.10. If the initial condition x0 is different from zero, for instance positive,

then uniqueness also fails since we can exhibit two solutions. The first one is still the

classical Bessel process, the second one behaving as the first one until it reaches zero

and then it behaves like minus a Bessel. We recall that, when δ ≤ 1, the corresponding

Bessel process reaches {0} a.s., see (ii) in the considerations after Corollary (1.4),

Chapter XI in [17].

For proving indeed results for uniqueness, we will need the following.

Proposition 3.11. Let 0 ≤ δ < 1. Let (X,P) be a solution (not necessarily positive) of

the martingale problem with respect to DLδ . Then S = X2 is a squared Bessel process.

Proof.

We first show that

M1
t := X2

t − x2
0 − δt (3.19)
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is a local martingale and

X4
t = x4

0 + 2(2 + δ)

∫ t

0

X2
s ds+M2

t , (3.20)

where M2 is a local martingale. Clearly, f1(x) := x2 ∈ DLδ because f ∈ C2(R) and

f ′
1(0) = 0. By Proposition 3.3 Lδf1(x) ≡ δ, which shows (3.19). On the other hand,

obviously f2(x) := x4 ∈ DLδ and then, by Proposition 3.3, Lδf2(x) = 2(2 + δ)x2, so

(3.20) follows. Now, setting S := X2, by integration by parts and using (3.19) we have

[M1]t = [S]t = S2
t − s20 − 2

∫ t

0

SsdSs = X4
t − x4

0 − 2δ

∫ t

0

X2
sds+Mt, (3.21)

where M is a local martingale. This implies

X4
t = x4

0 + 2δ

∫ t

0

X2
sds+ [M1]t −Mt. (3.22)

We remark that (3.22) and (3.20) provide two decompositions of the semimartingale

X4. By uniqueness of the semimartingale decomposition we can identify the bounded

variation component, which implies

[M1]t = 4

∫ t

0

X2
sds, t ∈ [0, T ]. (3.23)

Possibly enlarging the probability space, we consider an independent Brownian motion

W. We define now the process

Wt :=

∫ t

0

1{Xs 6=0}
dM1

s

2|Xs|
+

∫ t

0

1{Xs=0}dWs, t ≥ 0.

W is a Brownian motion taking into account the fact that [W ]t ≡ t together with Lévy’s

characterization of Brownian motion. At this point we define M̃1 = 2
∫ ·

0
|Xs|dWs. We

get

M̃1
t = 2

∫ t

0

1{Xs 6=0}|Xs|dWs =

∫ t

0

1{Xs 6=0}|Xs|
1

|Xs|
dM1

s

=

∫ t

0

1{Xs 6=0}dM
1
s .

This yields

[M̃1 −M1]t =

∫ t

0

1{Xs=0}d[M
1]s = 4

∫ t

0

X2
s1{Xs=0}ds = 0, t ≥ 0,

Consequently M1 = M̃1, hence, (3.19) yields that the process S is a (weak) solution

of the SDE

dSs = δds+ 2
√

|Ss|dWs, (3.24)
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which shows that S is a BESQδ(s0), s0 = x2
0.

✷

Proposition 3.9 shows that no uniqueness on the real line holds when δ > 0. Sur-

prisingly, if δ = 0 then uniqueness holds.

Remark 3.12. Suppose δ = 0.

(1) Assume x0 = 0. By Proposition 3.11 if (X,P) is a solution of the martingale

problem, then X2 is (under P) a BESQ0(0) which is the null process; this fact

shows uniqueness.

(2) Suppose x0 different from zero (for instance strictly positive). If (X,P) is a

solution to the strong martingale problem, then, by Proposition 3.11, under P,

S := X2 is a BESQ0(x2
0).

In particular S is a solution of (1.1) with respect to some suitable Brownian

motion W . Then, the strong Markov property shows that, whenever S reaches

zero it is forced to remain there.

At the level of strong martingale problem we have the following.

Proposition 3.13. Let 0 ≤ δ < 1. Let X be a non-negative solution to the strong

martingale problem with respect to DLδ , σ and a Brownian motion W . Then S = X2

is a solution to (1.1).

Proof.

Let us suppose that X is a solution of the strong martingale problem with respect

to DLδ and a Brownian motion W. Setting S := X2 and applying (2.7) with f1(x) = x2

we get

St = s0 + 2

∫ t

0

√
|Ss|dWs + δt, t ∈ [0, T ],

with s0 = x2
0. ✷

3.4. The martingale problem in the R+-case.

We remain still with the case 0 ≤ δ < 1. Let (Ω,F ,P) be a probability space and a

Brownian motion W . We will be interested in non-negative solutions X for the strong

martingale problem with respect to DLδ(R+) and W , which means that

f(Xt)− f(X0)−
∫ t

0

Lδf(Xs)ds =

∫ t

0

f ′(Xs)dWs, (3.25)
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for all f ∈ DLδ(R+). Proposition 3.14 below states the existence result. It follows

directly from the R-case, see Proposition 3.6.

Proposition 3.14. Let 0 ≤ δ < 1. The process BESδ(x0) as stated in Proposition 3.6

solves the strong martingale problem with respect to DLδ(R+) and W . In particular,

the martingale problem related to DLδ(R+) admits strong existence.

Proposition 3.15. The martingale problem with respect to DLδ(R+) and W admits

pathwise uniqueness.

Proof.

Let us suppose that (X,P) is a solution of the martingale problem with respect to

DLδ(R+) and W . This implies the same with respect to DLδ . By Proposition 3.13

S = X2 is a solution of (1.1) for some Brownian motion W . The result follows by the

pathwise uniqueness of the SDE (1.1) and the positivity of X .

✷

3.5. The martingale problem related to an extended domain. In this section

we answer to the question raised in Remark 3.4. Indeed, for some aspects, one could

be interested in a formulation of the martingale problem with respect to the extended

domain D̂Lδ defined in Remark 3.4 in order to include the harmonic function (1.14).

Proposition 3.16. Let (Xt)t≥0 be a solution to the martingale problem with respect to

DLδ . Suppose the following.

i) For almost all t ∈ ]0, T ] the law of Xt admits density pt.

ii) lim
|x|→0

∫ T

0

|x|1−δpt(x)dt = 0.

Then (Xt) is also a solution to the martingale problem with respect to D̂Lδ .

Remark 3.17. An analogous statement is valid for the strong martingale problem.

Proof (of Proposition 3.16). Let f ∈ D̂Lδ and consider a smooth bounded function

χ : R −→ R+ such that

χ(x) =





1, x ≤ −1

0, x ≥ 0

S(x), x ∈ [−1, 0],

(3.26)
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for some bounded function S : [−1, 0] −→ [0, 1] with S(0) = 0, S(−1) = 1. For every

n ≥ 1 we define χn : R −→ R+ as

χn(x) := χ

(
1

2
− n|x|

)
.

Notice that

χn(x) =





0, |x| ≤ 1
2n

1, |x| ≥ 3
2n

∈ [0, 1], otherwise.

We have χ′
n(x) = χ′

(
1
2
− n|x|

)
(−nsign(x)), so that

|χ′
n(x)| ≤ n||χ′||∞I{ 1

2n
≤|x|≤ 3

2n
}(x), x ∈ R. (3.27)

For every n ≥ 1 we define fn : R −→ R+ such that
{

fn(0) = f(0)

f ′
n = f ′χn.

(3.28)

Clearly fn ∈ DLδ , so

fn(Xt)− fn(X0)−
∫ t

0

Lδfn(Xs)ds (3.29)

is a local martingale. Obviously fn → f and f ′
n → f ′ uniformly on each compact. We

show below that ∫ ·

0

Lδfn(Xs)ds
u.c.p.−−−→

∫ ·

0

Lδf(Xs)ds. (3.30)

By (3.5) and (3.28) we get

Lδfn(x) =
|x|1−δ

2
(|x|δ−1f ′

n)
′(x) = χn(x)L

δf(x) +
1

2
χ′
n(x)f

′(x).

Since χn converges to 1 uniformly on each compact, then
∫ ·

0
χn(Xs)L

δf(Xs)ds converges

u.c.p. to
∫ ·

0
Lδf(Xs)ds. To prove (3.30) it remains to prove that

∫ t

0

χ′
n(Xs)f

′(Xs)ds
u.c.p.−−−→ 0. (3.31)

For this, by (3.27) we have

E

(
sup
t≤T

∣∣∣∣
∫ t

0

χ′
n(Xs)f

′(Xs)ds

∣∣∣∣
)

≤ E

(∫ T

0

|χ′
n(Xs)f

′(Xs)| ds
)

≤ (3.32)

≤ n||χ′||∞E

(∫ T

0

|f ′(Xt)|I{ 1
2n

|Xt|<
3
2n

}(Xt)dt

)
= n||χ′||∞

∫ T

0

∫ 3
2n

1
2n

|f ′(x)|pt(x)dxdt.
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Let g be the continuous functions such that for x 6= 0 we have g(x) = f ′(x)|x|δ−1.

(3.32) gives

I(n) := n||χ′||∞
∫ T

0

∫ 3
2n

1
2n

|f ′(x)|pt(x)dxdt = n||χ′||∞
∫ T

0

∫ 3
2n

1
2n

|g(x)||x|1−δpt(x)dxdt.

Let ε > 0. Taking into account hypothesis ii) in the statement, there exists A > 0 such

that for |x| ≤ A, we have
∫ T

0
|x|1−δpt(x)dt < ε. Consequently, for |x| ≤ A

I(n) ≤ ||χ′||∞ sup
|x|≤A

|g(x)|ε.

Taking the lim sup when n goes to infinity and since ε is arbitrary we get lim supn→+∞ I(n) =

0 and consequently (3.31).

Since the space of local martingales is closed under the u.c.p. convergence then, tak-

ing the limit on (3.29) when n → ∞, we conclude that f(Xs)− f(X0)−
∫ t

0
Lδf(Xs)ds

is a local martingale. ✷

Proposition 3.18. Let (Xt) be the Bessel process of dimension δ ∈ [0, 1] starting

from x0 > 0. Then the following holds.

i) For every t > 0 the law of Xt admits a density pt.

ii) lim
|x|→0+

∫ T

0

|x|1−δpt(x) = 0.

Before doing the proof we recall that Iν the modified Bessel function of first kind

(see [1], section 10) with ν = δ
2
− 1. To prove Proposition 3.18 we will make use of the

estimate stated in the following lemma.

Lemma 3.19. Iν(z) ≤ C exp(z), for some constant C and z ∈ R large enough.

Proof. In [1] equation 9.6.20 (p.376) we have

Iν(z) =
1

2π

∫ π

0

exp(z cos(θ)) cos(νθz)dθ−sin(νπ)

π

∫ ∞

0

exp(−z cosh(t)−νt)dt =: I1(z)−I2(z).

For z > 0 we get

|I1(z)| ≤
1

2
exp(z).

Concerning I2(z) we first observe that −z cosh(t) − νt ≤ (−z − ν)t for t ≥ 0. Let

R > −ν. For z > R we get

|I2(z)| ≤
1

π

∫ ∞

0

exp(−t(R + ν))dt =
1

π(R + ν)
.

Consequently the result follows. �
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Proof (of Proposition 3.18).

i) We recall (see [10], chapter 6 equation 6.2.2 and Appendix A) that for X0 = x0

ps(y) =
y

s

(
y

x0

)ν

exp

(
−x2

0 + y2

2s

)
Iν

(x0y

s

)
, (3.33)

ii) Since X is non-negative, we can remove the absolute value from |x|. By (3.33)

and Lemma 3.19 we have

x1−δ

∫ T

0

pt(x)dt ≤ C
x1−δ+1+ δ

2
−1

x
δ
2
−1

0

∫ T

0

exp

(
−x2

0 + x2

2t
+

x0x

t

)
1

t
dt

≤ Cx1− δ
2x

1− δ
2

0

∫ T

0

exp

(
−(x0 − x)2

2t

)
1

t
dt.

For t > 0 and x < x0 we set t̃ := (x0−x)2

t
, so dt = − (x0−x)2

t̃2
. That gives us

C(xx0)
1− δ

2

∫ ∞

(x0−x)2

T

exp

(−t̃

2

)
1

t̃
dt̃. (3.34)

Since previous integral converges to

∫ ∞

x20
T

exp

(−t̃

2

)
dt̃,

when x → 0, then (3.34) converges to zero. So the proof is concluded.

✷

Remark 3.20. We remark that item (ii) of Proposition 3.18 is not fulfilled for a

Bessel process starting from x0 = 0, see Proposition 3.21. In this case, if one replaces

the initial domain DLδ with its extended domain the Bessel process fulfills a martingale

problem where one has to add a supplementary term in the operator Lδ. This research

is developed in an ongoing draft, which goes beyond the scope of the present paper.

Proposition 3.21. Let (Xt) be the Bessel process with dimension δ ∈ [0, 1] starting at

x0 = 0. Then, the following holds.

i) For every t > 0 the law of Xt admits a density pt

ii) For every t > 0 lim
x→0+

∫ t

0

x1−δps(x)ds =
22−

δ
2

Γ( δ
2
)
t1−

δ
2

1

2− δ
.

where Γ is the Gamma function given by Γ(a) =
∫∞

0
xa−1 exp(−x)dx, a > 0.
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Proof. According to equation 6.2.2 in [10] we have

pt(x) =
2νt−(ν+1)

Γ(ν + 1)
x2ν+1 exp

(
−x2

2t

)
.

Consequently, since ν = δ
2
− 1, we get

xδ−1

∫ t

0

ps(x)ds =
21−

δ
2

Γ( δ
2
)

∫ t

0

exp

(
−x2

2s

)
s−

δ
2ds

For s > 0 and x > 0 we set s̃ = x2

s
, ds = −x2

s̃2
ds̃. We obtain

21−
δ
2

Γ( δ
2
)

∫ ∞

x2

t

x2

s̃2

(
s̃

x2

) δ
2

exp

(
− s̃

2

)
ds̃ =

x2−δ21−
δ
2

Γ( δ
2
)

∫ ∞

x2

t

s̃−( δ
2
) exp

(
δ

2

)
ds̃ =

=
21−

δ
2

Γ(−s̃
2
)

1

xδ−2

∫ ∞

x2

t

s̃
δ
2
−2 exp

(
− s̃

2

)
ds̃

Since the integral and 1
xδ−2 go to ∞ when x → 0+ then, by L’Hospital rule,

lim
x→0+

∫ t

0

x1−δps(x)ds = −21−
δ
2

Γ( δ
2
)
lim
x→0+

2x
t
(x

2

t
)
δ
2
−2 exp(−x2

t
)

(δ − 2)xδ−3
=

= −22−
δ
2

Γ( δ
2
)
t1−

δ
2

1

δ − 2
lim
x→0+

x0 =
22−

δ
2

Γ( δ
2
)
t1−

δ
2

1

2− δ
.

�

3.6. On an alternative approach to treat the martingale problem on the full

line.

A priori we could have approached the martingale problem related to Bessel processes

by the technique of [7].

(1) Thereby, the authors handled martingale problems related to operators L :

DL ⊂ C1(R) → R of the form Lf = σ2

2
f ′′ + b′f ′, where b is the derivative

of a continuous function, σ is strictly positive continuous and Σ is defined as

(1.5). The idea was to consider an L-harmonic function h : R → R defined

by h(0) = 0 and h′ = e−Σ. In [7], L was also expressed in the form (1.6).

The proof of well-posedness of the martingale problem thereby was based on

a non-explosion condition (3.16) in Proposition 3.13 in [7] and the fact that

σ0 := (σe−Σ) ◦ h−1 is strictly positive and so the SDE (for every fixed initial

condition)

Yt = y0 +

∫ t

0

σ0(Ys)dWs, (3.35)
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is well-posed.

(2) Consider δ ∈ [0, 1[. As far as the martingale problem (for the Bessel process)

on the full line is concerned, we could have tried to adapt similar methods. We

observe that L := Lδ is also expressed in the form (1.6), which in our case gives

(3.5). Taking into account (3.4), we have

h(x) = sign(x)
|x|2−δ

2− δ
, x ∈ R. (3.36)

Since h is bijective, one can show that (3.16) in Proposition 3.13 in [7] is auto-

matically satisfied. Moreover

σ0(y) = sign(y)(2− δ)
1−δ
2−δ |y| 1−δ

2−δ . (3.37)

Following the same idea as in in Proposition 3.2 of [7], one can show that

the well-posedness of the Bessel martingale problem (with respect to D̂Lδ) is

equivalent to the well-posedness (in law) of (3.35). Here σ0(0) = 0, but (3.35)

is still well-posed even if
∫ ε

0

1

σ2
0

(y)dy = +∞, ∀ε > 0. (3.38)

In fact in that case (3.38) corresponds to the Engelbert-Schmidt criterion (see

Theorem 5.7 in [11, Chapter 5].

(3) The criterion (3.38) can be reformulated here saying that the quantity

1

(2− δ)
2−2δ
2−δ

∫ ǫ

0

y
2δ−2
2−δ dy, ∀ε > 0, (3.39)

is infinite. Now, (3.39) is always finite for any δ > 0. This confirms that (3.35)

has no uniqueness in law on R, with σ0 defined in (3.37), when δ ∈]0, 1[. So,

the non-uniqueness observed in Proposition 3.9 is not astonishing.

(4) On the other hand, when δ = 0, then (3.39) is infinite, which implies uniqueness

in law.

(5) We drive the attention on the fact that the considerations of this section concern

the martingale problem with respect to the extended domain D̂Lδ and for the

case x0 6= 0.

3.7. The framework for δ = 1.

Let W be a standard Brownian motion on some underlying probability space. By

definition, a Bessel process of dimension δ = 1 starting at x0 ≥ 0 is a non-negative
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process X such that S := X2 is a BESQ1(x2
0). On the other hand, in the literature

such a Bessel process X is also characterized as a non-negative strong solution of

Xt = x0 +Wt + LX
t (0), t ∈ [0, T ], (3.40)

where LX(0) is a non-decreasing process only increasing when X = 0, i.e.
∫

[0,T ]

ϕ(s)dLX
s (0) =

∫

[0,T ]

ϕ(s)1{Xs=0}dL
X
s (0),

for every generic Borel function ϕ : R+ → R+. In particular, X is a semimartingale.

Indeed, let X be a non-negative solution of (3.40), then by an easy application of Itô’s

formula for semimartingales, setting S := X2, we have

St = x2
0 + 2

∫ t

0

XsdWs +

∫ t

0

XsdL
X
s (0) +

1

2
2t

= x2
0 + 2

∫ t

0

√
SsdWs +

∫ t

0

Xs1{Xs=0}dL
X
s (0) + t

= x2
0 + 2

∫ t

0

√
SsdWs + t,

which implies that S is a BESQ1(x2
0) and so X is a BES1(x0). This shows in particular

that (3.40) admits pathwise uniqueness. Existence and uniqueness of (3.40) can be seen

via the Skorokhod problem, see [9].

In this section, we represent alternatively X as a non-negative solution of a (strong)

martingale problem. As we mentioned at the beginning of Section 3, we have fixed

b(x) = H(x) =

{
1 : x ≥ 0

0 : x < 0.

Formally speaking we get

Σ(x) = 2

∫ x

0

δ0(y)dy = 2H(x),

where H is the Heaviside function. Coming back to the expression (1.6), it is natural

to set

L1f = (exp(2H)f ′)′
exp(−2H)

2
, f ∈ C2(R∗). (3.41)

This gives of course

L1f =
f ′′

2
, f ∈ C2(R∗). (3.42)

Analogously to the case δ ∈]0, 1[ and applying the same principle as for the domain

characterization in the case δ ∈ [0, 1[, we naturally arrive to

DL1 = {f ∈ C2|f ′(0) = 0}.
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Since L1f has to be continuous, (3.42) gives

L1f =
f ′′

2
, ∀f ∈ DL1. (3.43)

The PDE operator L1 appearing at (3.43) coincides with the generator of Brownian

motion. However, the domain of that generator is larger since it is C2(R).

Remark 3.22. The same preliminary analysis of Section 3.3 about the martingale

problem related to 0 ≤ δ < 1 in the R-case extends to the case δ = 1. More precisely,

Proposition 3.6, Corollary 3.8, Proposition 3.9 and Remark 3.10 hold. This is stated

below.

Proposition 3.23.

(1) There is a process BES1(x0) solving the strong martingale problem with respect

to DL1 and W .

(2) The martingale problem related to L1 with respect to DL1 admits (in general)

no uniqueness.

Similarly to Corollary 3.8, the processes BES1(x0) (resp. −BES1(−x0)) is a solu-

tion to the strong martingale problem with respect to DL1 and an underlying Brownian

motion W (resp. −W )). Other solutions on the real line are the so-called skew Brow-

nian motions which will be possibly investigated more in detail in a future work. For

this last one, we can mention the works of Harrison and Shepp ([9]) and Le Gall ([14]).

Concerning the R+-case, let again (Ω,F ,P) be a probability space equipped with

the canonical filtration FW of a Brownian motion W .

By using the same arguments as for Propositions 3.14 and 3.15, we get the following

result.

Proposition 3.24. There is a process BES1(x0) solving the strong martingale problem

with respect to DL1(R+) and W . Moreover, the martingale problem admits pathwise

uniqueness with respect to DL1(R+).

4. Martingale problem related to the path-dependent Bessel process

4.1. Generalities.

Now we are going to treat a non-Markovian martingale problem which is a pertur-

bation of the Bessel process BESδ(x0), 0 ≤ δ ≤ 1, x0 ≥ 0. More precisely, we want to

analyze existence and uniqueness of solutions to the martingale problem related to the
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SDE

Xt = x0 +Wt +

∫ t

0

b′(Xs)ds+

∫ t

0

Γ(s,Xs)ds, (4.1)

where Γ is the same path-dependent functional as in (2.1), and b is as in (1.10).

Proposition 4.1. Suppose δ = 0, x0 = 0. Let W be a standard Brownian motion. The

null process is a solution to the strong martingale problem (in the sense of Definition

2.3) with respect to DLδ and W .

In presence of a path-dependent drift Γ, under suitable conditions, Corollary 4.17

allows to show that the null process is still the unique solution of the corresponding

strong martingale problem.

4.2. The martingale problem in the path-dependent case: existence in law.

We recall that a pair (X,P) is a solution for the martingale problem related to L in

the sense of Definition 2.2 with L = Lδ with respect to DLδ (resp. DLδ(R+)), 0 ≤ δ ≤ 1,

if for all f ∈ DLδ (resp. f ∈ DLδ(R+)),

f(Xt)− f(X0)−
∫ t

0

Lδf(Xs)ds−
∫ t

0

f ′(Xs)Γ(s,X
s)ds, (4.2)

is a P-local martingale.

A first criterion of existence can be stated if Γ is measurable and bounded.

Proposition 4.2. Suppose that Γ is bounded. Then the martingale problem related

to L (defined in (2.5)) admits existence with respect to DLδ . Moreover we have the

following.

(1) If the initial condition is x0 ≥ 0, then the solution can be constructed to be

non-negative.

(2) If the initial condition is x0 ≤ 0, then the solution can be constructed to be

non-positive.

Proof. Let x0 ≥ 0. Given a Brownian motion W , by Propositions 3.14 and 3.23,

there exists a solution X to the (even strong) martingale problem related to (2.5)

(with Γ = 0) with respect to DLδ(R+) and W . That solution is in fact a BESδ(x0).

In particular, for all f ∈ DLδ(R+),

f(Xt)− f(X0)−
∫ t

0

Lδf(Xs)ds =

∫ t

0

f ′(Xs)dWs. (4.3)
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Since the Bessel process is non-negative, (4.3) also holds for f ∈ DLδ . As Γ is bounded

then, by Novikov’s condition

Nt = exp

(∫ t

0

Γ(s,Xs)dWs −
1

2

∫ t

0

Γ2(s,Xs)ds

)
,

is a martingale. By Girsanov’s Theorem

Bt := Wt −
∫ t

0

Γ(s,Xs)ds,

is a Brownian motion under the probability measure Q such that dQ = NTdP. Then,

we can rewrite (4.3) as

f(Xt)− f(X0)−
∫ t

0

Lδf(Xs)ds−
∫ t

0

f ′ (Xs) dBs −
∫ t

0

f ′ (Xs) Γ(s,X
s)ds = 0.

Since

∫ t

0

f ′ (Xs) dBs is a Q−local martingale, (X,Q) happens to be a solution to the

martingale problem in the sense of Definition 2.2 with respect to DLδ .

Suppose now that x0 ≤ 0. The process X defined as −BESδ(−x0) is a solution of

(4.3), with W replaced with −W . Then a similar procedure as for the case x0 ≥ 0

works. This shows existence for the martingale problem on DLδ .

Let us discuss the sign of the solution. Suppose that x0 ≥ 0 (resp. x0 ≤ 0). Then,

our construction starts with BESδ(x0) (resp. −BESδ(−x0)) which is clearly non-

negative (resp. non-positive). The constructed solution is again non-negative (resp.

non-positive) since it is supported by an equivalent probability measure. ✷

Remark 4.3. As we have mentioned in Proposition 3.9 and its extension to δ = 1,

the martingale problem in the sense of Definition 2.2 admits no uniqueness in general,

at least with respect to DLδ , i.e. on the whole line.

4.3. Some preliminary results on a path-dependent SDE.

Before studying a new class of path-dependent martingale problems we recall some

results stated in Section 4.5 of [16].

Let σ0 : R → R. Let Γ̄ : Λ → R be a generic Borel functional. Related to it we

formulate the following, which was Assumption 4.25 in [16].

Assumption 4.4.

(1) There exists a function l : R+ → R+ such that
∫ ǫ

0
l−2(u)du = ∞ for all ǫ > 0

and

|σ0(x)− σ0(y)| ≤ l(|x− y|).
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(2) σ0 has at most linear growth.

(3) There exists K > 0 such that

|Γ̄(s, η1)− Γ̄(s, η2)| ≤ K

(
|η1(s)− η2(s)|+

∫ s

0

|η1(r)− η2(r)|dr
)
,

for all s ∈ [0, T ], η1, η2 ∈ C([0, T ]).

(4) Γ̄∞ := sup
s∈[0,T ]

|Γ̄(s, 0)| < ∞.

The proposition below was the object of [16, Proposition 4.27].

Proposition 4.5. Let y0 ∈ R. Suppose the validity of Assumption 4.4. Then E(σ0, 0, Γ̄),

i.e.

Yt = y0 +

∫ t

0

σ0(Ys)dWs +

∫ t

0

Γ̄(s, Y s)ds, (4.4)

admits pathwise uniqueness.

The lemma below was the object of [16, Lemma 4.28].

Lemma 4.6. Suppose the validity of the assumptions of Proposition 4.5. Let Y be a

solution of (4.4) and m ≥ 2 an integer. Then there exists a constant C > 0, depending

on the linear growth constant of σ0, y0, K, T,m and the quantity (4) in Assumption

4.4 such that

E

(
sup
t≤T

|Ys|m
)

≤ C.

4.4. A new class of solutions to the martingale problem.

Besides Proposition 4.2, Proposition 4.8 below and Proposition 4.9 provide a new

class of solutions to the martingale problem related to L with respect to DLδ . We

consider now a particular case of Γ̄, which is associated with Γ:

Γ̄(s, η) := 2
√

|η(s)|Γ(s,
√

|ηs|) + δ, s ∈ [0, T ] η ∈ C([0, T ]). (4.5)

Next, we introduce a growth assumption on Γ.

Assumption 4.7. Γ is continuous and there exists a constant K such that, for every

(s, η) ∈ Λ we have

|Γ(s, η)| ≤ K

(
1 + sup

r∈[0,T ]

√
|η(r)|

)
.

Proposition 4.8. . Let δ ∈ [0, 1]. Suppose that Γ fulfills Assumption 4.7. Then, we

have the following.
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(1) Let s0 ≥ 0. The path-dependent SDE

St = s0 + δt +

∫ t

0

2
√
|Ss|dWs +

∫ t

0

2
√
|Ss|Γ

(
s,
√
|Ss|

)
ds, δ ≥ 0, (4.6)

admits existence in law, see Definition A.4 of Appendix in [16].

(2) The constructed solution of (4.6) in item (1) is non-negative.

(3) Let x0 ≥ 0. The martingale problem related to Lf = Lδf + Γf ′ (see Definition

2.2, (2.5)) admits existence with respect to DLδ(R+).

Proof.

We remark that the hypothesis on Γ implies that Γ̄ has linear growth, i.e. there is a

constant K such that

Γ̄(t, ηt) ≤ K(1 + sup
s∈[0,t]

|η(s)|), ∀(t, η) ∈ [0, T ]× C([0, T ]). (4.7)

For item (1), we start truncating Γ. Let N > 0. Let us define, for s ∈ [0, T ], η ∈
C([0, T ]),

ΓN(s, η) := (Γ(s, ηs) ∨ (−N)) ∧N,

Γ̄N(s, η) := 2
√
|η(s)|ΓN(s,

√
|η|) + δ.

We consider the SDE {
dSt = 2

√
|St|dWt + Γ̄N (t, S) dt,

S0 = s0.
(4.8)

We set x0 :=
√
s0. Since ΓN is bounded, by Proposition 4.2, the martingale problem

related to L with respect to DLδ , admits a solution (X,P) which is non-negative. By

Proposition 4.9 the SDE (4.8) admits existence in law and in particular there exists a

solution SN (which is necessarily non-negative) on some probability space (Ω,F , P̄N).

By Itô’s formula, this implies that (on the mentioned space),

MN
t := f(SN

t )− f(SN
0 )−

∫ t

0

f ′(SN
s )Γ̄N

(
s, SN

)
ds− 2

∫ t

0

f ′′(SN
s )|SN

s |ds, (4.9)

is a martingale for all f ∈ C2 with compact support. This will be used later.

We want first to show that the family of laws (Q̄N ) of (SN) is tight. For this we are

going to use the Kolmogorov-Centsov Theorem. We denote by ĒN the expectation

related to P̄N . According to Problem 4.11 in Section 2.4 of [11], it is enough to find

constants α, β > 0 realizing

sup
N

ĒN(|SN
t − SN

s |α) ≤ c|t− s|1+β; s, t ∈ [0, T ], (4.10)
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for some constant c > 0. Indeed, we will show (4.10) for α = 6 and β = 1. By

(4.8) and Burkholder-Davis-Gundy inequality there exists a constant c6 such that, for

0 ≤ s ≤ t ≤ T ,

ĒN (|SN
t − SN

s |6) ≤ c6

(
ĒN

(∫ t

s

(|SN
r |)dr

)3

+ ĒN

(∫ t

s

Γ̄N
(
r, |SN |

)
dr

)6
)
. (4.11)

By (4.7), there exists a constant C1 where

|Γ̄N(s, η)| ≤ 2
√
|η(s)||Γ(s,

√
|η|)|+ δ = |Γ̄(s, η)| ≤ C1

(
1 + sup

r≤s

|η(s)|
)
, (4.12)

for every (s, η) ∈ Λ, uniformly in N . By Jensen’s inequality and (4.12), there exists a

constant C2 > 0, only depending on T and on Γ̄, but not on N , such that

ĒN (|SN
t − SN

s |6) ≤ C2
(
(t− s)2ĒN

(
sup
s≤t

|SN
s |3
)
+ (t− s)5ĒN

(
sup
s≤t

|SN
s |6
))

.

By Lemma 4.6, the quantity

ĒN

(
sup
s≤T

|SN
s |3 + sup

s≤T

|SN
s |6
)
,

is bounded uniformly in N and therefore (4.10) holds. Consequently, the family of laws

(Q̄N ) of (SN) under (P̄N) is tight. We can therefore extract a subsequence which, for

simplicity, we will still call Q̄N that converges weakly to a probability measure Q̄ on

(C[0, T ],B(C[0, T ])).

We denote by EN the expectation with respect to Q̄N . Let 0 ≤ s ≤ t ≤ T and let

F : C([0, s]) → R be a bounded and continuous function. By (4.9), if S is the canonical

process we have

EN ((M̃N
t − M̃N

s )F (Sr, 0 ≤ r ≤ s)) = 0, (4.13)

where

M̃N
t := f(St)− f(S0)−

∫ t

0

f ′(Ss)Γ̄
N (s, S) ds− 2

∫ t

0

f ′′(Ss)|Ss|ds. (4.14)

By Skorokhod’s convergence theorem, there exists a sequence of processes (Y N) and a

process Y both on a probability space (Ω,F ,Q), converging u.c.p. to Y as N → +∞.

Indeed (Y N) and Y can be seen as random elements taking values in the state space

(C[0, T ],B(C[0, T ])).

Moreover, the law of Y N is Q̄N , so that

EQ((M
N

t −M
N

s )F (Y N
r , 0 ≤ r ≤ s)) = 0, (4.15)
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where

M
N

t := f(Y N
t )− f(S0)−

∫ t

0

f ′(Y N
r )Γ̄N

(
s, Y N

)
ds− 2

∫ t

0

f ′′(Y N
s )|Y N

r |dr. (4.16)

We wish to pass to the limit when N → ∞ using Lebesgue dominated convergence

theorem and obtain

EQ((M t −Ms)F (Yr, 0 ≤ r ≤ s)) = 0, (4.17)

with

M t := f(Yt)− f(S0)−
∫ t

0

f ′(Ys)Γ̄ (s, Y ) ds− 2

∫ t

0

f ′′(Yr)|Yr|dr. (4.18)

For this it remains to prove that, when N → ∞

EQ

(∫ t

s

f ′(Y N
r )Γ̄N(r, Y N)dr

)
→ EQ

(∫ t

s

f ′(Y )Γ̄(r, Y )dr

)
(4.19)

and

EQ

(∫ t

s

f ′′(Y N
r )|Y N

r |dr
)

→ EQ

(∫ t

s

f ′′(Yr)|Yr|dr
)
, (4.20)

as N → ∞. Below, we only prove (4.19) since (4.20) follows similarly.

Note that (4.19) is true, if and only if,

lim
N→∞

I1(N) = 0, lim
N→∞

I2(N) = 0,

where

I1(N) := EQ

[∫ t

s

f ′(Y N
r )(Γ̄N(r, Y N )− Γ̄(r, Y N ))dr

]
,

I2(N) := EQ

[∫ t

s

f ′(Y N
r )Γ̄(r, Y N)− f ′(Yr)Γ̄(r, Y )dr

]
.

By (4.7) and (4.12), we have

I1(N) ≤ ||f ′||∞EQ

[
1{supr∈[0,T ] |Γ(r,Y

N,r)|>N}

∫ t

s

|Γ̄N(r, Y N)− Γ̄(r, Y N)|dr
]
≤

≤ 2KT ||f ′||∞EQ

[
1{supr∈[0,T ] |Γ(r,Y

N )|>N}(1 + sup
r∈[0,T ]

|Y N
r |)
]
.

By Cauchy-Schwarz’s inequality, there exists a non-negative constant C(f, T,K) such

that

I1(N)2 ≤ C(f, T,K)I11(N)I12(N), (4.21)

where

I11(N) := Q

(
sup

r∈[0,T ]

|Γ(r, Y N)| > N

)
,
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I12(N) := EQ

[
1 + sup

r∈[0,T ]

|Y N
r |2
]
.

By Chebyshev’s inequality we have

I11(N) ≤ 1

N2
EQ

[
sup

r∈[0,T ]

|Γ(r, Y N )|2
]
≤ 2K

N2
EQ

[
1 + sup

r∈[0,T ]

|Y N
r |2
]
.

Consequently, lim
N→∞

I11(N) = 0 because of Lemma 4.6. On the other hand, again by

Lemma 4.6, I12(N) is bounded in N and so by (4.21), we get lim
N→∞

I1(N) = 0.

Concerning I2(N), we have

I2(N)2 ≤ T

∫ t

s

EQ
[
|f ′(Y N

r )Γ̄(r, Y N)− f ′(Yr)Γ̄(r, Y )|2
]
dr. (4.22)

By Lemma 4.6, there exists a constant C not depending on N such that

EQ

[
sup

r∈[0,T ]

|Y N
r |4
]
≤ C,

and, consequently, by Fatou’s Lemma

EQ

[
sup

r∈[0,T ]

|Yr|4
]
≤ C.

Let r ∈ [0, T ]. We have

EQ[|f ′(Y N
r )Γ̄(r, Y N) − f ′(Yr)Γ̄(r, Y )|4] (4.23)

≤ 8||f ′||4∞K4

(
2 + EQ

[
sup

r∈[0,T ]

|Y N
r |4 + sup

r∈[0,T ]

|Yr|4
])

≤ 16||f ′||4∞K4(1 + C).

So the sequence

|f ′(Y N
r )Γ̄(r, Y N)− f ′(Yr)Γ̄(r, Y )|2

is uniformly integrable. We fix again r ∈ [0, T ]. Since f ′ and Γ̄ are continuous it follows

that

EQ
[
|f ′(Y N

r )Γ̄(r, Y N)− f ′(Yr)Γ̄(r, Y )|2
]
−→ 0, (4.24)

as N → ∞. Now (4.23) and Cauchy-Schwarz implies that

EQ[|f ′(Y N
r )Γ̄(r, Y N)− f ′(Yr)Γ̄(r, Y )|2] ≤ 4||f ′||2∞K2

√
1 + C. (4.25)

This time (4.24), (4.25) and Lebesgue’s dominated theorem show that the entire

Lebesgue integral of (4.24) on [s, t] converges to 0. Finally, lim
N→∞

I2(N) = 0 so that we
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conclude to (4.19) and, consequently, (4.17). Therefore, (Y,Q) solve the martingale

problem of the type (2.4) as in Proposition 2.1 with

Lf(x) = 2|x|f ′′(x) + δf ′(x)

and Γ̄ replacing Γ. By Proposition 2.1, this concludes the proof of item (1).

Concerning item (2), the previously constructed Y is a (weak) solution to (4.6)

under the probability Q. Since it is a limit of non-negative solutions, it will also be

non-negative.

Item (3) follows from Proposition 4.9 below.

✷

4.5. Equivalence between martingale problem and SDE in the path-dependent

case.

We state here an important result establishing the equivalence between the martin-

gale problem and a path-dependent SDE of squared Bessel type. Let 0 ≤ δ ≤ 1.

Proposition 4.9. Let (Ω,F ,P) be a probability space. Let X be a stochastic process

and we denote S = X2.

(1) (|X|,P) is a solution to the martingale problem related to (2.5) with respect to

DLδ , if and only if, the process S is a solution of (4.6) for some FX-Brownian

motion W .

(2) Let W be a standard Brownian motion (with respect to P). Then |X| is a

solution to the strong martingale problem with respect to DLδ and W , if and

only if, S is a solution of (4.6).

Remark 4.10. In the statement of Proposition 4.9, DLδ can be replaced with DLδ(R+),

provided that |X| is replaced by X.

Proof (of Proposition 4.9). We discuss item (1).

Concerning the direct implication, by choosing f1(x) = x2, f2(x) = x4 we have

Lδf1(x) = δ, Lδf2(x) = 2(2 + δ)x2. By definition of the martingale problem, the two

processes (t ∈ [0, T ])

Mt := X2
t −X2

0 − δt−
∫ t

0

2|Xs|Γ(s, |Xs|)ds (4.26)
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and

Nt := X4
t −X4

0 − 2(2 + δ)

∫ t

0

X2
s ds− 4

∫ t

0

|Xs|3Γ(s, |Xs|)ds, (4.27)

are FX-local martingales.

Since S = X2, by (4.26) we have [S] = [M ]. By integration by parts and (4.26), we

have

[M ]t = [X2]t = X4
t −X4

0−2

∫ t

0

X2
sdX

2
s = X4

t −X4
0−2δ

∫ t

0

X2
sds−4

∫ t

0

|Xs|3Γ(s, |Xs|)ds+M1,

where M1 is a local martingale. Therefore

X4
t −X4

0 = M1 + 2δ

∫ t

0

X2
sds+ 4

∫ t

0

|Xs|3Γ(s, |Xs|)ds+ [M ]t, t ∈ [0, T ]. (4.28)

(4.28) and (4.27) give us two decompositions of the semimartingale X4; by the unique-

ness of the semimartingale decomposition, [M ]t = 4
∫ t

0
X2

sds. We set

Wt =

∫ t

0

dMs

2|Xs|
, t ∈ [0, T ]. (4.29)

By Lévy’s characterization theorem, W is an FX-Brownian motion and by (4.26), we

conclude that St = s0 + δt+
∫ t

0
2
√
SsdWs +

∫ t

0
2
√
SsΓ(s,

√
Ss)ds, t ∈ [0, T ].

Concerning the converse implication, suppose that S = X2 solves (4.6) for some

Brownian motion W . Then S solves

St = s0 + δt+

∫ t

0

2
√

|Ss|dW̃s, t ∈ [0, T ], (4.30)

where

W̃t := Wt +

∫ t

0

Γ(s,
√
|Ss|)ds, t ∈ [0, T ].

Let f ∈ DLδ ; by Proposition 3.6 and Remark 3.7 we have

f(|Xt|)− f(|X0|)−
∫ t

0

Lδf(|Xs|)ds =
∫ t

0

f ′(|Xs|)dW̃s. (4.31)

Consequently

M
f
t := f(|Xt|)− f(|x0|)−

∫ t

0

Lδf(|Xs|)ds−
∫ t

0

f ′(|Xs|)Γ(s, |Xs|)ds

=

∫ t

0

f ′(|Xs|)dWs,

is an FX-local martingale. Then, (|X|,P) solve the martingale problem related to (2.5)

with respect to DLδ in the sense of Definition 2.2. On the other hand, |X| also solves
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the strong martingale problem with respect to DLδ and W . This concludes the proof

of item (1).

As far as item (2) is concerned, the converse implication argument can be easily

adapted to the argument for the proof of the converse implication in (1). Concerning

the direct implication, we define f1 as in the proof of item (1). By (2.7), (4.26) and

the fact that

M = 2

∫ ·

0

f ′
1(|Xs|)dWs = 2

∫ ·

0

√
SsdWs,

we obtain (4.6). This concludes the proof.

✷

4.6. The martingale problem in the path-dependent case: uniqueness in

law.

A consequence of Girsanov’s theorem gives us the following.

Proposition 4.11. Let 0 ≤ δ ≤ 1. Suppose that Γ is bounded. The martingale problem

related to (2.5) with respect to DLδ(R+) admits uniqueness.

Remark 4.12. Let x0 ≥ 0 (resp. x0 ≤ 0). By Proposition 4.2, every solution of the

aforementioned martingale problem is non-negative (resp. non-positive).

Proof (of Proposition 4.11).

Let (X i,Pi), i = 1, 2 be two solutions to the martingale problem related to Lf =

Lf + Γf ′ with respect to DLδ(R+). By Proposition 4.9, Si = (X i)2 is a solution of

(4.6), for some Brownian motion W i and Pi. We define the random variable (which is

also a Borel functional of X i)

V i
t = exp

(
−
∫ t

0

Γ(s,X i)dW i
s −

1

2

∫ t

0

(
Γ(s,X i)

)2
ds

)
.

By the Novikov’s condition, it is a Pi-martingale. This allows us to define the prob-

ability dQi = V i
TdP

i. By Girsanov’s theorem, for i = 1, 2, under Qi, Bi
t := W i

t +∫ t

0
Γ(s,X i,s)ds is a Brownian motion. Therefore, Si is a solution of (4.6) with Γ = 0,

under Qi. Now (4.6) (with Γ = 0) admits pathwise uniqueness and therefore uniqueness

in law, by Yamada-Watanabe theorem. Consequently Si (under Qi), i = 1, 2 have the

same law and the same holds of course for X i, i = 1, 2. Hence, for every Borel set

B ∈ B(C[0, T ]) we have

P1{X1 ∈ B} =

∫

Ω

1

V 1
T (X

1)
1{X1∈B}dQ

1 =

∫

Ω

1

V 2
T (X

2)
1{X2∈B}dQ

2 = P2{X2 ∈ B}.
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So, X1 under P1 has the same law as X2 under P2. Finally the martingale problem

related to (2.5) with respect to DLδ(R+) admits uniqueness. ✷

4.7. Path-dependent Bessel process: results on pathwise uniqueness.

In this section, Γ̄ is the same as the one defined in (4.5), i.e.

Γ̄(s, η) := 2
√

|η(s)|Γ(s,
√
|ηs|) + δ, s ∈ [0, T ] η ∈ C([0, T ]).

At this point, we can state a pathwise uniqueness theorem. For this purpose, we state

the following assumption.

Assumption 4.13.

(1) There exists a constant K > 0 such that, for every s ∈ [0, T ], η1, η2 ∈ C([0, T ]),

we have |Γ̄(s, η1)− Γ̄(s, η2)| ≤ K
(
|η1(s)− η2(s)|+

∫ s

0
|η1(r)− η2(r)|dr

)
.

(2) sup
t∈[0,T ]

|Γ̄(t, 0)| < ∞.

Remark 4.14.

(1) σ0(y) = 2
√
|y| has linear growth.

(2) Defining l(x) = 2
√
x, x ≥ 0, we have

∫ ǫ

0
l−2(u)du = ∞ for every ǫ > 0 and

|l(x)− l(y)| ≤ l(|x− y|), x, y ∈ R+.

Remark 4.15. Note that, by Remark 4.14, Assumption 4.13 implies Assumption 4.4.

We start the analysis by considering equation (4.6). For the definitions of strong

existence and pathwise uniqueness for path-dependent SDEs, see Definitions A.2 and

A.3 of [16].

Theorem 4.16. Suppose Assumptions 4.13 and 4.7.

(1) (4.6) admits pathwise uniqueness.

(2) (4.6) admits strong existence.

(3) Suppose x0 ≥ 0. Every solution of (4.6) with s0 = x2
0 is non-negative.

Proof

(1) We remark that (4.6) is of the form (4.4). The result follows from Proposition

4.5 and Remark 4.14.

(2) By Proposition 4.8, we have existence in law. By an extension of Yamada-

Watanabe theorem to the path-dependent case, strong existence holds for (4.6).
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(3) Suppose x0 ≥ 0. By Proposition 4.8 (2), (4.6) admits even existence in law

of a non-negative solution. By Yamada-Watanabe theorem extended to the

path-dependent case, pathwise uniqueness implies uniqueness in law, so that

the above-mentioned solution has to be non-negative.

✷

We are now able to state the following.

Corollary 4.17. Suppose that Γ̄ (defined in (4.5)) fulfills Assumptions 4.13 and 4.7.

Then the strong martingale problem related to (2.5) (see Definition 2.3) with respect to

DLδ(R+) and W admits strong existence and pathwise uniqueness.

Proof. By Theorem 4.16, the equation (4.6) admits a unique strong solution which

is non-negative. Proposition 4.9 and Remark 4.10 allow us to conclude the proof.

✷
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