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Abstract. The Eocene–Oligocene transition (EOT) was a
climate shift from a largely ice-free greenhouse world to
an icehouse climate, involving the first major glaciation of
Antarctica and global cooling occurring ∼ 34 million years
ago (Ma) and lasting ∼ 790 kyr. The change is marked by a
global shift in deep-sea δ18O representing a combination of
deep-ocean cooling and growth in land ice volume. At the
same time, multiple independent proxies for ocean tempera-
ture indicate sea surface cooling, and major changes in global
fauna and flora record a shift toward more cold-climate-
adapted species. The two principal suggested explanations of
this transition are a decline in atmospheric CO2 and changes
to ocean gateways, while orbital forcing likely influenced the
precise timing of the glaciation. Here we review and syn-

thesise proxy evidence of palaeogeography, temperature, ice
sheets, ocean circulation and CO2 change from the marine
and terrestrial realms. Furthermore, we quantitatively com-
pare proxy records of change to an ensemble of climate
model simulations of temperature change across the EOT.
The simulations compare three forcing mechanisms across
the EOT: CO2 decrease, palaeogeographic changes and ice
sheet growth. Our model ensemble results demonstrate the
need for a global cooling mechanism beyond the imposition
of an ice sheet or palaeogeographic changes. We find that
CO2 forcing involving a large decrease in CO2 of ca. 40 %
(∼ 325 ppm drop) provides the best fit to the available proxy
evidence, with ice sheet and palaeogeographic changes play-
ing a secondary role. While this large decrease is consistent
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with some CO2 proxy records (the extreme endmember of
decrease), the positive feedback mechanisms on ice growth
are so strong that a modest CO2 decrease beyond a critical
threshold for ice sheet initiation is well capable of triggering
rapid ice sheet growth. Thus, the amplitude of CO2 decrease
signalled by our data–model comparison should be consid-
ered an upper estimate and perhaps artificially large, not least
because the current generation of climate models do not in-
clude dynamic ice sheets and in some cases may be under-
sensitive to CO2 forcing. The model ensemble also cannot
exclude the possibility that palaeogeographic changes could
have triggered a reduction in CO2.

1 Introduction

1.1 Scope of review

Since the last major review of the Eocene–Oligocene transi-
tion (EOT; Coxall and Pearson, 2007) the fields of palaeo-
ceanography and palaeoclimatology have advanced consid-
erably. New proxy techniques, drilling and field archives of
Cenozoic (66 Ma to present) climates, have expanded global
coverage and added increasingly detailed views of past cli-
mate patterns, forcings and feedbacks. From a broad perspec-
tive, statistical interrogation of an astronomically dated, con-
tinuous composite of benthic foraminifera isotope records
confirms that the EOT is the most prominent climate tran-
sition of the whole Cenozoic and suggests that the polar ice
sheets that ensued seem to play a critical role in determin-
ing the predictability of Earth’s climatological response to
astronomical forcing (Westerhold et al., 2020). New proxy
records capture near- and far-field signals of the onset of
Antarctic glaciation. Meanwhile, efforts to simulate the onset
of the Cenozoic “icehouse”, using the latest and most sophis-
ticated climate models, have also progressed. Here we review
both observations and the results of modelling experiments
of the EOT. From the marine realm, we review records of sea
surface temperature, as well as deep-sea time series of the
temperature and land ice proxy δ18O and carbon cycle proxy
δ13C. From the terrestrial realm we cover plant records and
biogeochemical proxies of temperature, CO2 and vegetation
change. We summarise the main evidence of temperature,
glaciation and carbon cycle perturbations and constraints on
the terrestrial ice extent during the EOT, and review indica-
tors of ocean circulation change and deep-water formation,
including how these changes reconcile with palaeogeogra-
phy, in particular, ocean gateway effects.

Finally, we synthesise existing model experiments that
test three major proposed mechanisms driving the EOT:
(i) palaeogeography changes, (ii) greenhouse forcing and
(iii) ice sheet forcing upon climate. We highlight what has
been achieved from these modelling studies to illuminate
each of these mechanisms and explain various aspects of
the observations. We also discuss the limitations of these ap-

proaches and highlight areas for future work. We then com-
bine and synthesise the observational and modelling aspects
of the literature in a model–data intercomparison of the avail-
able models of the EOT. This approach allows us to assess
the relative effectiveness of the three modelled mechanisms
in explaining the EOT observations.

The paper is structured as follows: Sect. 1.2 defines the
chronology of events around the EOT and clarifies the ter-
minology of associated events, transitions and intervals,
thereby setting the framework for the rest of the review. Sec-
tion 2 reviews our understanding of palaeogeographic change
across the EOT and discusses proxy evidence for changes in
ocean circulation and ice sheets. Section 3 synthesises ma-
rine proxy evidence for sea surface temperatures (SSTs) and
deep-ocean temperature change. Section 4 synthesises terres-
trial proxy evidence for continental temperature change, with
a focus on pollen-based reconstructions. Section 5 presents
estimates of CO2 forcing across the EOT, from geochemical
and stomatal-based proxies. Section 6 qualitatively reviews
previous modelling work, and Sect. 7 provides a new quan-
titative intercomparison of previous modelling studies, with
a focus on model–data comparisons to elucidate the relative
importance of different forcings across the EOT. Section 8
provides a brief conclusion.

1.2 Terminology of the Eocene–Oligocene transition

Palaeontological evidence has long established Eocene (56 to
34 Ma) warmth in comparison to a long-term Cenozoic cool-
ing trend (Lyell and Deshayes, 1830, p. 99–100). As modern
stratigraphic records improved, a prominent step in that cool-
ing towards the end of the Eocene began to be resolved. This
became evident in early oxygen isotope records (δ18O) de-
rived from deep-sea benthic foraminifera, which show an iso-
tope shift towards higher δ18O values (Kennett and Shackle-
ton, 1976; Shackleton and Kennett, 1975), which was subse-
quently attributed to a combination of continental ice growth
and cooling (Lear et al., 2008). In the 1980s the search was
on for a suitable global stratotype section and point (GSSP)
to define the Eocene–Oligocene boundary (EOB). Much of
the evidence was brought together in an important synthe-
sis edited by Pomerol and Premoli Silva (1986). The GSSP
was eventually fixed at the Massignano outcrop section in
the Marche region of Italy in 1992 (Premoli Silva and Jenk-
ins, 1993) at the 19.0 m mark which corresponds to the ex-
tinction of the planktonic foraminifer family Hantkeninidae
(Coccione, 1988; Nocchi et al., 1986). By the conventions of
stratigraphy, Massignano is the only place where the EOB is
defined unambiguously; everywhere else the EOB must be
correlated to it, whether by biostratigraphy, magnetostratig-
raphy, isotope stratigraphy or other methods.

Coxall and Pearson (2007, p. 352) described the EOT as
“a phase of accelerated climatic and biotic change lasting
500 kyr that began before and ended after the E/O bound-
ary”. Recognising and applying this in practice turns out
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Figure 1. Oxygen stable isotope and chronostratigraphic characteristics of the Eocene–Oligocene transition (EOT) from deep marine records
and EOT terminology on the GTS2012 timescale. Benthic foraminiferal δ18O from six deep-sea drill holes are shown: tropical Atlantic Site
366, South Atlantic sites 522 and 1263 (Zachos et al., 1996; Langton et al., 2016); Southern Ocean sites 744 and 689 (Zachos et al., 1996;
Diester-Haass and Zahn, 1996) and equatorial Pacific Site 1218 (Coxall and Wilson 2011). Due to different sample resolutions, running
means are applied using a three-point filter for sites 522, 689 and 1263; five-point filter for sites 366 and 744; and a seven-point filter for
Site 1218. Timescale conversions were made by aligning common magnetostratigraphic tie points. The EOT is defined as a ca. 790 kyr long
phase of accelerated climatic and biotic change that began before and ended after the Eocene–Oligocene boundary (EOB) (after Coxall and
Pearson, 2007). It is bounded at the base by the “top” D. saipanensis nannofossil extinction event and above by the EOIS-δ18O maximum.
Benthic data are all Cibicidoides spp. or “Cibs. equivalent” and have not been adjusted to seawater equilibrium values. “Step 1” comprises
a modest δ18O increase linked to ocean cooling (Lear et al., 2008; Bohaty et al., 2012). The “top Hantkenina spp.” marker corresponds to
the position of this extinction event at DSDP Site 522 (including sampling bracket) with respect to the corresponding Site 522 δ18O curve.
That it coincides with the published calibrated age of this event (33.9 Myr) is entirely independent. The “late Eocene event” δ18O maximum
(after Katz et al., 2008) may represent a failed glaciation.

to be problematic due to variability in the pattern of δ18O
between records and on different timescales. Widespread
records now show the positive δ18O shift with increasing
detail. A high-resolution record from Ocean Drilling Pro-
gram (ODP) Site 1218 in the Pacific Ocean revealed two
δ18O and δ13C “steps” separated by a more stable “plateau
interval” (Coxall et al., 2005; Coxall and Wilson, 2011). The
EOT brackets these isotopic steps with the EOB falling in
the plateau between them (Coxall and Pearson, 2007; Cox-
all and Wilson, 2011; Dunkley Jones et al., 2008; Pearson et
al., 2008). However, while two-step δ18O patterns have now
been interpreted in other deep-sea records, thus far largely
from the Southern Hemisphere (Fig. 1) (Bohaty et al., 2012;
Borrelli et al., 2014; Coxall and Wilson, 2011; Langton et
al., 2016; Pearson et al., 2008; Wade et al., 2012; Zachos et
al., 1996), there is often ambiguity in their identification. In
particular, while the second δ18O step, “Step 2” of Coxall
and Pearson (2007), is an abrupt and readily correlated fea-
ture, the first step (Step 1 of Pearson et al., 2008; EOT-1 of
Katz et al., 2008) is often less prominent than at Site 1218
(Fig. 1). Furthermore, some records have been interpreted to
show more than two δ18O steps (e.g. Katz et al., 2008). Ben-
thic δ13C records provide a powerful complementary strati-

graphic tool. These also show a correlatable stepped pattern
of increase across the EOT, although in detail δ18O and δ13C
are not synchronous (Coxall et al., 2005; Zachos et al., 1996)
and further complications arise in correlation to other sites
(Coxall and Wilson, 2011). In attempting to synthesise the
pattern across multiple sites, we suggest that attempts to de-
fine and correlate an initial “Step 1” are premature at this
point and should await better-resolved records. Nonetheless,
we maintain a tentative Step 1 in our terminology because
it is important for differentiating phases of cooling vs ice
growth during the EOT.

Settling on a consistent terminology for other features of
the EOT is also problematic because usage of certain terms
has changed through time. In order to clarify the definition
of two key stratigraphic features, we recommend using the
following terms: (i) for the basal Oligocene δ18O increase
we suggest the term “earliest Oligocene oxygen isotope step”
(EOIS) to denote the large isotope step that occurs well after
the EOB and within the lower part of chron C13n (Fig. 1);
(ii) we suggest the term “early Oligocene glacial maximum”
(EOGM; Liu et al., 2004; Fig. 1) to denote the peak-to-peak
isotope stratigraphic interval, corresponding to most of chron
C13n (starting at the top of the EOIS). Other terms for these
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Table 1. Summary of Eocene Oligocene terminology and approximate timings of events, as interpreted at the time of writing. Timescales
referred to are GTS2012 (Gradstein et al., 2012) and CK95 (Cande and Kent, 1995).

Event Abbr. Definition Correlation Timing Comment Also known as

Early
Oligocene
glacial
maximum

EOGM Period of cold cli-
mate/glaciation in the
early Oligocene cor-
responding to most of
magnetic chron C13n

Peak-to-peak δ18O
stratigraphic interval
starting at the top of
the EOIS & extending
to another peak around
the top of C13n

33.65 to ∼ 33.16 Ma,
∼ 490kyr duration

Defined by Liu et
al. (2004). The end
of the EOGM may
correspond to a
second δ18O peak,
sometimes referred
to as Oi-1b

Oi-1 (Zachos et al.,
1996) including the
separate δ18O maxima
Oi-1a and Oi-1b

Chron C13n C13n Interval of normal
magnetic polarity in
the early Oligocene
broadly correlative
with the EOGM

Between specific mag-
netic reversals

33.705–33.157 Ma
(GTS2012)

Very useful for corre-
lation & dating when
available

–

Eocene–
Oligocene
transition

EOT A phase of acceler-
ated climatic & biotic
change that began be-
fore and ended after the
EOB

Stratigraphic interval
between the extinction
of Discoaster saipa-
nensis & the top of the
EOIS

Start: “top” D. saipa-
nensis extinction event;
end: end of EOIS δ18O
maximum event;
duration ∼ 790 kyr

Definition revised
here after Coxall and
Pearson (2007)

–

Earliest
Oligocene
oxygen
isotope step

EOIS Short period of rapid
δ18O increase (0.7 ‰
or more) that occurred
well after the EOB &
within the lower part of
chron C13n

Stratigraphically above
the EOB & within the
lowermost part of chron
C13n

The peak is at
∼ 33.65 Ma
(GTS2012);
duration ∼ 40 kyr

Herein defined as
the end of the EOT
and the start of the
EOGM

The “Oi1 event” “... at
the base of Zone Oi1”,
Miller et al. (1991);
Oi-1a of Zachos et
al. (1996)

Eocene
Oligocene
boundary

EOB The stratigraphic
boundary between the
Eocene and Oligocene
epochs defined at the
Massignano GSSP

Denoted by the extinc-
tion of the planktonic
foraminifera Hantken-
inain the marine realm

33.9 Ma (GTS2012),
33.7 Ma (CK95)

– Base Oligocene epoch;
base Rupelian stage

Step 1 – The first-step increase
in δ18O occurring
shortly before the EOB
in some records

Harder to identify &
correlate than the EOIS

∼ 34.15 Ma;
duration ∼ 40 kyr.

– EOT-1, Katz et
al. (2008); “precur-
sor glaciation”, Scher
et al. (2011)

Late Eocene
event

– A transient late Eocene
cool or glacial event
near the start of the
EOT

Transient interval of
positive δ18O seen in
some records

Onset is coincident
(within 80 kyr analyt-
ical error; Coxall et
al., 2005) with the D.
saipanensis extinction
(34.44 Ma) at Site 1218

Defined by Katz et
al. (2008);
defines the start of
the EOT as defined
herein

–

Priabonian
oxygen
isotope
maximum

PrOM A transient late Eocene
cool or glacial event

Transient interval of
positive δ18O seen
in some records well
below the EOT

∼ 37.3Ma; duration
∼ 140kyr, tentatively
placed within chron
C17n.1n

Defined by Scher et
al. (2014)

–

features have been used inconsistently in the literature (Ta-
ble 1). For example, the term “Oi-1” was originally defined
(at DSDP Site 522) by Miller et al. (1991) as an isotope
stratigraphic “zone” between one oxygen isotope peak and
another, corresponding to a duration of several millions of
years. Here there was a distinction between the “Zone Oi-1”
and the “Oi-1 event”, the latter being equivalent to our EOIS.
Subsequent articles variously refer to Oi-1 as an extended
isotope zone, the peak δ18O value at the base of that zone, an
extended phase of high δ18O values in the lower Oligocene
approximately synonymous with the EOGM, or the “step”
that led up to the peak value (see discussion and references

in Coxall and Pearson, 2007, p. 352). The terms “Oi-1a” and
“Oi-1b”, originally defined by Zachos et al. (1996) as “... two
distinct, 100 to 150 kyr long glacial maxima ... separated by
an ‘interglacial”’, have also been inconsistently applied in the
literature and are now arguably an impediment to clear com-
munication. Due to this ambiguity, we avoid the term “Oi-1”
here. Katz et al. (2008) referred to prominent oxygen iso-
tope steps within the EOT as “EOT-1” and “EOT-2”, which
might seem a convenient nomenclature for the steps referred
to here, but, whereas “EOT-1” arguably corresponds to the
“Step 1” of Coxall and Pearson (2007), “EOT-2” was a sepa-
rate feature identified in the St. Stephens Quarry record some
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way below the level identified as “Oi-1” (Katz et al., 2008,
p. 330). Hence it is not appropriate to use “EOT-2” to denote
the second step. Note, for clarity, the EOIS is not instanta-
neous and several records show some “intermediate” values;
its inferred duration in the records presented here is in the
tens of thousands of years (40 kyr at Site 1218; Coxall et al.,
2005).

This brings us back to the definition of the “EOT”. Based
on the stratigraphic record from Tanzania, Dunkley Jones et
al. (2008) and Pearson et al. (2008) placed the base of the
EOT at the extinction of the tropical warm-water nannofos-
sil Discoaster saipanensis, a reliable bioevent which they re-
garded as the first sign of biotic extinction associated with
the late Eocene cooling. This extinction event has long been
used to mark the base of nannofossil Zone NP21 (Martini,
1971) and more recently Zone CNE21 (Agnini et al., 2014).
On the timescale used by Dunkley Jones et al. (2008) it was
estimated to be 500 kyr before the top of the EOIS. How-
ever, a subsequent calibration from ODP Site 1218 (Blaj et
al., 2009) placed this event significantly earlier than previ-
ously suggested, which is supported by recent work in Java
(Jones et al., 2019). In the record from Site 1218 the D. saipa-
nensis extinction is coincident (within 80 kyr analytical er-
ror; Coxall et al., 2005) with the base of a significant δ18O
increase – possibly a “failed” glaciation – that seems to be
visible in many of the records (including Tanzania) and has
been termed the “late Eocene event” by Katz et al. (2008).
It seems desirable to include these biotic and climatic events
within the definition of the EOT rather than insist on an arbi-
trary 500 kyr duration. On the most commonly used current
timescale, “Geological Timescale 2012” (GTS2012; Grad-
stein et al., 2012), the critical levels are calibrated as fol-
lows: top of the EOIS at 33.65 Ma, base of chron C13n at
33.705 Ma, EOB at 33.9 Ma and extinction of D. saipanensis
at 34.44 Ma. Hence the stratigraphic interval of the EOT ac-
cording to our preferred definition is now given an estimated
duration of 790 kyr (Fig. 1). This terminology and the alter-
natives are summarised in Table 1 and illustrated below in
Fig. 1.

Combined δ18O and trace element investigations (see
Sect. 3.2) have led to the suggestion that the δ18O increase
commonly referred to as Step 1 (Fig. 1) is mostly attributable
to ocean cooling, with subordinate ice sheet growth, whereas
the more prominent δ18O increase at the end of the EOT (i.e.
the EOIS in our terminology) largely represents ice growth
with a little further cooling (Bohaty et al., 2012; Katz et
al., 2008; Lear et al., 2008). Estimates of the combined to-
tal sea-level fall across the EOT are of the order of 70 m
(Miller et al., 2008; Wilson et al., 2013), and microfacies and
palaeontological records from shelf environments (Houben
et al., 2012) are consistent with this generalisation. A recent
shallow marine sediment record also indicates the onset of
major glaciation at ∼ 33.7 Ma (Gallagher et al., 2020), in
agreement with deep-sea records. The EOIS is the sharpest
feature in most records, culminating with the highest ben-

thic δ18O values of the Eocene and Oligocene. It is widely
suggested that it signifies the initiation of major sustained
Antarctic glaciation, most likely an early East Antarctic Ice
Sheet (EAIS) (Bohaty et al., 2012; Coxall et al., 2005; Ga-
leotti et al., 2016; Miller et al., 1987; Shackleton and Ken-
nett, 1975; Zachos et al., 1992). The EOGM is interpreted
as an approximately 500 kyr long glacial maximum, with
lower values visible in some records (Zachos et al., 1996;
Liu et al., 2004) (Fig. 1). Oxygen isotope maxima in the late
Eocene imply substantial ephemeral precursor glaciations in
the approach to the EOT (Galeotti et al., 2016; Houben et al.,
2012; Katz et al., 2008; Scher et al., 2011, 2014). The oldest
and most prominent of these hypothesised transient glacial
events occurred at ∼ 37.3 Ma (within magnetochron C17n)
and is referred to as the Priabonian oxygen isotope maxi-
mum (PrOM) Event (Scher et al., 2014). The “late Eocene
event” of Katz et al. (2008) at ∼ 34.15 Ma may be regarded
as the second, the third being δ18O Step 1 at ∼ 34 Ma (the
“precursor glaciation” of Scher et al., 2011). Nevertheless,
differences between δ18O curves from different water depths
and ocean regions, combined with increasing detail in indi-
vidual records afforded by high-resolution sampling, empha-
sise that the EOT cannot be adequately understood as a series
of discrete events because it is clearly imprinted by orbitally
paced variability throughout (Coxall et al., 2005).

A detailed discussion of the Hantkenina extinction and as-
sociated bioevents at the EOB was provided by Berggren
et al. (2018, p. 30–32). The highest stratigraphic occurrence
of the planktonic foraminifera family Hantkeninidae denotes
the EOB in its type section (Nocchi et al., 1986). This is
thought to have involved simultaneous extinction of all five
morphospecies and two genera of late Eocene hantkeninids
(Coxall and Pearson, 2007) (Fig. 1). Insofar as the principles
of biostratigraphy require a particular species to denote a bio-
zone boundary, the commonest species, Hantkenina alaba-
mensis, is used to define the base of Zone O1 (Berggren et al.,
2018; Berggren and Pearson, 2005; Wade et al., 2011). The
extinction of H. alabamensis can be considered the “primary
marker” for worldwide correlation of the EOB. It occurs at
a slightly higher (later) level than another set of prominent
planktonic foraminifer extinctions, namely Turborotalia cer-
roazulensis and related species. DSDP Site 522 (South At-
lantic), thus far, is one of the few deep-sea records to have
both a detailed δ18O stratigraphy and planktonic foraminifera
assemblages that capture these evolutionary events. Here, the
Hantkenina extinction horizon occurs approximately two-
thirds of the way through the EOT (Fig. 1). It occurs at a simi-
lar relative position in the hemipelagic EOT sequence in Tan-
zania (Pearson et al., 2008), also in unpublished data from In-
dian Ocean ODP Site 757 (Coxall et al., unpublished). This
finding implies that the extinction of the hantkeninids was
approximately synchronous, although its cause is currently
unknown. Existing constraints on the hantkeninid extinction
horizon remain rather coarse in terms of sampling resolution
compared to many isotopic records, and the matter will ben-
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efit greatly from incoming high-resolution records from Site
U1411, which boasts both excellent (glassy) preservation and
orbital level sampling.

Dating and correlation of non-marine records, which usu-
ally lack δ18O stratigraphy, is more challenging, and there
are far fewer well-dated records on land. Here a strict con-
cept of the EOT is difficult to apply and relies on correla-
tions using other stratigraphic approaches, including magne-
tostratigraphy and palynomorph or mammal tooth biostratig-
raphy, which have been cross-calibrated in a few marine and
marginal-marine sections (Abels et al., 2011; Dupont-Nivet
et al., 2007, 2008; Hooker et al., 2004). Central Asian sec-
tions are the exception, where even the step features of the
EOT can be identified using magneto-, bio- and cyclostratig-
raphy (Xiao et al., 2010). Moreover, combined δ18O and
clumped isotope analyses on freshwater gastropod shells
from a terrestrial EOT section in the south of England have
permitted the first direct correlation of marine and non-
marine realms and identified coupling between cooling and
hydrological changes in the terrestrial realm (Sheldon et al.,
2016). This finding suggests a close timing and causal re-
lation between the earliest Oligocene glaciation and a ma-
jor Eurasian mammalian turnover event called the “Grande
Coupure” (Hooker et al., 2004; Sheldon et al., 2016). Dur-
ing the Grand Coupure, many endemic European mammal
species became extinct and were replaced by Asian immi-
grant species. These changes have been attributed to a com-
bination of climate-driven extinction and species dispersal
due to the closing of Turgai Strait, which provided a greater
connection between Europe and Asia (Akhmetiev and Beni-
amovski, 2009; Costa et al., 2011; Hooker et al., 2004).

In shallow-water carbonate successions, the EOB has tra-
ditionally been approximated by the prominent extinctions of
a series of long-ranging larger benthic foraminifers (LBFs),
often called orthophragminids (corresponding to the families
Discocylinidae and Asterocyclinidae; Adams et al., 1986).
The general expectation was that these extinctions likely oc-
curred at the time of maximum ice growth and sea-level re-
gression – in our terminology the EOIS. However evidence
from Tanzania (Cotton and Pearson, 2011) and Indonesia
(Cotton et al., 2014) suggest that the extinctions occurred
within the EOT. In Tanzania the extinctions occur quite pre-
cisely at the level of the EOB, hinting that the EOB itself may
have had a global cause affecting different environments,
possibly independent of the events that caused the isotope
increases (Cotton and Pearson, 2011).

The definition of the EOT used here excludes the long-
term Eocene cooling trend. That trend began in the Ypre-
sian (early Eocene) and continued through much of the Lute-
tian and Bartonian (middle Eocene, albeit interrupted by the
middle Eocene climatic optimum (MECO); Bohaty and Za-
chos 2003) and Priabonian (late Eocene; Cramwinckel et al.,
2018; Inglis et al., 2015; Liu et al., 2018; Śliwińska et al.,
2019; Zachos et al., 2001). In particular, prominent extinc-
tions in various marine groups occurred around the begin-

ning of the Priabonian (late Eocene), possibly connected with
global cooling (e.g. Wade and Pearson, 2008; note that the
base of the Priabonian has recently been defined in the Alano
section in Italy; Agnini et al., 2020). These data are excluded
by our definition from the EOT but may be part of the same
general long-term pattern. In some stratigraphic records, es-
pecially terrestrial ones, it may not be easy to distinguish
these longer-term events from the EOT.

2 Proxy evidence for palaeogeography, ocean
circulation and terrestrial ice evolution

Here we discuss proxy evidence for the global palaeogeogra-
phy of the EOT (Sect. 2.1), including the state and evolution
of ocean gateways (Sect. 2.2), and proxy evidence for ocean
circulation (Sect. 2.3) and Antarctic glaciation (Sect. 2.4).
We then briefly discuss the timing of the Northern Hemi-
sphere glaciation (Sect. 2.5).

2.1 Tectonic reconstruction

The tectonic evolution of the southern continents, opening
a pathway for the Antarctic Circumpolar Current (ACC),
has long been linked with long-term Eocene cooling and
the EOT (Kennett et al., 1975). However, there remain ma-
jor challenges in reconstructing the palaeogeography at or
around the EOT, requiring a series of methodological steps
(Baatsen et al., 2016; Kennett et al., 1975; Markwick, 2007,
2019; Markwick and Valdes, 2004; Müller et al., 2008). The
first step is to use modern geography and relocate the con-
tinental and ocean plates according to a plate tectonic evo-
lution model, used in software such as GPlates (Boyden et
al., 2011). This software uses the interpretation of seafloor
spreading and palaeomagnetic data to reconstruct relative
plate motion (e.g. Scotese et al., 1988) and an absolute refer-
ence frame to position the plates relative to the Earth’s man-
tle (e.g. Dupont-Nivet et al., 2008). Currently, there are two
such absolute reference frames: one based on a global net-
work of volcanic hot spots (Seton et al., 2012) and one based
on a palaeomagnetic reference frame (van Hinsbergen et al.,
2015; Torsvik et al., 2012). Importantly, these two reference
frames give virtually the same continental outlines, but the
orientation of the continents is shifted. This results in differ-
ences in continental positions between the reference frames
of up to 5–6◦ (Baatsen et al., 2016) around the EOT, creating
an uncertainty in reconstructing palaeogeography, especially
in southern latitudes between 40 and 70◦ S, where important
land and ocean geological archives exist. This latitudinal un-
certainty also impacts the reconstruction of Antarctic glacia-
tion, since glacial dynamics are highly sensitive to latitude.

After the plate tectonic reconstruction has been applied,
adjustments are needed to capture the age–depth evolution of
the seafloor (Crosby et al., 2006) and seafloor sedimentation
rate (Müller et al., 2008). Adjusting land topography is more
difficult and requires knowledge of palaeo-altimetry, includ-
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ing processes such as plate collision processes, uplift, sub-
sidence and erosion. Several publicly available reconstruc-
tions exist for the Eocene; Markwick (2007) reconstructed
palaeotopography for the late Eocene (38 Ma), while Sewall
et al. (2000) and more recently (Zhang et al., 2011) and
Herold et al. (2014) have generated palaeotopographies for
the early Eocene (∼ 55 to 50 Ma). These are based on the
hot spot reference frame. Baatsen et al. (2016) have recently
created a palaeogeographic reconstruction of the late Eocene
using the Palaeomagnetic reference frame. Such efforts to de-
velop realistic palaeogeography for each time slice represent
a major undertaking in blending geomorphic evidence with
tectonic evolution and thus include many specific details that
are beyond the scope of this review.

Recently, a stage-by-stage palaeogeographic reconstruc-
tion of the entire Phanerozoic has been made publicly avail-
able in digital format (Scotese and Wright, 2018). This in-
cludes snapshots of the Priabonian (35.9 Ma) and Rupelian
(31 Ma). Another stage-by-stage reconstruction of Ceno-
zoic palaeogeography evolution originates from Markwick
(2007); this reconstruction has been incorporated into a
modelling study of climate dependence on palaeogeogra-
phy (Farnsworth et al., 2019; Lunt et al., 2016), and palaeo-
geography changes across the EOT (Kennedy et al., 2015).
However, the most recent versions of the (Markwick, 2007)
palaeogeography reconstructions are proprietary and are thus
not included in this paper. Therefore, we present a sum-
mary of late Eocene (38 Ma) palaeogeography in Fig. 2 from
the publicly available datasets of Baatsen et al. (2016) and
Scotese and Wright (2018). Our aim here is not to evaluate
these reconstructions, but to present them such that their dif-
ferences can be taken as broadly indicative of the uncertain-
ties in palaeogeography at this time.

The reconstructions contain several notable regions of un-
certainty which we briefly mention. They include (i) the Ti-
betan Plateau and the Indian subcontinent, where there are
clear disagreements between the reconstructions, (ii) the Tur-
gai Strait and Tethys region, which has far greater shallow
marine shelf regions in the Baatsen et al. (2016) reconstruc-
tion, (iii) the Fram Strait, which is arguably closed by the
Eocene–Oligocene transition but is open in both reconstruc-
tions (Lasabuda et al., 2018), and (iv) the Rocky Mountains
and North American continent exhibit key differences in el-
evation and coastlines, which has implications for Eocene–
Oligocene climate evolution (Chamberlain et al., 2012). A
full review of these uncertainties is beyond the scope of this
paper, however we briefly discuss some impacts of these
palaeogeography uncertainties on terrestrial temperature re-
constructions in Sect. 4, while we discuss the impacts on
ocean circulation in Sect. 2.2 and 2.3.

2.2 Southern Ocean gateways

A long-held hypothesis on the cause of the EOT glaciation is
that Antarctica cooled because of tectonic opening of South-

ern Ocean gateways (Barker and Burrell, 1977; Kennett,
1977). This mechanism suggests that the onset of the ACC
reorganised ocean currents from a configuration of subpolar
gyres with strong meridional heat transport to predominantly
zonal flow, thereby causing thermal isolation of Antarctica
(Barker and Thomas, 2004). The hypothesis is supported by
foraminiferal isotopic evidence from deep-sea drill cores in
the Southern Ocean, which indicate a shift from warm to cold
currents (Exon et al., 2004). As such, there has been consid-
erable effort to reconstruct the tectonic history of the South-
ern Ocean gateways.

The Drake Passage opening has been dated to around
50 Ma (Livermore et al., 2007) or even earlier (Markwick,
2007); however it was likely shallow and narrow at this time.
The timing of the transition to a wide and deep gateway, po-
tentially capable of sustaining a vigorous ACC, occurred on
a timescale of tens of millions of years. Even with substantial
widening of Drake Passage, several intervening ridges in the
region are likely to have blocked the deep circumpolar flow
(Eagles et al., 2005). These barriers may not have cleared un-
til the Miocene at around 22 Ma (Barker and Thomas, 2004;
Dalziel et al., 2013). The evolution of the Tasman Gate-
way is better constrained. Geophysical reconstructions of
continent–ocean boundaries (Williams et al., 2011) place the
opening of a deep (greater than ∼ 500 m) Tasman Gateway
at 33.5± 1.5 Ma (Scher et al., 2015; Stickley et al., 2004).
Marine microfossil records suggest the circumpolar flow was
initially westward (Bijl et al., 2013). Multiproxy-based evi-
dence from ODP Leg 189 suggests that the opening of the
Tasman Gateway significantly preceded Antarctic glaciation
and might therefore not have been its primary cause (Hu-
ber et al., 2004; Stickley et al., 2004; Wei, 2004). The re-
sults also indicate that the gateway deepening at the EOT ini-
tially produced an eastward flow of warm surface waters into
the southwestern Pacific, not of cold surface waters as previ-
ously assumed. Subsequently, the Tasman Gateway steadily
opened during the Oligocene, hypothesised to cross a thresh-
old when the northern margin of the ACC aligned with the
westerly winds (Scher et al., 2015), triggering the onset of
an eastward-flowing ACC at around 30 Ma. However, the
westerly winds can also shift position due to changes in oro-
graphic barriers or an increase in the meridional tempera-
ture gradient after glaciation. Thus, the opening of Southern
Ocean gateways approximately coincides with the EOT, but
with large uncertainty on the timing and implications. We
discuss modelling of this mechanism in Sect. 6.1.

2.3 Meridional overturning circulation

Throughout much of the Eocene, deep-water formation is
suggested to have occurred dominantly in the Southern
Ocean and the North Pacific (Ferreira et al., 2018), based
on numerical modelling and supported by stable and ra-
diogenic isotope work (Cramer et al., 2009; McKinley et
al., 2019; Thomas et al., 2014). Compilations of δ18O and
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Figure 2. Palaeogeography in the late Eocene showing two alternative reconstructions. Panels (a) and (c) use the hot spot reference frame,
using the Scotese and Wright (2018) palaeogeography at 36 Ma, while panels (b) and (d) use the palaeomagnetic reference frame showing
the reconstruction of Baatsen et al. (2016) at 38 Ma. These two reconstructions use different methodologies and are presented as broadly
indicative of the uncertainties in palaeogeography at this time. Also shown in panel (d) are post-EOT coastlines at 30 Ma (black contours)
and 1000 m depth (orange contours), which illustrate the widening of the Southern Ocean gateways during the 8 Myr interval around the
EOT.

δ13C throughout the Atlantic Basin suggest that the Atlantic
meridional overturning circulation (AMOC) either started up
or strengthened at the EOT (Borrelli et al., 2014; Coxall et al.,
2018; Katz et al., 2011). This view of the AMOC expansion
is supported by a decrease in South Atlantic εNd around the
EOT (Via and Thomas, 2006). Significant seafloor spread-
ing was occurring in the Southern Hemisphere, such that
these changes in ocean circulation have previously been ex-
plained by the opening of Southern Ocean gateways (Borrelli
et al., 2014). However, studies of deep-sea sediment drifts
suggest that some kind of North Atlantic overturning oper-
ated from the middle Eocene (Boyle et al., 2017; Hohbein
et al., 2012). This earlier onset is supported by climate mod-
elling that suggested that AMOC fluctuations in the middle

Eocene are linked to obliquity forcing cycles (Vahlenkamp et
al., 2018a, b). Moreover, interactions between the Arctic and
Atlantic oceans are gaining interest as potential triggers of
a late Eocene proto-AMOC (Hutchinson et al., 2019). Data
from the Labrador Sea and western North Atlantic margin
indicate that North Atlantic waters became saltier and denser
from 37 to 33 Ma (Coxall et al., 2018). This densification
may then have strengthened or even triggered an AMOC,
suggesting a possible forcing mechanism for Antarctic cool-
ing that predates the EOT and Southern Ocean gateway open-
ings.

Proxy records suggest that the Arctic Ocean was much
fresher during the Eocene than the present day, with typical
surface salinities around 20–25 psu and periodic excursions
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to very low salinity conditions (< 10psu) (Brinkhuis et al.,
2006; Kim et al., 2014; Waddell and Moore, 2008). Outflow
of this fresh surface water into the North Atlantic can po-
tentially prohibit deep-water formation (Baatsen et al., 2020;
Hutchinson et al., 2018). A new line of evidence suggests that
deepening of the Greenland–Scotland Ridge around the EOT
may have enabled North Atlantic surface waters to become
saltier (Abelson and Erez, 2017; Stärz et al., 2017), by allow-
ing a deeper exchange between the basins. A related hypoth-
esis derived from sea-level and palaeo-shoreline estimates in
the Nordic seas is that the Arctic likely became isolated dur-
ing the Oligocene (Hegewald and Jokat, 2013; O’Regan et
al., 2011). Thus a gradual constriction of the connection be-
tween the Arctic and Atlantic presents a newly hypothesised
priming mechanism for establishment of a well-developed
AMOC (Coxall et al., 2018; Hutchinson et al., 2019).

2.4 Antarctic glaciation

Although transient glacial events on Antarctica are proposed
for the late Eocene, the most significant long-term glacia-
tions likely began on East Antarctica in the Gamburtsev
Mountains and other highlands (Young et al., 2011) as a re-
sult of rapid global cooling in the early Oligocene around
33.7 Ma (EOGM, Fig. 1). Evidence for glacial discharge into
open ocean basins in the earliest Oligocene is long estab-
lished, with ice-rafted debris appearing in deep-sea South-
ern Ocean sediment cores (Zachos et al., 1992). Since these
initial results, efforts have continued to document and un-
derstand early Cenozoic Antarctic ice dynamics (Barker et
al., 2007; Francis et al., 2008; McKay et al., 2016). Combin-
ing perspectives from marine geology, geophysics, geochem-
ical proxies and modelling, these efforts have largely focused
on the evolution and stability of the early Oligocene Antarc-
tic ice sheets and estimates of ice volume contributions to
sea-level change. Other important developments in the study
of Antarctic ice include modelled thresholds for Antarctic
glaciation (DeConto et al., 2008; Gasson et al., 2014) and
improved reconstructions of Eocene–Oligocene subglacial
bedrock topography (from airborne radar surveys). These
bedrock reconstructions are important for reconstructing the
nucleation centres of precursor ice sheets (Scher et al., 2011,
2014) and subsequent development of continent-sized ice
sheets (Bo et al., 2009; Thomson et al., 2013; Wilson et al.,
2013; Wilson and Luyendyk, 2009; Young et al., 2011).

Evidence for glaciation in the Weddell Sea and Ross Sea
suggest that there was an increase in physical weathering
over West Antarctica around the EOT (Anderson et al., 2011;
Ehrmann and Mackensen, 1992; Huang et al., 2014; Olivetti
et al., 2015; Scher et al., 2011; Sorlien et al., 2007). How-
ever, in the Ross Sea, evidence suggests that an expansion
over West Antarctica in Marie Byrd Land occurred after the
EOT (Olivetti et al., 2013), while in the Weddell Sea sed-
imentation rates were still lower than in recent times, sug-
gesting the West Antarctic Ice Sheet was not expanded to

modern proportions (Huang et al., 2014). This is consistent
with approximations of ice volume based upon oxygen iso-
topes (Bohaty et al., 2012; Lear et al., 2008) and is supported
by the record of relatively diverse vegetation around at least
coastal regions of Antarctica through the Oligocene (Francis
et al., 2008).

Recent evidence has emerged of transient precursor
Antarctic glaciations that occurred in the late Eocene (Carter
et al., 2017; Escutia et al., 2011; Passchier et al., 2017;
Scher et al., 2014), suggesting a “flickering” transition out
of the greenhouse. Importantly, several Southern Ocean sites
revealed evidence that Antarctic glaciation induced crustal
deformation and gravitational perturbations resulting in lo-
cal sea-level rise close to the young Antarctic Ice Sheet
(Stocchi et al., 2013). Finally, detailed core sedimentary
records drilled close to Antarctica in the western Ross Sea
invoke a transition from a modestly sized highly dynamic
late Eocene–early Oligocene ice sheet, existing from ∼ 34–
32.8 Ma, to a more stable continental-scale ice sheet there-
after, which calved at the coastline (Galeotti et al., 2016).

2.5 Northern Hemisphere glaciation

While there is clear evidence for Antarctic glaciations at
the EOT, the question of contemporaneous Northern Hemi-
sphere glaciation is contentious. The prevailing view is that
the Oligocene represented a non-modern-like state with only
Antarctica glaciated (Westerhold et al., 2020; Zachos et al.,
2001). Glaciation in mountain areas around the globe is sug-
gested to have followed through the Miocene and Pliocene,
with evidence for the first significant build-up of ice on
Greenland (in the southern highlands) traced to the late
Miocene, sometime between 7.5 and 6 Ma (Bierman et al.,
2016; Larsen et al., 1994; Maslin et al., 1998; Pérez et al.,
2018) or as early as 11 Ma (Helland and Holmes, 1997).
Northern Hemisphere glaciation intensified during the late
Pliocene (∼ 2.7 Ma), when large terrestrial glaciers began
rhythmically advancing and retreating across North America,
Greenland and Eurasia (Bailey et al., 2013; Ehlers and Gib-
bard, 2007; Lunt et al., 2008; Maslin et al., 1998; Raymo,
1994; De Schepper et al., 2014; Shackleton et al., 1984). It is
important to note that a delay in Northern Hemisphere glacia-
tion relative to Antarctica is predicted by climate models –
the stabilising effect of the hysteresis in the height–mass bal-
ance feedback becomes weaker with greater distance from
the poles (Pollard and DeConto, 2005), because with de-
creasing latitude summers become warmer for a given radia-
tive forcing (DeConto et al., 2008).

Nevertheless, a series of studies (Tripati et al., 2005, 2008;
Tripati and Darby, 2018) argue that bipolar glaciation was
triggered in the Eocene and/or Oligocene. This suggestion
is based on two lines of evidence from the sedimentary
record: (i) estimates of global seawater δ18O values (Tripati
et al., 2005) and (ii) identification of ice-transported sedi-
ment grains inferred to have originated from Greenland in
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both interior Arctic Ocean and subarctic Atlantic sediment
cores associated with the EOT (Eldrett et al., 2007), or earlier
(middle Eocene) (St. John, 2008; Tripati and Darby, 2018;
Tripati et al., 2008). Certainly, several lines of evidence pro-
vide support for winter sea ice in the Arctic from the mid-
dle Eocene (Darby, 2014; St. John, 2008; Stickley et al.,
2009) and perennial sea ice from 13 Ma (Krylov et al., 2008).
It is possible that small mountain glaciers on east Green-
land, perhaps comparable to the modern Franz Josef and
Fox glaciers of New Zealand (which extend from the South-
ern Alps through lush rain forest), reached sea level during
cooler orbital phases of the Eocene, intensifying in the late
Eocene and early Oligocene (Eldrett et al., 2007). Yet the
results of a recent detailed analysis of expanded EOT sec-
tions from the North Atlantic’s modern-day “Iceberg Alley”
on the Newfoundland margin are inconsistent with the pres-
ence of extensive ice sheets on southern and western Green-
land and the northeastern Canadian Arctic, contradicting the
suggestion of extensive early Northern Hemisphere glacia-
tion in favour of a unipolar icehouse climate state at the
EOT (Spray et al., 2019). Furthermore, it is unlikely that ice
growth on land in the Northern Hemisphere was sufficiently
extensive to impact global seawater δ18O budgets or sea level
at the EOT (Coxall et al., 2005; Lear et al., 2008; Mudelsee et
al., 2014). Marine SSTs and floral records from the subarc-
tic and Arctic imply sustained warm temperatures and ex-
tensive lowland temperate vegetation well into the middle
Miocene (O’Regan et al., 2011), which are not readily rec-
onciled with large continental ice sheets fringing Greenland
and other Arctic landmasses then or before this time.

From a theoretical perspective, climate and ice sheet mod-
elling suggest that the CO2 threshold for Northern Hemi-
sphere ice sheet inception is fundamentally lower than for
Antarctica (DeConto et al., 2008; Gasson et al., 2014), im-
plying that the climate must be cooler to glaciate Greenland
than Antarctica. This is also consistent with evidence that the
modern Greenland Ice Sheet is highly sensitive to climatic
warming and that Greenland may have been almost ice-free
for extended periods even in the Pleistocene (Schaefer et al.,
2016). This asymmetry between the Northern and South-
ern hemispheres in susceptibility to glaciation has been at-
tributed to (i) the lower latitudes of the continents encircling
the Arctic Ocean relative to the Antarctic, together with dif-
ferent ocean and atmospheric circulation patterns (DeConto
et al., 2008; Gasson et al., 2012), and (ii) the ice sheet carry-
ing capacity of the continents; it has been argued that Green-
land topography was low during the Palaeogene compared to
Antarctica, and extensive mountain building, providing high-
altitude terrain needed for glaciation, did not occur until the
late Miocene–Pliocene (Gasson et al., 2012; Japsen et al.,
2006; Solgaard et al., 2013).

But even on the question of Greenland topography there is
uncertainty. Reconstructions of plate kinematics in suspected
ice sheet nucleation sites (e.g. northern Greenland, Ellesmere
Island) are equivocal. Recent work on the plate kinematic

history of the Eurekan orogeny, taking into account crustal
shortening (Gurnis et al., 2018), indicates a period of signifi-
cant compression in northern Greenland and Ellesmere from
55 to 35 Ma (Gion et al., 2017) that was probably associated
with uplift (Piepjohn et al., 2016). These latest tectonic in-
sights are compatible with insights from apatite fission track
and helium data that support the onset of a rapid phase of
exhumation of the east Greenland margin around 30± 5 Ma
(Bernard et al., 2016; Japsen et al., 2015). Together, these
approaches support a view of high mountains on Greenland
and Ellesmere that began eroding in the late Eocene to early
Oligocene with a greater possibility of supporting glaciers.

3 Marine observations

3.1 Sea surface temperature observations

A key requirement for understanding the cause and conse-
quences of the Eocene–Oligocene climatic transition is good
spatial and temporal constraints on global temperatures, and
our most numerous and well-resolved records of this un-
doubtedly come from the oceans. Quantitative reconstruction
of sea surface and deep-ocean temperatures has been ongoing
for decades. This requires use of various geochemical prox-
ies, both to provide independent support for absolute tem-
perature estimates and because different proxy options are
available for different ocean and sedimentary settings, and
deep-sea versus surface ocean water masses. Each method
has its own limitations and uncertainties, resulting in a cur-
rently patchy but steadily improving view of global change.
Quantitative assemblage-based SST proxies akin to transfer
functions are not available because there are no living plank-
ton relatives of those from the EOT. For a thorough review of
pre-Quaternary marine SST proxies, and their strengths and
weaknesses, see Hollis et al. (2019).

While SST is more heterogeneous than the deep sea, re-
construction of it in the EOT is in some ways currently
more achievable than bottom water temperatures because
more proxies are available, although there are still multi-
ple confounding factors to consider. Classical marine δ18O
palaeothermometry extracted from the calcium carbonate
shells of fossil planktonic (surface-floating) foraminifera is
especially complicated because of the combining influences
of (i) compromised fossil preservation under the shallow late
Eocene ocean calcite compensation depth, limiting the avail-
ability of planktonic records, and (ii) increasing δ18O of sea-
water as a consequence of ice sheet expansion, which en-
riches ocean water and thus increases calcite δ18O – a signal
which can otherwise indicate cooling. However, a growing
number of clay-rich hemipelagic marine sequences contain-
ing exceptionally well-preserved (glassy) fossil material are
yielding δ18O palaeotemperatures that provide useful SST
perspectives. δ18O SSTs derived from glassy foraminifera
(Haiblen et al., 2019; Norris and Wilson, 1998; Pearson et al.,
2001; Wilson et al., 2002; Wilson and Norris, 2001) contrast
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greatly from those measured on recrystalised “frosty” mate-
rial (Sexton et al., 2006). A detailed compilation of glassy
versus recrystalised foraminiferal δ18O proxies around the
EOT is given in Piga (2020).

Planktonic foraminifera Mg /Ca palaeothermometry pro-
vides another means of quantifying SSTs (Evans et al., 2016;
Lear et al., 2008); however such records are even more sparse
than δ18O equivalents due to the scarcity of appropriate EOT
fossils. This method is especially useful since, in theory, un-
like δ18O it should be independent of Antarctic glaciation
and, when coupled with δ18O palaeothermometry, past vari-
ations in the δ18O composition of seawater, and thus ice vol-
ume changes may also be estimated (Lear et al., 2004, 2008;
Mudelsee et al., 2014). The two key existing records are from
Tanzania (Lear et al., 2008) and the Gulf of Mexico (Evans
et al., 2016; Wade et al., 2012). The Tanzanian planktonic
Mg /Ca record provides cornerstone evidence for a perma-
nent 2.5 ◦C tropical surface and bottom water cooling, and
therefore likely global cooling, associated with the Step 1
of the EOT (Fig. 1). The Gulf of Mexico Mg /Ca tempera-
ture record resembles the biomarker-derived (i.e. TEX86; see
below) SST record from this site (Wade et al., 2012). Both
imply a distinct and slightly larger surface cooling of 3–4 ◦C
limited to Step 1. To what extent secular change in seawa-
ter Mg /Ca reconstruction might have influenced these ac-
tual numbers is an ongoing question (Evans et al., 2018).
Clumped isotope palaeothermometry (Ghosh et al., 2006;
Zaarur et al., 2013), also independent of seawater δ18O, is
still in its infancy, but this is a third method applicable to
calcareous microfossils that will help address some of these
problems. Thus far only one clumped isotope (147) record
from Maud Rise spans the EOT (Petersen and Schrag, 2015).
This record shows cooling preceding the EOT, and then rela-
tively minor changes across the EOT. Early to middle Eocene
clumped isotope SST records are consistent with other prox-
ies, specifically cooler values at high southern latitudes com-
pared to the early and middle Eocene (Evans et al., 2018).
Many new SST records based on Mg /Ca and 147 are ex-
pected in coming years.

In some regions, Eocene–Oligocene age sediments lack
biogenic calcium carbonates (e.g. Bijl et al., 2009). There-
fore low- and non-calcareous areas, like the Arctic and high-
latitudes of the North Atlantic and North Pacific, have suf-
fered for lack of palaeotemperature data. However, the de-
velopment of independent organic proxies based on biomark-
ers such as alkenones (UK

′

37 index; Brassell et al., 1986) and
glycerol dialkyl glycerol tetraethers (GDGTs) from the mem-
brane lipids of Thaumarchaeota (TEX86 index; Schouten et
al., 2002), which can be preserved in high-sedimentation set-
tings close to continental margins or restricted basins where
carbonate is often scarce, has helped fill this gap. Impor-
tantly, these organic biomarkers are often the only marine
archive for palaeothermometry at high latitudes, where SST
constraints are particularly useful for model–data compar-
isons.

While the UK
′

37 index is well established, the TEX86 in-
dex is relatively new and its accuracy as a palaeotemperature
proxy is under critical review. There have been several dif-
ferent TEX86 indices developed, with different SST calibra-
tions (e.g. TEX′86 by Sluijs et al., 2009; TEXH86 and TEXL86
by Kim et al., 2010; Bayspar by Tierney and Tingley, 2015).
As suggested by some of the recent studies conducted on cul-
tures of Thaumarchaeota, GDGT composition may be sensi-
tive not only to SST but also to other factors such as oxygen
(O2) concentration (Qin et al., 2015) or ammonia oxidation
rate (Hurley et al., 2016). Furthermore, there is uncertainty
in the source of the GDGTs used for SST estimations, i.e.
their production level in the water column and possible sum-
mer biases, and therefore their value as an SST proxy. Recent
reviews are available for both the palaeotemperatures UK

′

37
(Brassell, 2014) and TEX86 (Hurley et al., 2016; Pearson and
Ingalls, 2013; Qin et al., 2015; Tierney and Tingley, 2015).
Despite these issues, in some studies where both UK

′

37 and
TEX86 indices were applied, temperature estimations show
remarkably similar results (Liu et al., 2009), suggesting that
TEX86, after an evaluation of the source and the distribution
of GDGTs (Inglis et al., 2015), can successfully be applied
as a palaeotemperature proxy. TEX86 is especially useful at
lower latitudes, since the UK

′

37 index saturates at about 29 ◦C
(Müller et al., 1998).

Cross-latitude biomarker proxy records (UK
′

37 and TEX86)
suggest that SSTs were higher than today in both the late
Eocene and early Oligocene SSTs, with annual means of up
to 20 ◦C at both 60◦ N and 60◦ S respectively and low merid-
ional temperature gradients (Hollis et al., 2009; Liu et al.,
2009; Wade et al., 2012). One record from the Gulf of Mex-
ico (Wade et al., 2012) suggests consistently higher SSTs de-
rived from TEX86 than from inorganic proxies (Hollis et al.,
2009, 2012; Liu et al., 2009). Where records span the EOT
(i.e. ∼ 33–34 Ma), between 1 and 5 ◦C of surface cooling in
both hemispheres is found. To date, temperature records from
the high northern latitudes are sparse, but coverage from the
high southern latitudes is richer, where several records sug-
gest a cooling of subantarctic waters across the EOT of 4 to
8 ◦C, although some records are indistinguishable from 0 ◦C
change (Fig. 3). In the low-latitude Pacific, Atlantic and In-
dian Ocean tropical SSTs were significantly warmer than to-
day in the late Eocene, with SSTs up to 31 ◦C (Liu et al.,
2009) or even ∼ 33 ◦C (Lear et al., 2008; Wade et al., 2012).
One TEX86 record from the Gulf of Mexico implies gradual
surface cooling of 3–4 ◦C between ∼ 34 and 33 Ma (Wade et
al., 2012). TEX86 data from Site 803 in the tropical Pacific
show a large transient cooling of up to 6 ◦C across the EOT;
however, such a large change in tropical temperatures is re-
garded as unrealistic and is more likely caused by a reorgan-
isation of the water column (Liu et al., 2009). We therefore
do not include Site 803 in our compilation of temperature
change across the EOT (Fig. 3).

Newly available records from the North Atlantic region are
starting to challenge earlier evidence of homogeneous bipo-
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Figure 3. Summary of sea surface temperature (SST) change across
the EOT from proxies TEXH86, UK

′

37 , δ18O, 147, and Mg /Ca. (a)
Late Eocene, (b) early Oligocene and (c) change in SST across the
EOT. Data shown in panels (a) and (b) are only from locations that
record a temperature signal on both sides of the EOT. Data com-
piled from Bohaty et al. (2012), Cramwinckel et al. (2018), Inglis
et al. (2015), Kobashi et al, (2004), Lear et al. (2008), Liu et al.
(2009, 2018), Pearson et al. (2007), Petersen and Schrag (2015),
Piga (2020), Śliwińska et al. (2019), Wade et al. (2012) and Zhang
et al. (2013). The late Eocene value was calculated as an average be-
tween 38 and 33.9 Ma (pre-EOT), while the early Oligocene value
was calculated as the average between 33.9 and 30 Ma (post-EOT),
and the change across the EOT is the difference between these val-
ues. The data compilation is provided in digital form in Table S1 in
the Supplement.

lar cooling (Liu et al., 2018; Śliwińska et al., 2019). Further-
more, comparison of a uniquely well-resolved record from
the Newfoundland margin, western North Atlantic (Liu et al.,
2018), with data from the subantarctic South Atlantic con-
firms this in new detail, leading the authors to the conclu-
sion that surface ocean cooling during the EOT was strongly
asymmetric between hemispheres. Liu et al. (2018) interpret
this finding as evidence for “transient thermal decoupling of

the North Atlantic Ocean from the southern high latitudes”,
as a result of changes in ocean-circulation-driven heat trans-
port associated with Antarctic glaciation. Recent TEX86 data
spanning the Oligocene suggest that the low meridional gra-
dient similar to the late Eocene persists well after the EOT
and that warming occurs in the late Oligocene despite an ap-
parent decrease in CO2 (O’Brien et al., 2020).

Here we present a new compilation of SST change across
the EOT (Fig. 3; Table S1 in the Supplement). For this compi-
lation, we define two windows of time averaging: one for the
late Eocene (38 to 33.9 Ma) and one for the early Oligocene
(33.9 to 30 Ma), with the change across the EOT defined as
the difference between the two windows. The compilation in-
cludes only SST proxy records that record a signal in both the
late Eocene and early Oligocene. We chose these broad aver-
ages in order to incorporate data from as wide a geographical
region as possible, and to apply a consistent methodology to
both SST and terrestrial temperature change. A consequence
of this choice is that the averaging may dampen the peak-to-
peak signal of EOT SST change in high-resolution records or
increase uncertainty in certain records. However, by choos-
ing longer windows, our averaging method provides a clear
picture of the lasting climate change from the late Eocene to
the early Oligocene. A summary of SST records across the
EOT is shown in Fig. 3. The data are plotted against their
palaeolatitude at 34 Ma, derived using the palaeomagnetic
reference frame of Torsvik et al. (2012) and van Hinsbergen
et al. (2015).

3.2 Deep-sea temperature changes

As described in Sect. 1.2, the Eocene–Oligocene climate
transition is defined by high-resolution benthic foraminiferal
oxygen isotope (δ18O) records from deep-sea sites (Coxall
et al., 2005; Zachos et al., 1996). These records describe
a benthic δ18O increase of about 1.5 ‰, a combination of
deep-sea cooling and terrestrial ice growth. While surface
ocean temperature changes have been constrained using or-
ganic and inorganic proxies (Sect. 3.1), there are fewer prox-
ies for deep-sea temperature, and, thus, the picture of deep-
ocean cooling remains uncertain. This is because, on its own,
it is impossible to deconvolve the temperature and ice volume
components of δ18O records, and hence quantify the tim-
ing, magnitude and spatial distribution of deep-ocean tem-
perature change through the climate transition. Indeed, an
early interpretation of the Cenozoic benthic oxygen isotope
record suggested that the δ18O increase at the EOT repre-
sented a pure cooling signal (Shackleton and Kennett, 1975),
whereas numerous lines of evidence have since shown that a
substantial component of the δ18O shift reflects the glacia-
tion of Antarctica (e.g. Zachos et al., 1996). Independent
palaeotemperature proxies provide a potential means to de-
convolve the two contributors to δ18O records, and benthic
foraminiferal Mg /Ca palaeothermometry has been applied
to several marine EOT sections (Billups and Schrag, 2003;
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Bohaty et al., 2012; Katz et al., 2008; Lear et al., 2000, 2004,
2008, 2010; Peck et al., 2010; Pusz et al., 2011; Wade et al.,
2012). Yet calculating absolute bottom water temperatures
from benthic foraminiferal Mg /Ca ratios requires an esti-
mate of the Mg /Ca ratio of seawater, while Mg partitioning
into foraminiferal calcite shows modest sensitivity to temper-
ature at low temperatures and is subject to the competing in-
fluence of seawater carbonate chemistry (Evans et al., 2018;
Lear et al., 2015). Relative temperature trends over short time
intervals are generally considered more robust than absolute
temperatures, although the residence time of calcium in sea-
water (∼ 1 Myr; Broecker and Peng 1982) compared with
the duration of the entire climate transition (∼ 500 kyr) adds
some uncertainty to calculated relative temperature changes
across the EOT. High-resolution reconstructions of seawater
Mg /Ca are therefore required to improve both absolute and
relative temperature changes using Mg /Ca palaeothermom-
etry.

Furthermore, although the benthic foraminiferal Mg /Ca
palaeothermometer appears to capture the long-term cooling
trend since the early Eocene climatic optimum, the concomi-
tant ∼ 1 km deepening of the calcite compensation depth
(CCD) hinders its use across the EOT (Coxall et al., 2005;
Lear et al., 2004). Specifically, the increase in bottom wa-
ter calcite saturation state across the EOT acts to increase
benthic foraminiferal Mg /Ca and mask the deep-sea cooling
signal (Coxall et al., 2005; Lear et al., 2004). Attempts have
been made to use Li /Ca to correct this 1CO2−

3 effect from
Mg /Ca records (Lear et al., 2010; Peck et al., 2010; Pusz
et al., 2011), but this approach brings with it additional un-
certainties including the species-specific sensitivities to both
temperature and 1CO2−

3 . An alternative, and perhaps more
robust approach at present, is to combine planktonic δ18O
records with salinity-independent sea surface palaeotempera-
ture records to calculate the change in the surface water δ18O
(δ18Osw). The overall change in surface δ18Osw across the
EOT has been estimated using planktonic δ18O and Mg /Ca
at many sites, including a section in Tanzania containing ex-
ceptionally well-preserved (glassy) foraminifera (Lear et al.,
2008). The similarity between this 1δ18Osw estimate from
the Indian Ocean (∼ 0.6 ‰; Lear et al., 2008) and those from
other sites, for example the Southern Ocean (Bohaty et al.,
2012) and the southeast Atlantic (Peck et al., 2010), suggests
that the surface δ18Osw change is dominated by a global (ice
volume) signal. If we can assume that the surface δ18Osw
signal is dominated by the ice volume signal (as opposed
to a local change in the salinity), then these records can be
used in conjunction with the benthic δ18O records to esti-
mate changes in bottom water temperature across the cli-
mate transition (Kennedy et al., 2015). As noted above, inter-
basin similarities suggest this assumption holds true at Indian
Ocean, Southern Ocean and southeast Atlantic sites, whereas
sites in the Pacific and North Atlantic are not as clearly con-
strained. The associated estimated volume of Antarctic ice
depends upon the assumed isotopic composition of the ice

sheet, but it was likely between 70 and 110 % of the size
of the modern-day Antarctic Ice Sheet (Bohaty et al., 2012;
Lear et al., 2008), representing a sea-level difference to the
modern day of approximately −18 to +6 m. Spatial hetero-
geneities in the deep-ocean temperature history may there-
fore be inferred by calculating inter-site offsets in benthic
foraminiferal δ18O records (Abelson and Erez, 2017; Bohaty
et al., 2012; Cramer et al., 2009).

There is a growing consensus that Step 1 of the EOT
was associated with a cooling of both deep waters and low-
latitude surface waters of the order of 2 ◦C, while the increase
in global ice volume was relatively minor (Bohaty et al.,
2012; Lear et al., 2004, 2008, 2010; Peck et al., 2010; Pusz
et al., 2011). We note that the combination of this magnitude
of cooling and an overall increase in δ18Osw of ∼ 0.6 ‰ is
enough to account for the average ∼ 1.0 ‰ shift in benthic
foraminiferal δ18O observed in deep-sea records (Mudelsee
et al., 2014). However, this overall shift across the entire cli-
mate transition ignores the apparent δ18O “overshoot” (Za-
chos et al., 1996) observed in some high-resolution records
at the base of the EOGM (Coxall and Pearson, 2007). De-
termining whether the overshoot reflects deep-sea cooling,
a transient further increase in global ice volume or a com-
bination of the two has implications for our understanding
of Antarctic Ice Sheet dynamics and indeed the cause of the
EOT itself. Unfortunately, it is Step 2 (EOIS) of the transition
into the EOGM where the CCD reaches its maximum depth
and benthic foraminiferal Mg /Ca records appear most com-
promised by the1CO2−

3 effect (Lear et al., 2004, 2010), even
at depths above the implied depth of CCD deepening (Peck et
al., 2010), so we currently have no robust and direct evidence
of deep-ocean cooling across this step. Future work may go
some way to address these problems using clumped isotopes
or by generating high-resolution B / Ca records across the
transition, and by using deep infaunal benthic species (e.g.
Elderfield et al., 2012). However, by combining benthic and
planktonic records, it appears that the EOGM in the deep
Pacific Ocean reflects, at least in part, a transient cooling
of deep waters associated with the major expansion of the
Antarctic Ice Sheet (Kennedy et al., 2015).

An additional complication is that the Mg /Ca compo-
sition of seawater may itself have shifted during the EOT,
as suggested by incoming constraints from other proxies,
including paired Mg /Ca and clumped isotope tempera-
ture constraints in shallow-living larger benthic foraminifera
(Evans et al., 2018). Further investigation into this possibil-
ity is required, which could ultimately help identify Mg /Ca
adjustment factors needed to improve the ability to extract
palaeotemperature estimates for this geological time interval.

4 The terrestrial realm at the EOT

There are several proxy indicators of past terrestrial cli-
mate change. These include geochemical indices, leaf mar-
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gin analysis, the Climate Leaf Analysis Multivariate Program
(CLAMP) (Yang et al., 2011) and pollen assemblages (see re-
view in Hollis et al., 2019). Here we focus on pollen assem-
blages as a broad indicator of terrestrial change across the
EOT, because an EOT synthesis of these data already exists
(Pound and Salzmann, 2017). This dataset, a global palaeo-
biome reconstruction of pollen and spore assemblages, indi-
cates that the terrestrial realm of the late Eocene and early
Oligocene has a vegetation distribution that in general indi-
cates a warmer and wetter world than today. The response
of the terrestrial realm to the EOT is more heterogeneous
than the marine realm, and biome changes do not record a
uniform global response (Pound and Salzmann, 2017). Ter-
restrial biomes record not only global climate change but
also regional changes due to local factors. These include oro-
graphic uplift, which reduces local temperature and changes
regional precipitation patterns. Further changes in precipita-
tion are induced by the retreat of a number of inland sea-
ways due to sea-level changes and tectonics (Chamberlain
et al., 2012; Dupont-Nivet et al., 2008; Kocsis et al., 2014;
Sheldon et al., 2016). These complicating factors mean that
changes in vegetation must be interpreted within the con-
text of local palaeo-environmental changes. However, there
are some emerging terrestrial records that record a signif-
icant temperature drop and perturbation of the hydrologi-
cal cycle, consistent with global cooling. Thus, we present
the terrestrial records on a continent-by-continent basis be-
low, with a summary of temperature change across the EOT
shown in Fig. 4. As for the marine data, we derive a tem-
perature change across the EOT by taking the difference be-
tween a late Eocene window (38 to 33.9 Ma) and an early
Oligocene window (33.9 to 30 Ma). The data in Fig. 4 are
plotted against palaeolatitude at 34 Ma, using the palaeomag-
netic reference frame of Torsvik et al. (2012) and van Hins-
bergen et al. (2015). For a summary of strengths and lim-
itations of deriving quantitative climate estimates from the
pre-Quaternary plant record, see Hollis et al. (2019).

4.1 North America

In North America, the palaeobiome distribution of the EOT
ranges from tropical mangroves, swamps and forests in the
south of the continent to cool-temperature forests at the high
latitudes (Breedlovestrout et al., 2013; Pound and Salzmann,
2017; Wolfe, 1985, 1994). Gradual cooling and drying from
the middle Eocene until the late Oligocene allowed the mixed
coniferous and deciduous broadleaf forests to become more
dominant (Wing, 1987). Fossil leaves found in Washington
state (Breedlovestrout et al., 2013) indicate no clear tem-
perature trend from the middle Eocene to the EOT. Instead
variations are attributed to differing palaeo-altitude, com-
bined with a gradual long-term cooling. Pollen records from
Texas indicate a long-term cooling and aridification from
the middle Eocene to the early Oligocene (Yancey et al.,
2003), whereas pollen records from 5◦ longitude further east

Figure 4. Summary of terrestrial air temperature change across the
EOT from proxies palaeosols, CLAMP, δ18O, 147, nearest living
relative (NLR), alkaline geochemistry and δD (hydrogen isotopes).
Data are compiled from Boardman and Secord (2013), Colwyn and
Hren (2019), Eldrett et al. (2009), Fan et al. (2017), Gallagher and
Sheldon (2013), Héran et al. (2010), Herman et al. (2017), Hinojosa
and Villagrán (2005), Hren et al. (2013), Kohn et al. (2004), Kvaček
et al. (2014), Lielke et al. (2012), Meyers (2003), Page et al. (2019),
Passchier et al. (2013), Roth-Nebelsick et al. (2017), Sheldon and
Tabor (2009) and Zanazzi et al. (2007). Where possible, we apply
the same method as in Fig. 3; i.e. the “late Eocene” is taken the
average temperature from 38 to 33.9 Ma, the “early Oligocene” is
taken as the average from 33.9 to 30 Ma and the temperature change
shown here is the difference. However, in a number of cases only a
relative temperature change across the EOT was given in the orig-
inal literature. We therefore limit our compilation to temperature
anomaly only. The compilation shown above is provided in digital
form in Table S2 in the Supplement.

show no turnover at the EOB boundary (Oboh-Ikuenobe and
Jaramillo, 2003). Pollen from the far north Yukon Territory
shows a transition from warmer-adapted angiosperm forests
in the Late Eocene to cooler-adapted gymnosperm forests
during the Early Oligocene (Ridgway and Sweet, 1995).

In Oregon, well-dated floras and marine invertebrates
show no evidence for a rapid change at the EOT (Retal-
lack et al., 2004), but rather a gradual cooling during the
early to middle Oligocene. By contrast, palaeosols indicate
a 2.8± 2.1 ◦C drop across the EOT in the same region (Gal-
lagher and Sheldon, 2013). Isotopic data from horse teeth in-
dicate a 8± 3.1 ◦C drop in mean annual temperature (MAT)
across the EOT, but with a 400 kyr lag behind the marine
realm (Zanazzi et al., 2007), though part of this shift is due to
changes in the hydrological cycle (Chamberlain et al., 2012;
Hren et al., 2013). Moreover, a clumped isotope study of Fan
et al. (2017) records a decrease of ∼ 7 ◦C across the EOT
in the north central USA, similar to the findings of Zanazzi
et al. (2007). Conversely a study on White River mammals
interprets no significant change in MAT but an aridification
of the local environment (Boardman and Secord, 2013). This
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conclusion is in line with palaeosol studies, which suggest a
change in vegetation structure from a forest to a more open
environment (Retallack, 1983).

Oxygen isotope analyses in the western North Ameri-
can Cordillera suggest the changing hydrological regime of
North America (Chamberlain et al., 2012) was influenced
by factors other than large-scale climate. Rising orography,
starting in British Colombia at ∼ 50 Ma and moving south
to Nevada by ∼ 23 Ma, shifted the North American mon-
soon further south during this time. This impacts not only
terrestrial oxygen isotopes but also the regional vegetation –
creating an aridification not linked to global climatic events
(Chamberlain et al., 2012). There is a significant increase
in dust deposition in the foothills of the North American
Cordillera (Fan et al., 2020), suggesting cooling and arid-
ification. No response to the EOT is evident from North
American mammals (Figueirido et al., 2012; Prothero, 2012,
2004), while fossil Equidae analyses from North America in-
dicate that horses had a browsing diet before, at and after the
EOT (Mihlbachler et al., 2011). One study argues that North
American mammals had already adapted to Oligocene-like
cold and arid conditions prior to the EOT (Eronen et al.,
2015), suggesting that any further environmental change at
the EOT would not be expressed in changes to these species.

4.2 South America

Late Eocene and early Oligocene palaeobiome distributions
of South America indicate tropical evergreen rainforest in
the north and cool-temperate biomes in the south (Pound
and Salzmann, 2017). In South America there was a greater
change in vegetation from the middle Eocene into the late
Eocene, rather than at the EOT (Barreda and Palazzesi,
2007). Patagonian pollen floras from the middle Eocene to
the end of the early Oligocene are termed the “mixed palae-
oflora”. These show a long-term cooling trend rather than
a step change at the EOT (Quattrocchio et al., 2013). Phy-
tolith and oxygen isotope records from Patagonia show no
change in vegetation across the EOT (Kohn et al., 2004,
2015; Strömberg et al., 2013). However, this view has re-
cently been challenged by a higher-stratigraphic-resolution
study of phytoliths and magnetic properties, pointing to a
clearer ecosystem change (Selkin et al., 2015). A recent sta-
ble isotope hydrology study from Patagonia indicates rapid
cooling during the EOT (Colwyn and Hren, 2019). Fau-
nal turnovers in South America began at approximately 42–
39 Ma (Woodburne et al., 2014). This not only relates to
the end of the MECO but also correlates with the appear-
ance of rodents from Africa. The mammal turnover associ-
ated with the EOT is no more dramatic than those during the
late Eocene or late Oligocene (Woodburne et al., 2014). The
Amazonian region had a diverse, primarily frugivorous fauna
during the EOT, suggesting productive stable forest (Negri
et al., 2009). To summarise, there are some indications of
significant cooling in South America at the EOT, but overall

the signal is mixed, with both faunal and plant-based proxies
suggesting a heterogeneous response.

4.3 Africa

Vegetation in Africa shows little change in structure from the
late Eocene into the early Oligocene, but there is a docu-
mented drop in palm diversity (Jacobs et al., 2010; Pan et
al., 2006; Pound and Salzmann, 2017). There are significant
gaps in the palaeobotanical record for Africa over this time
interval, with most information coming from the region be-
tween 10◦ north and south of the Equator (Jacobs et al., 2010;
Pound and Salzmann, 2017). One exception is the Fayum De-
pression in Egypt, which contains macrofossil and microfos-
sil evidence for tropical vegetation in the late Eocene (Tiffney
and Wing, 1991; Wing et al., 1995).

4.4 Eurasia

In Eurasia there was a progressive change from para-
tropical evergreen forests in the middle Eocene to warm-
temperate evergreen and deciduous mixed forests by the
early Oligocene (Collinson and Hooker, 2003; Teodoridis
and Kvaček, 2015). The palaeobiome reconstructions show a
dominance of subtropical and warm-temperate mixed forests
throughout Eurasia, with seasonal biomes in the Iberian
Peninsula and arid biomes in central Asia (Pound and Salz-
mann, 2017). A change from a diverse mixed broadleaved
to a cooler conifer-dominated pollen flora in North Atlantic
cores through the Eocene indicates increasing seasonality in
Europe (Eldrett et al., 2009). However, leaf floras from Bul-
garia show no significant change in vegetation at the EOT
(Bozukov et al., 2009). There is a greater change in Iberian
pollen floras from the early to late Oligocene than at the EOT
(Postigo Mijarra et al., 2009). Between the late Eocene and
early Oligocene no change in MAT or precipitation is recon-
structed in the Ebro Basin in Spain, but there is a decrease in
chemical weathering across the EOT (Sheldon et al., 2012).

In Germany and Czechia, macrofloras show a stepwise
disappearance of subtropical species and immigration of
evergreen and deciduous warm-temperate species during
the late Eocene (Kunzmann et al., 2016). The first mixed
evergreen–deciduous forest in azonal biomes is recorded
prior to the EOT from Roudníky (35.4± 0.9 Ma; Kvaček et
al., 2014), referring to a latest Eocene cooling event (Teodor-
idis and Kvaček, 2015). However, evergreen broadleaved
forests were still present in the early Oligocene (Kovar-Eder,
2016; Teodoridis and Kvaček, 2015), indicating the low im-
pact of global EOT changes in terrestrial central Europe.
Most of the subtropical-to-warm-temperate genera survived
in that region until the Miocene climatic optimum (Mai,
1995). Based on proxies from macrofloras, MAT was almost
stable at the EOT (Teodoridis and Kvaček, 2015), with on-
going prevailing seasonality in precipitation and a curtail-
ment of the growing season (Moraweck et al., 2019). While
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cold-month mean temperatures (CMMTs) in the Priabonian
mostly exceed 10 ◦C, the lower limit for the growing season,
the earliest Oligocene floras from Schleenhain and Hasel-
bach (Germany) indicate CMMTs below 10 ◦C and a grow-
ing season length of 9–11 months (Moraweck et al., 2019).

Recent investigations on late Eocene and earliest
Oligocene macrofloras in SE Tibet and Yunnan revealed mul-
tiple lines of evidence for the modernisation of the vegetation
by establishment of present-day genera and families (Lin-
nemann et al., 2017; Su et al., 2018). Regional vegetation
change across EOT from subtropical to temperate and partly
cool temperate in SW China has been argued to be influenced
by the uplift of the Tibetan Plateau (Su et al., 2018). An
Eocene appearance of a modern subtropical or tropical as-
pect of vegetation is also recorded from Chinese low-latitude
floras (Hainan; Guangdong), indicating an Eocene establish-
ment of monsoonal climate linked to Tibetan uplift (Jin et
al., 2017). However, the evolution of the Tibetan Plateau at
the EOT is currently under debate. Earlier studies suggested
that a proto-Tibetan highland of more than 4000 m elevation
existed in the late Eocene based on stable isotope palaeo-
altimetry (Cyr et al., 2005; Quade et al., 2011; Rowley and
Currie, 2006). New data–model comparisons have cast doubt
on these estimates, finding that the stable isotope palaeo-
altimetry is influenced by different atmospheric circulation
patterns than previously thought (Botsyun et al., 2019; Quade
et al., 2020). These studies suggest a lower palaeo-altimetry
of the Tibetan Plateau (less than 3000 m) in the late Eocene
(Botsyun et al., 2019; Quade et al., 2020).

Aside from palaeo-altimetry, the timing of environmen-
tal changes suggests that climate change at the EOT had a
distinct impact on Tibetan environments (Dupont-Nivet et
al., 2007). Northeastern Tibet (Xining Basin) shows signif-
icant changes at the EOT in the depositional environments
(Dupont-Nivet et al., 2008), pollen and clumped isotopic
temperatures (Hoorn et al., 2012; Page et al., 2019), and ac-
cumulation rates (Abels et al., 2011). Furthermore, tempera-
ture changes in the Xining Basin are too sudden to be driven
by changes in basin altitude (Page et al., 2019). The timing of
the large temperature drop suggests a coeval decrease in re-
gional temperature linked to EOT glaciation and monsoonal
rainfall (Page et al., 2019). Mongolian and northwestern Chi-
nese faunal records indicate a large mammal turnover at the
EOT: the “Mongolian Remodelling” (Kraatz and Geisler,
2010; Meng and McKenna, 1998; Sun et al., 2014), syn-
chronous with the Grand Coupure in Europe. Significant de-
positional environment change in southwestern Mongolia is
also shown by Sun and Windley (2015).

Freshwater gastropods from southern Britain show that
growing season temperatures (spring–summer) may have
dropped from around 34 to about 20 ◦C across the Eocene–
Oligocene boundary (Hren et al., 2013). This has been trans-
lated into a MAT drop of 4–6 ◦C (Hren et al., 2013), which is
comparable to the UK

′

37 estimated SST change from the high-
latitude North Atlantic ODP Site 913, but not the smaller

SST change at the more comparable latitude ODP Site 336
(Liu et al., 2009). Summer temperatures for the Hampshire
Basin fell by around 4 ◦C during the EOT (Grimes et al.,
2005) but did not drop again during the EOIS (see Sect. 1.2).
Palaeosols of the Hampshire Basin show minimal changes
in temperature but an increase in precipitation (Sheldon and
Tabor, 2009). Some of the discrepancies between these tem-
perature signals may be due to differences in sampling rates
during key events of the EOT.

4.5 Australia and New Zealand

In Australia, the EOT is associated with the loss of rarer taxa
in pollen records rather than significant turnovers (Macphail,
2007). There is a diversity drop from the middle to late
Eocene into the latest Eocene–early Oligocene (Martin,
2006). A recent review of the distribution of palaeobiomes
in Australia showed no change between the late Eocene and
the early Oligocene (Pound and Salzmann, 2017), though
data coverage is sparse apart from the south of the conti-
nent. However, a recent study of rainforest flora in south-
eastern Australia shows a transition from warm-temperature
rainforests in the late Eocene to cool-temperature rainforests
in the early Oligocene (Korasidis et al., 2019). Those biome
flora suggest a shift in MAT from 14–20 ◦C in the late
Eocene to 10–14 ◦C in the early Oligocene (Korasidis et al.,
2019). Terrestrial palaeoclimate reconstructions of tempera-
ture also show a cooling at around 36 Ma (Pound and Salz-
mann, 2017). The New Zealand records show a warm hu-
mid forest with a gradual turnover of palynomorphs through
the late Eocene and the early Oligocene (Homes et al., 2015;
Pocknall, 1991).

4.6 Antarctica

On Antarctica it is known that from the equable climates of
the middle Eocene there was a progressive drop in plant di-
versity and stature, from evergreen forests to low-lying veg-
etation (Francis et al., 2008; Pound and Salzmann, 2017).
Changing δ13C measurements from late Eocene leaves and
pollen have been interpreted as decreasing moisture avail-
ability on the Antarctic Peninsula (Griener et al., 2013). Veg-
etation at Wilkes Land, East Antarctic, changed from an early
Eocene subtropical to a cool temperate forest, indicating a
5 ◦C decline in MAT (Pross et al., 2012). A further change
towards a less diverse, cool-temperate shrubland and forest
indicates further cooling at Wilkes Land at the onset of the
Oligocene (Strother et al., 2017). Other evidence supporting
decreasing moisture availability is demonstrated by a shift
from chemical weathering in a humid environment to phys-
ical weathering associated with a colder, more arid regime
(Basak and Martin, 2013; Dingle et al., 1998; Ehrmann and
Mackensen, 1992; Robert and Kennett, 1997; Wellner et al.,
2011). This aridification of the Antarctic continent is at-
tributable to a partly glaciated continent in the late Eocene.
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A new bedrock topography for Antarctica allows for an early
Oligocene ice sheet of greater areal extent than today (Wil-
son et al., 2012), raising the possibility that the temperature
component of the EOT δ18O increase was more modest than
previously suggested (Wilson et al., 2013).

5 CO2 and carbon cycle dynamics

The concentration of carbon dioxide in the atmosphere
(pCO2) is a primary driver of global climate change on ge-
ological timescales (Berner and Kothavala, 2001; Foster et
al., 2017; Royer et al., 2004), and changes in pCO2 have
been linked to the phase of acute climate change at the EOT
(DeConto and Pollard, 2003; Heureux and Rickaby, 2015;
Pearson et al., 2009; Steinthorsdottir et al., 2016). However
atmospheric pCO2 reconstructions for the EOT are sparse;
variable; and, in some cases, contradictory and not readily
reconciled with palaeotemperature proxy records or numer-
ical model hindcasts (Beerling and Royer, 2011; Heureux
and Rickaby, 2015; Pagani et al., 2005; Pearson et al., 2009;
Royer et al., 2004; Zhang et al., 2013). New well-resolved
pCO2 records with strong age control are pressingly needed.
Four proxies have been identified as particularly useful for
Cenozoic pCO2 reconstructions by the Intergovernmental
Panel on Climate Change (IPCC, 2013). These are the ma-
rine carbon and boron isotope proxies, and the terrestrial
palaeosol carbon and stomatal density proxies (Beerling and
Royer, 2011). Below, we discuss the development and state
of the art of existing EOT pCO2 records constructed using
marine and terrestrial proxies.

5.1 Marine pCO2 proxies

To date, the most detailed pre-Pleistocene climate records are
derived from marine geochemical proxies, including boron
isotopes (δ11B) in planktonic foraminiferal calcite (Anag-
nostou et al., 2016; Foster et al., 2012; Greenop et al.,
2017; Pearson et al., 2009; Pearson and Palmer, 1999, 2000)
and carbon isotopes (δ13C) in marine organic biomarkers
(Heureux and Rickaby, 2015; Liu et al., 2009; Pagani et al.,
2005, 2011; Zhang et al., 2013). Each proxy has its own
limitations and uncertainties, which initially led to divergent
estimates of pCO2 using these different proxies. However,
recent efforts to address such uncertainties and limitations
have led to a more coherent picture of the evolution of pCO2
through the Cenozoic from marine proxies.

While the theoretical basis of the boron isotope proxy is
well understood, a major uncertainty in reconstructing sur-
face ocean pH is estimating the boron isotopic composition
of seawater (Greenop et al., 2017). A further major uncer-
tainty comes into play when a second carbonate system pa-
rameter (e.g. total alkalinity) is required to calculate pCO2
from seawater pH, as well as the major ion composition of
seawater, which impacts key dissociation constants. Never-
theless, significant progress has been made to reduce these

uncertainties (Anagnostou et al., 2016; Greenop et al., 2017;
Sosdian et al., 2018). For the Eocene pCO2 estimates, seawa-
ter δ11B has been estimated using the δ11B–pH relationship,
while self-consistent estimates of the second carbonate pa-
rameter have been determined using Earth system modelling
(Anagnostou et al., 2016). For the alkenone δ13C proxy, there
are many factors that can impact algal growth conditions, and
inaccurate temperature reconstructions have also been known
to bias pCO2 reconstructions (Pagani et al., 2011; Zhang et
al., 2013). Algal carbon-concentrating mechanisms may also
lead to biased pCO2 reconstructions when using the alkenone
δ13C proxy in low-CO2 intervals of the Neogene but are un-
likely to be a significant issue at the EOT (Zhang et al., 2013).

The boron isotope proxy suggests atmospheric pCO2 was
1400± 470 ppm in the early Eocene and decreased by sev-
eral hundred parts per million through the Eocene over sev-
eral million years (Anagnostou et al., 2016). In the late
Eocene (Bartonian–Priabonian), pCO2 reconstructions are
variable, but the boron isotope and alkenone proxy both
indicate pCO2 concentrations around 1000 ppm (Anagnos-
tou et al., 2016; Zhang et al., 2013). The EOT itself ap-
pears to be associated with a further, and perhaps steeper,
decline in pCO2, with both proxies supporting the passing
of a modelled glaciation threshold of ∼ 750 ppm (DeConto
and Pollard, 2003; Pagani et al., 2011; Pearson et al., 2009;
Zhang et al., 2013), although this modelled threshold itself is
highly uncertain (Gasson et al., 2014). A δ11B-based record
from Tanzania sediments also suggests an intriguing tran-
sient pCO2 increase associated with the second δ18O step
(Pearson et al., 2009).

5.2 Terrestrial proxies

The stomatal CO2 proxy is based on the empirically and ex-
perimentally demonstrated inverse relationship between the
density of stomata on the leaf surfaces of most land plants
and pCO2 (Beerling, 1998; Franks et al., 2014; Hincke et
al., 2016; Konrad et al., 2008; Kürschner et al., 2008; McEl-
wain and Chaloner, 1995; Royer et al., 2001; Steinthorsdot-
tir et al., 2016, 2019, 2021, 2011, 2013; Steinthorsdottir and
Vajda, 2015; Wagner et al., 1996; Woodward, 1987). Previ-
ous studies using the stomatal proxy method of pCO2 recon-
structions for the time intervals on either side of the EOT
(here Bartonian-Rupelian) are still relatively few, derived
from mostly low-resolution datasets consisting of a variety of
fossil plant taxa, and marred by limitations in chronological
accuracy and correlation to marine records. Consequently,
the pCO2 records have so far been highly heterogeneous.

The three current methods of stomatal pCO2 reconstruc-
tion (e.g. McElwain and Steinthorsdottir, 2017; Steinthors-
dottir et al., 2021) include (1) the semiquantitative stomatal
ratio method, which compares the stomatal density (SD) or
stomatal index (SI – the percentage of stomata relative to all
leaf epidermal cells) of fossil plants with the SD or SI of
its nearest living relative (NLR), to estimate palaeo-pCO2
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Figure 5. Atmospheric CO2 evolution from 44 to 24 Ma from
the compilation of Foster et al. (2017), incorporating data from its
original data sources (Anagnostou et al., 2016; Doria et al., 2011;
Erdei et al., 2012; Franks et al., 2014; Pearson et al., 2009; Roth-
Nebelsick et al., 2012, 2014; Steinthorsdottir et al., 2016, 2019;
Zhang et al., 2013).

(McElwain and Chaloner, 1995); (2) the empirical transfer
function method, using experimental datasets of NLR re-
sponses to variations in pCO2 (e.g. Kürschner et al., 2008;
Wagner et al., 1996); and (3) mechanistic gas exchange mod-
elling, which requires numerous additional parameters such
as palaeotemperature and leaf δ13C (Franks et al., 2014;
Konrad et al., 2008). All of these methods have been ap-
plied to reconstruct pCO2 records spanning the Eocene–
Oligocene (Foster et al., 2017; Fig. 5), with the highest-
resolution dataset produced using the stomatal ratio method
(Steinthorsdottir et al., 2016). Due to the semiquantitative ap-
proach and potential inter-method variability, these estimates
are considered to be less robust in their absolute values of
pCO2 than the marine estimates (Sect. 5.1). However, stom-
atal records are a valuable indicator of relative change of
pCO2 in the terrestrial realm, especially in data-poor inter-
vals, including several stages of the Eocene and Oligocene
(Beerling and Royer, 2011; Foster et al., 2017).

Early results based on datasets of the gymnosperms
Ginkgo biloba and Metasequoia glyptostroboides from the
USA suggested that pCO2 was more or less stable between
300 and 450 ppm during the Eocene and Oligocene (Royer
et al., 2001) – however, the fossil leaf record was of too-
low resolution to draw strong conclusions. Another early
study, based on data gathered mainly from published im-
ages of fossil Ginkgo specimens from Russia and the USA,
suggested a decrease in pCO2 across the EOT (Retallack,
2001), from ∼ 1300 ppm in the Bartonian to ∼ 420 ppm at
the EOT and ∼ 330 ppm in the Rupelian. A further stomatal
dataset from Germany, based on fossil angiosperm leaves
from the species Eotrigonobalanus furcinervis (Fagacaeae)

and Laurophyllum acutimontanum (Lauraceae), again of low
temporal resolution, suggested that pCO2 was higher before
than after the EOT (Roth-Nebelsick et al., 2004). A more
recent study from a temporally restricted sedimentary suc-
cession in Canada suggested high but decreasing pCO2 at
the Bartonian–Priabonian boundary (from ∼ 1000–700 ppm
to ∼ 450 ppm), based on a dataset of Metasequoia fossil
needles (Doria et al., 2011), but does not include the EOT
or the Rupelian. In contrast, a study based on various an-
giosperm species using a leaf gas exchange model suggested
more modest as well as stable pCO2 of ∼ 470 ppm during
the Bartonian and Priabonian, decreasing to ∼ 400 ppm af-
ter the EOT in the Rupelian (Grein et al., 2013). A sub-
sequent study from the same region compiled all data in
broad temporal bins and reconstructed early Oligocene–early
Miocene pCO2 to∼ 400 ppm throughout, despite significant
changes in stomatal densities (Roth-Nebelsick et al., 2012,
2014). Two studies with restricted temporal ranges recon-
structed pCO2 in the Bartonian, indicating 400–500 ppm us-
ing Metasequoia from Canada (Maxbauer et al., 2014) and
∼ 390 ppm using the podocarp conifer Nageia maomingen-
sis from China (Liu et al., 2016).

Recently, a new relatively high-resolution dataset consist-
ing of Eotrigonobalanus furcinervis from Germany was pub-
lished, including data points thought to be temporally lo-
cated immediately before and after the EOT (Steinthorsdot-
tir et al., 2016). The results show pCO2 of ∼ 650 ppm in
the Bartonian, decreasing to ∼ 550–400 ppm in the Priabo-
nian and ∼ 410 ppm at the EOT and the earliest Rupelian
(Steinthorsdottir et al., 2016). This higher-resolution record
shows a distinct ∼ 40 % Bartonian–Priabonian decrease in
pCO2, highly comparable to the marine isotope tempera-
ture records, but reaching stable levels by the EOT and not
recording a significant pCO2 decrease at the EOT proper, un-
like in the marine temperature records (Steinthorsdottir et al.,
2016; Zachos et al., 2001, 2008). This discrepancy between
pCO2 and temperatures suggests that there are factors other
than greenhouse forcing that contribute to the threshold cli-
mate response of glaciation. New results based on Lauraceae
leaf fragments from the Southern Hemisphere (Australia and
New Zealand) further confirm late Eocene pCO2 mostly in
the order of 550–450 ppm but are not sufficiently chronolog-
ically well constrained to confirm falling pCO2 prior to the
EOT (Steinthorsdottir et al., 2019).

Other results show a significant decrease in stomatal den-
sity values (indicating increasing pCO2) of extinct Pla-
tanus neptuni before the EOT (Moraweck et al., 2019).
This unexpected trend, contradictory to the stomata density–
pCO2 relation previously recorded, is not yet understood but
is consistent with the suggestion that pCO2 change prior
to the EOT caused plant responses. Further, pCO2 recon-
structed using a mechanistic gas exchange model of Kon-
rad et al. (2008) applied to two fossil species from northern
central Europe, Rhodomyrtophyllum reticulosum and Pla-
tanus neptuni, records no significant decrease across the EOT
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(Moraweck et al., 2019), in agreement with Steinthorsdottir
et al. (2016), but does not record decreasing pCO2 before
the EOT. It should be noted that the gas exchange model of
Konrad et al. (2008) has recently been tested with modern
material and was shown to produce the most accurate pCO2
estimates when used with multiple species, to derive a con-
sensus pCO2 (Grein et al., 2013).

When focusing on datasets from central Europe, terrestrial
plant-based pCO2 records support the plant-derived tem-
perature records by indicating no abrupt decrease or envi-
ronmental change across the EOT (Kunzmann et al., 2016;
Teodoridis and Kvaček, 2015). A detectable but not funda-
mental change in vegetation, temperatures and pCO2 is how-
ever evident from the interval prior to the EOT (Kunzmann
et al., 2016; Kvaček et al., 2014; Steinthorsdottir et al., 2016;
Teodoridis and Kvaček, 2015). Preliminary results of MAT
estimations based on sedimentary GDGT values from some
central German sites are in accordance with temperature esti-
mates from plant fossils, i.e. based on CLAMP and the NLR
approach. In combination these data refer to a successive de-
crease in MAT across the Priabonian and the EOT but not to
a significant drop during the EOT.

5.3 Synthesis of EOTpCO2 change

The most recent marine records indicate pCO2 of
∼ 1000 ppm in the Bartonian–Priabonian, decreasing to
∼ 700–800 ppm into the Rupelian. Stomatal proxy-based
pCO2 records generally indicate elevated Bartonian–
Priabonian pCO2 of ∼ 500–1000 ppm, decreasing ∼ 40 %
before the EOT to pCO2 of∼ 400 ppm and continuing in the
Rupelian with pCO2 of ∼ 400 ppm or lower. The direction
and approximate magnitude of pCO2 change leading up to
the EOT is therefore consistent between proxies, even though
the stomatal records consistently yield lower pCO2 levels
than the marine proxies. We consider the higher pCO2 esti-
mates based on marine proxies to be the most robust indicator
of pCO2 at this time, since they have been shown to repro-
duce ice-core CO2 well (Foster and Rae, 2016) and to agree
better with the available modelling evidence from warm cli-
mate simulations of the Eocene and estimated thresholds
for glaciation of Antarctica (section 6.2). Some terrestrial
records also indicate a decrease in CO2, but the decrease is
more gradual and long term than in the marine records.

6 Insights into the EOT from modelling studies

In this section we qualitatively synthesise previous modelling
studies that have focused on the EOT. In particular, we dis-
cuss the modelled response to changing palaeogeography
(Sect. 6.1) and to changes in CO2 (Sect. 6.2). Finally, we de-
scribe carbon cycle models that have explored mechanisms
behind CO2 changes at the EOT (Sect. 6.3).

6.1 Modelling the response to changing
palaeogeography at the EOT

The widening of the Southern Ocean Drake Passage and Tas-
man Gateway has long been considered as a primary driver
for the initiation of the AMOC and Antarctic glaciation at the
EOT (Sect. 2.2). Many climate modelling studies have tested
the effect of opening these Southern Ocean gateways and
found cooling effects on the southern high latitudes (Cristini
et al., 2012; Elsworth et al., 2017; England et al., 2017; Miko-
lajewicz et al., 1993; Sijp et al., 2009, 2014; Sijp and Eng-
land, 2004; Toggweiler and Bjornsson, 2000; Viebahn et al.,
2016; Yang et al., 2014). These studies have variously found
that opening Southern Ocean gateways can decrease south-
ward heat transport (e.g. Sijp et al., 2009), trigger the onset
of an AMOC (e.g. Yang et al., 2014) and enable some de-
gree of cooling over Antarctica. However, these approaches
do not reconcile the timing and evolution of the gateway evo-
lution of the EOT, since they employed either modern-day or
idealised geography with specific gateway perturbations. In
contrast, climate model simulations that do employ Eocene
boundary conditions indicate that Southern Ocean gateway
opening caused only a modest change in ocean poleward heat
transport and could therefore not be directly responsible for
the initiation of the AIS (Goldner et al., 2014; Huber et al.,
2004; Huber and Nof, 2006; Huber and Sloan, 2001; Sijp
et al., 2011; Zhang et al., 2011). Furthermore, opening the
Southern gateways under Eocene-like CO2 forcing may re-
sult in a weaker ACC than under pre-industrial conditions
(Lefebvre et al., 2012). The long-term evolution of South-
ern Ocean gateway opening has been found to cause ∼ 3 ◦C
of bottom water cooling (Sijp et al., 2014), which may ex-
plain some of the observed benthic cooling (Sect. 3.2). How-
ever, Drake Passage opening probably affected deep-ocean
temperatures and the strength of the ACC. Hill et al. (2013)
showed that, despite deep-water connections through both
Drake Passage and the Tasman Gateway, a coherent ACC
could not develop until the Australian continent was suffi-
ciently equatorward such that it no longer inhibited strong
zonal flow in the Southern Ocean.

Imposing an ice sheet in a climate model has been shown
to have a significant impact on the ocean circulation and
deep-water formation regions (Goldner et al., 2014; Kennedy
et al., 2015). In particular, the presence of an Antarctic Ice
Sheet may enhance westerly winds over the Southern Ocean,
leading to enhanced Southern Ocean deep-ocean formation
and benthic cooling (Goldner et al., 2014). This result sug-
gests that Southern Ocean gateway changes play a secondary
role to radiative forcing, since the ocean circulation change
are a consequence of the glaciation, rather than a cause. Other
ocean gateways may also play an important role. In the late
Eocene continental configuration, the Central American Sea-
way and the Tethys gateway, connecting the Indian and At-
lantic oceans, were wider than today. The importance of the
open Tethys gateway for the EOT circulation has not received
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much attention, but Zhang et al. (2011) found that the tropical
seaways need to be sufficiently constricted before the south-
ern high latitudes can cool substantially. This cooling is re-
lated to a transition from an ocean circulation with Southern
Hemisphere deep-water formation to the modern-like circu-
lation with deep-water formation in the North Atlantic.

Recently, focus has shifted to the role of Arctic–Atlantic
gateways around the EOT. The evolution of the Arctic–
Atlantic gateways has been shown to have a strong influ-
ence on the salinity of the North Atlantic and therefore on
the AMOC (Hutchinson et al., 2019; Roberts et al., 2009;
Stärz et al., 2017; Vahlenkamp et al., 2018b). The deepen-
ing of the Greenland–Scotland Ridge at the EOT has been
proposed as a trigger for the AMOC (Abelson and Erez,
2017; Stärz et al., 2017). According to this hypothesis, the
deepening changes the flow across the ridge from a shallow
unidirectional flow to a deeper bi-directional flow which al-
lows salty subtropical water to penetrate further north and
enables North Atlantic sinking. Hutchinson et al. (2019) re-
cently proposed that it is the tectonic closing of the shal-
low Barents Sea gateway, just prior to the EOT, that initiated
the AMOC, by closing off the pathway of extremely fresh
Arctic water to the North Atlantic. This theory suggests that
the North Atlantic reconnected to the Arctic when the Fram
Strait opened in the early Miocene (Jakobsson et al., 2007).
In the Hutchinson et al. (2019) study, Southern Ocean gate-
ways changes, Greenland–Scotland Ridge changes and CO2
forcing changes could not similarly overcome the freshen-
ing effect of the Arctic to allow an AMOC. However, their
study did not test the feedback of these circulation changes
on the carbon cycle, making it unclear what the climatic im-
pact of the Arctic closure would have been. Using an Earth
system model, Vahlenkamp et al. (2018a, b) experimented
with similar changes in the North Atlantic gateways to in-
vestigate an alternative idea of significant AMOC behaviour
since the early–middle Eocene. They were able to initiate
an AMOC when the Greenland–Scotland Ridge reached a
threshold depth of deeper than 200 m, but only when the Arc-
tic Ocean brackish water outlets were shut off from the North
Atlantic. Timing of changes in Arctic–Atlantic “plumbing”,
thus, appears to be a critical factor in allowing an AMOC to
start up in the warm Palaeogene and constitutes a key area
for future research.

In all these studies, it is assumed that the final state of
the simulation is the only steady solution for those boundary
conditions. While there is no consensus yet (Nof et al., 2007),
the present-day climate is thought to have two global circu-
lation modes; the observed AMOC with sinking in the north
and a southern-sinking-only mode with no AMOC (Liu et
al., 2017; Srokosz and Bryden, 2015). In continental geome-
tries other than the present day, different circulation patterns
and co-existing equilibria may be possible but have not been
systematically searched for so far (Baatsen et al., 2018). In
coupled Eocene simulations, centres of deepwater formation
include the North and South Pacific (Hutchinson et al., 2018;

Thomas et al., 2014) and the North and South Atlantic (Hu-
ber et al., 2003; Huber and Sloan, 2001). Conceptual climate
models have suggested a potential role for meridional over-
turning circulation transitions in the EOT (Tigchelaar et al.,
2011).

6.2 Modelling the response to CO2 decrease at the
EOT

A reduction in atmospheric CO2 is hypothesised to be a pri-
mary cause of the EOT, because it can plausibly both explain
long-term cooling during the Eocene and provide a trigger
for the glaciation of Antarctica (DeConto and Pollard, 2003).
Although proxy reconstructions of atmospheric CO2 during
the Eocene have large uncertainties (Sect. 5), there is general
agreement that climate cooled and CO2 declined through the
Eocene (Anagnostou et al., 2016; Foster et al., 2017), mak-
ing long-term CO2 drawdown from the atmosphere a prime
underlying forcing mechanism for the EOT. Furthermore,
CO2-forced climate–ice sheet model experiments yield δ18O
series (DeConto and Pollard, 2003) that closely match the
overall form of our best-resolved EOT datasets (Coxall et al.,
2005; Coxall and Wilson, 2011).

A long-standing problem in modelling the Eocene cli-
mate is to reproduce the low meridional temperature gradient
recorded in observations. Proxies suggest that high-latitude
SSTs were more than 20 ◦C warmer than present day during
the early Eocene (Bijl et al., 2009), terrestrial anomalies were
20–40 ◦C warmer (Huber and Caballero, 2011) and tropical
temperatures were some 5–10 ◦C warmer (Huber, 2008; Hu-
ber and Sloan, 2000). Evidence of frost-intolerant flora and
fauna at high latitudes (Greenwood and Wing, 1995) pro-
vides a challenge to explain how the climate maintained such
a low meridional temperature gradient.

When climate models are forced using proxy-data-based
estimates of Eocene CO2, they generally fail to capture these
flatter meridional temperature gradients (Huber et al., 2003;
Roberts et al., 2009; Shellito et al., 2003). One method that
has been used to address this high-latitude cold bias is to in-
crease the CO2 to extremely high values (2240 or 4480 ppm)
(Cramwinckel et al., 2018; Eldrett et al., 2009; Huber and Ca-
ballero, 2011; Winguth et al., 2010). These extremely high
CO2 experiments yield an improved match to high-latitude
temperature proxies and temperature gradients (Huber and
Caballero, 2011; Lunt et al., 2012). Because these extremely
high CO2 concentrations are greater than those implied by
proxies, this finding also suggests that modelled climate sen-
sitivity to CO2 forcing may be too low, probably because
of positive feedbacks that are either missing or too weak in
the models. Several missing feedbacks suggested recently are
those associated with cloud physics and/or greenhouse gases
in addition to CO2 (Beerling et al., 2011; Kiehl and Shields,
2013; Sagoo et al., 2013; Zhu et al., 2019). We also note
that recent proxy data from the warmest regions of the trop-
ics (Tanzania, Java) indicate tropical temperatures of up to
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35 ◦C in the middle–late Eocene (Evans et al., 2018; Pearson
et al., 2007). These temperatures imply a somewhat larger
meridional gradient than previously suggested, helping to re-
duce the magnitude of (but not eliminate) the model–data
mismatch. In addition, several models have now achieved
lower meridional temperature gradients through a combina-
tion of higher resolution, which tends to increase poleward
heat transport, and improved Eocene boundary conditions
(Baatsen et al., 2020; Hutchinson et al., 2019; Zhu et al.,
2019). A recent model–data comparison demonstrates that
the Oligocene retains a low meridional temperature gradient
similar to the late Eocene, which is not well explained by
currently available climate models (O’Brien et al., 2020). In
the Oligocene, CO2 proxy estimates are lower than in the
Eocene, making it arguably more difficult to model the low
temperature gradient with realistic CO2 forcing (O’Brien et
al., 2020), although the CO2 proxies carry large uncertainty.

Despite the challenges faced in modelling the early
Eocene, the observed cooling during the Eocene of bottom
waters (Zachos et al., 2001), high-latitude SSTs (Bijl et al.,
2009) and terrestrial temperatures can plausibly be explained
by a reduction in CO2 in climate model simulations (Eldrett
et al., 2009; Liu et al., 2009). Furthermore, crossing a CO2
threshold of Antarctic glaciation may also explain several de-
grees of bottom water cooling, through consequent shifts in
Southern Ocean winds and changes to Southern Ocean circu-
lation (Goldner et al., 2014). A key challenge to adequately
testing the CO2 forcing hypothesis is to derive a threshold
level of CO2 for glaciation from climate model reconstruc-
tions. The first study to do so found a glaciation threshold
of around 780 ppm (DeConto and Pollard, 2003), in approx-
imate agreement with CO2 proxies. However, a recent inter-
comparison of Eocene climate models used to force an ice
sheet model found that this threshold varied significantly be-
tween models, from roughly 560 to 920 ppm (Gasson et al.,
2014). Differences in the lapse-rate feedback were identified
as the leading cause of this spread, although there were also
differences in the palaeogeographic boundary conditions.

All ice sheet modelling studies of the EOT to date have
used prescribed climate states to force the glaciation. Like-
wise, coupled ocean–atmosphere–sea ice models currently
prescribe ice sheets as either present or absent. Running a
full-complexity climate model synchronously with an ice
sheet model remains a major technical challenge and has
yet to be implemented for the Eocene or Oligocene. How-
ever, innovative asynchronous coupling, such as the “matrix
method” (Pollard, 2010), has shown some promise by allow-
ing a better representation of the ice–albedo feedback, lead-
ing to a similar yet slightly revised upward glaciation thresh-
old of ∼ 900 ppm (Ladant et al., 2014b).

6.3 Carbon cycle modelling

A slow decline in atmospheric CO2 remains a likely priming
mechanism for the inception of large ice sheets on Antarc-

tica, and this pivotal transition in Cenozoic climate was as-
sociated during the EOT with pronounced rapid perturbation
to the global carbon cycle as indicated by a transient increase
in ocean δ13C and a permanent deepening of the CCD (Cox-
all et al., 2005). Thus, numerical carbon cycle model exper-
iments provide useful insight into forcing mechanisms and
feedback processes involved.

Many hypotheses have been posited to explain the car-
bon cycle perturbations at the EOT (Armstrong McKay et
al., 2016; Coxall et al., 2005; Coxall and Wilson, 2011;
Merico et al., 2008). Some of the leading hypotheses include
a shift from shelf to basin carbonate fractionation (Opdyke
and Wilkinson, 1988), increases in organic carbon burial
(Olivarez Lyle and Lyle, 2006), feedbacks between ice sheet
coverage and silicate weathering (Zachos and Kump, 2005),
and an ecological shift from calcareous to siliceous plankton
(Falkowski et al., 2004). Carbon cycle box models suggest
that the best fit to observations is achieved by a shift from
shelf to basin carbonate fractionation (Armstrong McKay et
al., 2016; Merico et al., 2008). In this interpretation of events,
the fall in sea level due to Antarctic glaciation (i) reduces
the global flux of carbonate into shallow water (reef, bank
and shelf) sediments and (ii) exposes fresh, readily dissolved
shelf carbonate sediments around the world to rapid subaerial
weathering (Merico et al., 2008). The first of these two mech-
anisms drives the sustained CCD deepening from the Eocene
to Oligocene, and the second drives a one-off dump of car-
bonate into the ocean that explains the observed initial tran-
sient overshoot behaviour (Zachos and Kump, 2005) and, be-
cause the shelf carbonate reservoir is enriched in 13C rela-
tive to pelagic carbonate reservoir (Swart, 2008; Swart and
Eberli, 2005), the transient increase in benthic δ13C (Arm-
strong McKay et al., 2016; Merico et al., 2008). If the iso-
topic fractionation between these two carbonate sediment
reservoirs is modest, however, shelf–basin fractionation can
only fully explain the transient increase in oceanic δ13C if
the one-off dump of weathered shelf carbonate is question-
ably large (Merico et al., 2008). In their follow-up study,
Armstrong McKay et al. (2016) considered this problem in
detail and concluded that, unless shelf carbonates were sub-
stantially enriched in 13C relative to pelagic carbonates (by
∼ 3 ‰), an additional process must also have contributed,
with sequestration of 12C-enriched carbon into carbon ca-
pacitors, and possibly increased ocean ventilation, offering
the best fit to the palaeorecords when combined with shelf–
basin fractionation.

Palike et al. (2012) investigated causes of carbon cycle
changes over the Eocene using the intermediate-complexity
climate model cGENIE. They suggest several mechanisms
are needed to explain the CCD change in addition to the
shelf–basin fractionation hypothesis above: (i) perturbations
to continental weathering and solute input to the deep ocean,
or (ii) changes in the partition of organic carbon flux between
labile (organic carbon that is readily available for oxidation
and driving carbonate dissolution) and refractory (carbon
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that is more resistant to degradation and largely preserved
and buried).

The longer-term decline in CO2 over the Eocene needs to
be reconciled with the negative feedback between silicate
weathering and surface temperature (Walker et al., 1981).
Higher CO2 causes warming and enhances the hydrologi-
cal cycle, which leads to an increase in silicate weathering.
The increase in weathering eventually lowers CO2 and sub-
sequent cooling, creating a dynamic equilibrium. This sili-
cate weathering feedback is regulated by tectonic processes
(Raymo and Ruddiman, 1992), since mountain ranges give
rise to greater weathering than low-lying regions (Maher and
Chamberlain, 2014).

A climate model study suggests that opening and deep-
ening of the Drake Passage could lower atmospheric CO2
via the silicate weathering feedback (Elsworth et al., 2017).
They suggested that the gateway transition enhanced the
AMOC, leading to greater precipitation over land regions
and a warmer Northern Hemisphere, both of which enhance
silicate weathering and thus drawdown of CO2 (Maher and
Chamberlain, 2014). However, this study used modern ge-
ography with selected gateway perturbations, whereas cli-
mate models using palaeogeography from the late Eocene
have yielded different patterns of overturning (Baatsen et al.,
2020; Hutchinson et al., 2019). Furthermore, a hypothesised
change in silicate weathering must be weighed against the
CCD record, because silicate weathering changes have im-
plications for carbonate weathering and bicarbonate ion sup-
ply to the ocean (Armstrong McKay et al., 2016; Merico et
al., 2008). Fyke et al. (2015) found opening Drake Passage
led to a decrease in Atlantic carbon storage and an increase in
Pacific and Southern Ocean storage, due to the enhancement
of a modern-like AMOC. This led to an overall increase in
global carbon storage in the ocean, though their implied drop
in atmospheric CO2 is relatively small (10–30 ppm). Incor-
porating carbon cycle processes into full-complexity climate
models with Eocene or Oligocene palaeogeography thus re-
mains an outstanding challenge (e.g. Goddéris et al., 2014).

Experiments using cGENIE report an increase in carbon
re-mineralisation near the ocean surface when temperatures
are very warm, such as in the early Eocene (John et al., 2013,
2014). The more temperature-dependent re-mineralisation
resulted in a shallower CCD and a decrease in organic car-
bon burial, an effect which then decreased over the Eocene
as temperatures decreased. This modelled mechanism is con-
sistent with tropical records of δ13C during the Eocene (John
et al., 2013, 2014), providing a positive feedback on car-
bon dioxide changes, in opposition to the silicate weathering
feedback.

7 Model–data intercomparison of temperature
change across the EOT

Until this point, this review paper has synthesised the ex-
isting literature but has not presented any new quantita-
tive analysis. Furthermore, we have in general presented the
proxy and model-derived insights separately. Here, we com-
bine the information from proxies and models and present
a new model–data comparison and quantitative analysis of
the mechanisms behind temperature change at the EOT. This
section is in two parts: (Sect. 7.1) a quantitative intercom-
parison of temperature change across the EOT from a subset
of these previous studies, in which we identify those changes
that are robust across models, and (Sect. 7.2) a comparison of
the modelled temperature changes with proxy SST and sur-
face air temperature (SAT) data, in which we assess which
models best fit the proxy reconstructions and which mech-
anisms most likely explain the observed proxy temperature
changes.

7.1 Intercomparison of modelled SAT change across
the EOT

Here we present an intercomparison of some previous model
results of SAT change across the EOT. We use SAT data be-
cause they provide a consistent surface temperature over both
ocean and land regions that reflects changes across the globe.
They also enable comparison with proxies of both marine
and terrestrial data to be readily included. We include models
and studies for which the authors have provided their model
results in digital form. The models and simulations included
in this intercomparison are shown in Table 2. This itself is a
subset of the simulations that were available – here we show
only the simulations that allow us to compare the response
of the models to a consistent forcing, for as many models as
possible.

We first consider pairs of simulations that represent the re-
sponse of the climate system to a perturbation in forcing that
may have occurred across the EOT. These pairs can broadly
be divided into three categories corresponding to three forc-
ings: a CO2 decrease, an increase in the volume and extent
of the Antarctic Ice Sheet, and a palaeogeographic change.
These three forcings are hereafter referred to as CO2, ICE
and GEO forcing respectively. Although these forcing fac-
tors are in reality interdependent (for example the ice sheet
change may itself be caused by a CO2 change), for the pur-
poses of modelling they are treated as independent mecha-
nisms.

For the CO2 forcing, we consider a halving of atmospheric
CO2, which for most models is from 1120 to 560 ppmv.
However, for GFDL this is from 800 to 400 ppmv, and for
NorESM-L there are CO2 simulations at 980 and 560 ppmv.
For the NorESM-L case, we scale the anomaly by a factor
of log(2)/ log(980/560) in order to approximate the radia-
tive forcing of halving CO2. We emphasise here that halving
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CO2 is not intended to be a realistic forcing perturbation for
the EOT, but rather a standardised experimental protocol that
can be used to establish the CO2 climate sensitivity of the
models. For the ice sheet forcing, we consider a change from
an ice-free Antarctic to an ice sheet similar in volume and
area to that of today. However, the configuration of these ice
sheets, and the ice-free state, does vary from model to model
(see Fig. S1 in the Supplement). The palaeogeographic forc-
ing is less consistent across the models and includes mod-
elled changes to gateways only (CESM and UVic), to west
Antarctic geography (FOAM) or to global palaeogeography
(HadCM3BL) (see Fig. S3 in the Supplement).

Before examining the SAT response of the system to these
three forcings, it is useful to explore the absolute tempera-
tures in the model simulations. The annual global mean SAT
in each simulation is shown in Fig. 6, while the spatial pat-
terns for each individual model are shown in Figs. S1–S3
in the Supplement. In terms of global mean surface temper-
ature, the models fall approximately into two groups: (i) a
cooler group – consisting of CESM_H, FOAM, HadCM3BL
and NorESM-L – with global mean surface temperatures
of around 17–19 ◦C at 560 ppm and 21–23 ◦C at 1120 ppm
and (ii) a warmer group consisting of CESM_B, CESM_H
(×2) and GFDL CM2.1, where temperatures are roughly
4 ◦C warmer for the equivalent level of CO2 (Fig. 6). A com-
mon factor in this split is that the warmer models have higher
horizontal resolution (∼ 1◦ ocean for CESM_B and GFDL
CM2.1;∼ 2◦ atmosphere for CESM_H (×2) and CESM_B),
although this is likely to depend strongly on the individual
model and boundary conditions used. It is also clear from
Fig. 6 and Figs. S1–S3 that the CO2 forcing has a much
greater effect on global mean SST than the ice or palaeo-
geographic forcing.

The SAT responses of each of the individual models to
the three forcings – 1TCO2 , 1TICE and 1TGEO – are shown
in Figs. S1, S2 and S3 respectively. We also include the an-
nual mean sea ice distribution in each of CO2, ICE and GEO
experiments in Figs. S4, S5 and S6 in the Supplement re-
spectively. It is important to highlight that the changes shown
have not necessarily been chosen to best represent the EOT
transition. In particular, the CO2 forcing shown is a halving
of CO2 in all models, and, although some proxy CO2 esti-
mates are not inconsistent with this change (Pagani et al.,
2011; Pearson et al., 2009), the data come with large uncer-
tainties, albeit more so for absolute concentrations than for
relative changes. In Sect. 7.3 we will explore this further, but
here we recognise that the model responses are highly ide-
alised, and we treat them as sensitivity studies.

7.1.1 SAT response to CO2 decrease, ∆TCO2

Here we consider the response to halving CO2 in the absence
of an ice sheet. There appear to be two different modes of
SAT response to a halving of CO2 (Fig. S1). In the first mode,
CESM_H, CESM_B, FOAM and GFDL respond with cool-

Figure 6. Global mean surface air temperature (SAT) for all mod-
els included in this intercomparison as a function of CO2 concentra-
tion. The lines join simulations from a single model at different CO2
concentrations. References for each model are CESM_H: Goldner
et al. (2014); UVic: Sijp et al. (2016); FOAM: Ladant et al. (2014a,
b); GFDL: Hutchinson et al. (2018, 2019); HadCM3BL: Kennedy
et al. (2015); NorESM-L: Zhang et al. (2014); and CESM_B: Baat-
sen et al. (2020). The dark green square is an additional simulation
of CESM_H with 2◦ atmosphere resolution (Table 2).

ing over all the globe, with greatest cooling at the higher lat-
itudes. In the second mode, HadCM3BL and NorESM-L re-
spond with cooling in most regions (with greatest cooling in
the North Pacific), but with warming in the Pacific sector of
the Southern Ocean. In HadCM3BL, this is associated with
a switch in regions of deep-water formation from dominant
sinking in the South and North Atlantic at high CO2 to dom-
inant sinking in the South Pacific and North Atlantic at low
CO2. The onset of sinking in the South Pacific at low CO2
leads to increased heat transport from the equatorial Pacific
southwards, to such an extent that it leads to net warming in
the Pacific sector of the Southern Ocean, despite the decrease
in CO2. Similar but weaker changes in ocean circulations
happen in the NorESM-L. However, this warming response is
highly sensitive to the boundary conditions, with other qual-
itatively similar simulations behaving very differently in the
region, with some showing only cooling (Kennedy-Asser et
al., 2019). In CESM, a switch in the mode of ocean circula-
tion does not occur, with deep-water formation in the Pacific
sector of the Southern Ocean at both high and low CO2 (al-
beit increased in intensity at low CO2). Similarly, for GFDL
there is no switch, with deep-water formation in the South
and North Pacific at high and low CO2, and for FOAM there
is no switch, with deep-water formation predominantly in the
North Pacific at high and low CO2. The patterns of change in
HadCM3BL and NorESM-L are remarkably similar except
in the Arctic, where NorESM-L shows much more cooling
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than HadCM3BL. In this region FOAM also has very little
cooling. This is because both HadCM3BL and FOAM have
Arctic sea ice in both high- and low-CO2 simulations, which
maintains the SST close to 0 ◦C.

The ensemble mean SAT change due to a halving of CO2
is shown in Fig. 7a. This shows that the greatest cooling is
in the North Pacific and in the Atlantic and Indian sectors of
the Southern Ocean. Most of the regional cooling is “robust”
in that all models show a change of the same sign and are
all within ±2 ◦C of the ensemble mean change. Exceptions
are in the South Pacific (because some models show warm-
ing rather than cooling) and in the North Pacific and Arc-
tic (because there is large variability in the amount of cool-
ing predicted). Overall, the zonal mean cooling is approxi-
mately symmetric about the Equator, with equatorial cool-
ing of −2.6 ◦C and mid–high-latitude cooling of −5.0 ◦C.
While this symmetry is at odds with an inferred northward
migration of the Intertropical Convergence Zone from dust
geochemistry (Hyeong et al., 2016), we stress that this result
reflects the fact that the far-field cooling induced by impos-
ing an Antarctic Ice Sheet (see Fig. 7b) is much smaller than
the global cooling induced by CO2 forcing in these models.

7.1.2 SAT response to Antarctic ice, ∆TICE

The three models that have carried out simulations with and
without an Antarctic Ice Sheet show differing responses to
the forcing (Fig. S2). CESM shows a cooling around the
margins of Antarctica and in the Pacific and Atlantic sec-
tors of the Southern Ocean, FOAM shows cooling around
the margins of Antarctica but warming throughout much of
the Southern Ocean, and HadCM3BL shows cooling in the
Southern Ocean except in the southern Pacific. The mecha-
nisms behind the changes are described in the respective pa-
pers. In brief, Kennedy et al. (2015) attribute the warming in
the Pacific sector of the Southern Ocean in HadCM3BL to
an increased N–S pressure gradient close to the polar front
leading to stronger westerlies, intensification of the Ross Sea
gyre and a resulting increase in oceanic poleward heat trans-
port. Goldner et al. (2014) focus on changes to deep-ocean
temperatures, highlighting the importance of increased east-
erly winds around the margins of Antarctica and resulting
Ekman transport for bringing cold water to depths. They do
not discuss mechanisms for the warming around Australia.
Ladant et al. (2014a) do not discuss the mechanism of SST
change following glaciation, but Ladant et al. (2014b) do, for
a similar pair of simulations. In their model, the presence of
the Antarctic Ice Sheet enhances the strength of the Antarctic
Circumpolar Current, and as a result the Ross Gyre and Wed-
dell Gyre initiate. They also highlight the importance of sea
ice changes in amplifying the changes in SSTs. More recent
work (Kennedy-Asser et al., 2019) has highlighted that the
particularly strong Southern Ocean warming response in the
HadCM3BL simulations could be an artefact of insufficient
spin-up, with very long simulations showing a more muted

Figure 7. Ensemble mean modelled SAT response to (a) CO2 halv-
ing (1TCO2), (b) onset of ice on Antarctica (1T ICE) and (c)
palaeogeographic change (1TGEO) across the EOT. The continen-
tal outlines for all models in each ensemble are shown. The marine
proxy data are shown as filled circles, while the terrestrial proxy
data are shown as filled squares.

temperature response. As a result, these HadCM3BL results
should be treated with caution.

In terms of the ensemble mean (Fig. 7b), there are only a
few regions where there is a robust SST signal. Robust cool-
ing in response to the addition of the Antarctic Ice Sheet is
found around the margins of the East Antarctic Ice Sheet, in
the Drake Passage, south of southern Africa, and in the tropi-
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cal and North Atlantic. There is a seemingly robust warming
east of Australia, but this is a small region and as such it is
unclear if it occurs by chance.

7.1.3 SAT response to palaeogeographic change,
∆TGEO

To examine the response to palaeogeographic change
(Fig. S3), for each model we first identify the pair of sim-
ulations for each model that represents the largest change in
palaeogeography across the EOT. For CESM this is an ide-
alised gateway change from a closed Tasman Gateway and
Drake Passage to open Tasman Gateway and Drake Passage.
This forcing results in a cooling in the Pacific sector of the
Southern Ocean and a slight warming in the rest of the South-
ern Ocean, but these changes are all small compared with
those caused by CO2 or ice sheet changes. For UVic, the forc-
ing is an idealised gateway change from a closed to an open
Drake Passage. This has a large impact on SSTs in the South-
ern Ocean, with cooling south of southern Africa and a N–S
dipole of warming and cooling in the Pacific sector of the
Southern Ocean, associated with the transition from a gyre
circulation to an Antarctic Circumpolar Current. For FOAM,
the forcing consists of a localised change in West Antarctica
in which continent becomes ocean. However, despite the rel-
atively small forcing the response is quite substantial, lead-
ing to global cooling of about 1 ◦C (Fig. 6), especially in the
southwestern Pacific. For HadCM3BL, the forcing is global
in nature but consists of relatively small changes to continen-
tal position and topography and bathymetry associated with
plate tectonic movements from the Priabonian (34–38 Ma)
to the Chattian (23–28 Ma). As a global mean the response
is very small, but regionally it is quite large; for example
there is a N–S dipole response in the North Pacific, cooling
in the North Atlantic and warming in the Southern Ocean.
These changes are associated with the strengthening of deep-
water formation in the Atlantic sector of the Southern Ocean.
NorESM-L shows a relatively muted response but a substan-
tial cooling of about 2 ◦C in the southwestern Pacific.

Given that all models have carried out different simu-
lations to differing forcings, interpreting the differences in
response is challenging. However, the ensemble mean re-
sponse, shown in Fig. 7c, can be interpreted as the best esti-
mate of the SAT response to palaeogeographic change across
the EOT, given the uncertainty in the palaeogeographic forc-
ing itself, as well as in the different models. The only sub-
stantial region of robust change is in the tropical Atlantic,
where all models indicate a cooling response of about 1 ◦C.

7.2 Model–data comparison across the EOT

It is important to assess the realism (or otherwise) of the
model simulations by comparison with evidence from the
geological record. Such model–data comparison can also im-
prove our understanding of the likely mechanisms that drove

change. Given the “snapshot” nature of the model simula-
tions, and uncertainties in dating and limitations due to sparse
data coverage, it is necessary to use data that extend through-
out the EOT and that are clearly either “pre-EOT” or “post-
EOT”. Here we use an updated compilation of SST (Fig. 3)
and terrestrial surface temperature proxies (Fig. 4), which we
present in Tables S1 and S2 respectively. In total there are 24
data points from marine sources and 20 data points from ter-
restrial sources. Before performing the intercomparison, we
first combine and average data points that either come from
different proxies from the same location or from neighbour-
ing data points when they are less than one grid cell apart.
This process yields a final proxy dataset of 27 data points,
shown in Table S3 in the Supplement. Each data point is then
given an equal weight in determining a root mean square er-
ror skill score.

7.2.1 Comparison of model simulations with proxy data

The observed proxy temperature changes compared with
the individual model responses to CO2, Antarctic ice and
palaeogeography are shown in Figs. S1–S3. As discussed in
Sect. 7.1.1, when CO2 is halved, all models predict a cool-
ing at all sites, in agreement with the data, except NorESM-
L, which warms at one of the Arctic sites. There are no
data to evaluate the warming signal in the South Pacific in
HadCM3BL and NorESM-L. When an Antarctic Ice Sheet is
imposed, the agreement is not so good, with all models show-
ing warming for at least two of the sites. When palaeogeo-
graphic changes are imposed, the model–data agreement is
worse again for most models, with all models showing warm-
ing for at least three of the sites. The exception is FOAM, for
which all sites cool, in agreement with the data. The ensem-
ble means capture the broad changes reasonably well, with
all sites cooling for the CO2 case and all but one site cooling
for the ice and palaeogeographic changes.

This model–data comparison is limited by the fact that the
models have carried out idealised simulations, especially for
CO2 forcing for which the halving of CO2 is somewhat arbi-
trary. Although some proxy CO2 records do indicate a drop
of this order of magnitude (Pagani et al., 2011; Pearson et
al., 2009), the associated uncertainties are large. Similarly,
the changes to the Antarctic Ice Sheet imposed in the model
may be greater or less than in reality, or the imposed changes
in palaeogeography may be too extreme. As such, we carry
out the model–data comparison such that each model SAT
response to each forcing is scaled by a constant in such a
way that it best fits the data. To assess the goodness of fit, we
calculate a skill score, s, for each pair of model simulations,
simply as the root mean square difference between the proxy
temperature and modelled temperature, calculated from the
model grid point that is in closest proximity to the data. For
the purposes of the skill score we treat neighbouring sites
(e.g. tropical sites 925 and 929) as a single data point by aver-
aging the proxy and the scaled modelled temperatures at the

Clim. Past, 17, 269–315, 2021 https://doi.org/10.5194/cp-17-269-2021



D. K. Hutchinson et al.: The Eocene–Oligocene transition 295

Table 3. Skill scores, s, for the best-fit modelled changes in re-
sponse to CO2, ice and palaeogeographic forcing, for each model
and for the ensemble mean (a lower value of s represents a better
fit to data). Also shown are the values of s for three idealised SAT
changes. The models all achieve their best skill performance with
CO2 forcing (UVic does not include CO2 forcing). Four models
(CESM_B, CESM_H, FOAM and GFDL) achieve a better skill than
an idealised constant temperature change, while the ensemble mean
achieves better than the idealised cos(φ) case. However, the spread
in skill across the different models is narrow. Changes highlighted in
bold are better than or equal to the idealised constant-change case,
while the ensemble mean is better than the cos(φ) case.

Model s for best- s for best- s for best-
fit 1TCO2 fit 1Tice fit 1Tgeog

CESM_B 0.278
CESM_H 0.284 0.524 0.546
FOAM 0.278 0.492 0.402
GFDL 0.280 0.546
HadCM3BL 0.311 0.458 0.546
NorESM-L 0.312 0.546
UVic 0.537
Ensemble mean 0.274 0.478 0.546

s for idea-
lised 1T

No change 0.546
Constant change 0.296
cos(φ) change 0.275

two sites. The values of s for each modelled best-fit change
to the proxy SATs are shown in Table 3. When comparing
models and proxies, it is informative to consider what may
be called a “good agreement” and to provide a point of ref-
erence for assessing the skill scores. As such, in Table 3 we
also show the skill score that would be obtained in the case
of an idealised model simulating (i) no SAT change across
the EOT, (ii) a global mean change that best fits the data and
(iii) a zonal-mean change of the form 1SST= A+B cos(φ)
(where φ is latitude) that best fits the data.

It is clear from Table 3 that the best modelled fit to the
SAT proxy data arises from changes to CO2. In particular, the
ensemble mean response to a decrease in atmospheric CO2
has the best (lowest) skill score, performing slightly better
than a cos(φ) fit. The only individual model that outperforms
the cos(φ) fit is CESM_H when including both CO2 and ICE
forcing changes (Table 4). We note, however, that a cos(φ) fit
to the data produces only a 7 % improved skill score over the
constant-change fit. The CESM_B, CESM_H, FOAM and
GFDL models perform somewhat better than the constant-
change fit to the data, while HadCM3BL and NorESM-L all
perform slightly worse than this, but their skill scores are
within a margin of∼ 5 % of the constant-change fit. The CO2
change provides by far the best temperature fit over the ICE
and GEO changes. The UVic model does not apply a CO2

change, and it consequently achieves a poorer skill score. We
note, however, that the ICE changes improve the skill score
in the CESM_H and HadCM3BL models, while the GEOG
changes improve the skill score in the FOAM, NorESM-L
and UVic models. Since those forcing factors are indepen-
dent of CO2, they also improve the overall skill score in
combination, as we show below. These results broadly agree
with a recent Southern Ocean-only model–data comparison,
which showed that CO2 forcing provided the best explana-
tion of temperature changes across the EOT, with secondary
improvements made from ice and palaeogeography changes
(Kennedy-Asser et al., 2020).

7.2.2 Mechanisms of change

The above analysis implies that the change in SST at the EOT
can be best explained by a decrease in CO2, as opposed to
changes in ice or palaeogeography. However, it is possible
that changes in ice or palaeogeography, combined with CO2
change, may fit even better with the data. To test this pos-
sibility, we assume that the various responses add together
linearly and find the best scaled combination of each mech-
anism; i.e. we find α, β and γ such that the skill score, s,
of (α1TCO2 +β1Tice+ γ1Tgeo) is minimised. The result
of this exercise for each model and for the ensemble mean is
shown in Table 4. This shows that CESM_H and HadCM3BL
achieve a better fit to the data when including the full re-
sponse to ice sheet change and no palaeogeographic change,
while FOAM and NorESM-L achieve a better fit when in-
cluding a palaeogeographic change and no ice sheet change.
The ensemble mean agrees best with the proxies when in-
corporating a CO2 shift of 885 to 560 ppm (α = 0.66), with
the GEO forcing providing further improvement to the fit
(γ = 0.12), while the ICE forcing does not improve the en-
semble mean skill score. This best-fit ensemble mean change
is shown in Fig. 8. Given the close agreement between the
models in fitting a CO2 change to the data, we can estimate
from the full model spread that the CO2 drop was by a factor
of 1.58± 0.15. If for example we assume an Oligocene CO2
value of 2 times pre-industrial levels, the CO2 drop would be
from 885±90 to 560 ppmv. However, we would caution that
this estimate reflects the model spread in matching this par-
ticular set of data and that the true uncertainty is larger. Ad-
ditionally, the models that included changes due to ice sheet
forcing or palaeogeographic forcing achieved some improve-
ment in fitting the data, but this played a lesser role than CO2
forcing, as measured by these skill metrics.

A 325 ppmv decrease is within the range of CO2 proxy es-
timates, shown in Fig. 5, with alkenone records in particular
suggesting a drop of this magnitude across the EOT (Pagani
et al., 2011; Zhang et al., 2013). Boron and stomatal records
indicate that such a change is plausible but is likely of lesser
magnitude. The recent multiproxy compilation of Foster et
al. (2017) uses a smoothed regression to derive “best fit” CO2
estimates of 893 ppmv and 806 ppm during the late Eocene
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Table 4. Skill scores, s, for the best-fit modelled changes in response to a combination of CO2, ice and palaeogeographic forcing, for each
model and for the ensemble mean (a lower value of s represents a better fit to data). Also shown are the values of α, β and γ that give the
best fit, and the CO2 change corresponding to α, assuming a post-EOT value of 560 ppmv. Also shown are the values of s for three idealised
SAT changes. Changes highlighted in bold are better than or equal to the idealised constant-change case, while CESM_H and the ensemble
mean achieve better than the idealised cos(φ) case.

Model s for best-fit α1TCO2+ α [CO2 change ppmv] β γ

β1Tice+ γ1Tgeo

CESM_B 0.278 0.70 [910 to 560]
CESM_H 0.270 0.56 [826 to 560] 0.90 0
FOAM 0.277 0.60 [849 to 560] 0 0.30
GFDL 0.280 0.52 [803 to 560] 0
HadCM3BL 0.307 0.56 [826 to 560] 0.61 0
NorESM-L 0.311 0.66 [885 to 560] 0 0.25
UVic 0.537 0.68
Ensemble mean 0.273 0.66 [885 to 560] 0.0 0.12

s for idealised 1T

No change 0.546
Constant change 0.296
cos(φ) change 0.275

Figure 8. Ensemble mean modelled SAT response to a CO2 de-
crease from 885 to 560 ppmv, representing the best fit to the proxy
data. The marine proxy data are shown as filled circles, while the
terrestrial proxy data are shown as filled squares. Coastlines from
each model are plotted to illustrate the uncertainties associated with
the palaeogeographic reconstructions.

(38–34 Ma) and early Oligocene (33.5–30 Ma) respectively,
or a decrease of ∼ 10 %. Thus, our model-derived CO2 de-
crease is likely to be an overestimate of the change across the
EOT. There are several reasons why this mismatch may occur
in our model ensemble, which we discuss in Sect. 7.2.3.

7.2.3 Uncertainties associated with the modelling

There are several uncertainties that should be considered
when interpreting the results above. Some of these are dis-

cussed here. There is uncertainty in the models themselves.
These models could be characterised as AR4 class or even
TAR class in that they were state of the art at the time of
the fourth or third IPCC assessment report, as opposed to
the most recent AR5 or the upcoming AR6. The use of less
complex models can be an advantage for deep-time palaeo-
climate work, as these models allow greater length of sim-
ulation, which is especially important for the deep ocean,
where the initial condition may be far from the equilibrium
state, which is unknown at the start of the simulation. How-
ever, there is a trade-off between simulation length and model
complexity, and some of the model simulations presented
here are relatively short (e.g. HadCM3BL; Table 2). A po-
tential manifestation of this lack of complexity relates to the
modelled change in land–sea contrast. The EOT temperature
change from marine records is slightly larger (−2.5 ◦C) than
that recorded from land temperature proxies (−2.3 ◦C). This
in part reflects the heterogeneous pattern of changes in plant
species, from which the land temperature proxies are derived,
but is in general a globally robust signal. On the other hand,
the temperature changes recorded in the model simulations
show the opposite; land temperature changes are more sensi-
tive to greenhouse cooling than ocean temperature changes.
This makes it challenging to achieve a close fit to all of the
temperature records available.

There are several possible reasons why our model-derived
CO2 decrease is larger than the “best fit” to the Foster et
al. (2017) CO2 proxy compilation. First, the models may
be under-sensitive to CO2 forcing, as has been suggested
in previous attempts to model the Eocene (Huber and Ca-
ballero, 2011; Lunt et al., 2012). The model ensemble cli-
mate sensitivity to doubling CO2 is 3.3 ◦C. A recent synthesis
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of Palaeocene–Eocene proxy records suggests that climate
sensitivity during the latest Palaeocene, Palaeocene–Eocene
Thermal Maximum and early Eocene Climate Optimum was
4.5, 3.6 and 3.1 ◦C respectively (Inglis et al., 2020). In ad-
dition the 66 % confidence interval of climate sensitivity was
∼ 2–7 ◦C over the three intervals combined. Thus, our model
ensemble compares well with the best estimates of the early
Eocene climate sensitivity but is towards the lower end of
the “likely” confidence interval, suggesting a considerably
higher climate sensitivity is possible. Second, the models do
not permit dynamic feedbacks between CO2 forcing and the
growth of an ice sheet, which in reality would cause ice–
albedo, land–albedo and cloud radiative forcing feedbacks.
These missing feedbacks may amplify the global tempera-
ture change when crossing a critical threshold of glaciation.
Since these models prescribe their ice sheets as on or off,
such feedbacks are not possible here. However, it is still use-
ful to examine which forcing mechanisms provide the best
explanation of the proxy record. In this sense, it is notable
that CO2 forcing provides the best explanation of the far-
field cooling away from Antarctica, while imposing an ice
sheet has a lesser effect on the global mean (Goldner et al.,
2014).

The boundary conditions applied to the models is a large
source of uncertainty. The spread in palaeogeographic forc-
ing between models is a testament to the fact that the palaeo-
geography both pre-EOT and post-EOT is relatively uncer-
tain (see Sects. 2.1 and 2.2). Recent climate model simula-
tions of the early Eocene suggest that the palaeogeographic
forcing plays a similarly important role to CO2 forcing in
capturing Eocene warm climates (Lunt et al., 2021). These
simulations suggest that 3–5 ◦C of the warming from pre-
industrial to Eocene climates comes from non-CO2 forc-
ing, i.e. forcing from changes to geography; land surface
properties; and the removal of ice sheets. Therefore, while
increasing the climate sensitivity may be part of solving
the Eocene model–data mismatch, improving the palaeogeo-
graphic boundary conditions is also a high priority for ob-
taining a better model–data agreement. The proxy dataset
we have used is also limited in areal coverage. As such, the
models remain untested in several key regions, such as the
North and tropical Pacific or the Indian Ocean. New data
in the regions predicted to warm in response to a CO2 drop
in HadCM3BL and NorESM-L would be particularly useful
for discriminating between models. The model–data compar-
ison does not consider any uncertainty in the proxy estimates
themselves. In reality, each site is associated with a differ-
ent and substantial uncertainty in its estimate of SST change
across the EOT.

Here we have considered only the change in temperature
across the EOT, rather than absolute temperatures. However,
this can mask biases in the simulated base state of the pre-
EOT and post-EOT simulations. Not all models do a good job
of simulating the base state (see e.g. discussion of meridional
temperature gradients in Sect. 6.2). Although the ensemble

results achieve the best fit from CO2 forcing (with a small
contribution form ice sheet forcing), it is worth noting that
the ultimate cause of the CO2 drop itself remains unclear; it
could itself be driven by changes to geological sources and
sinks, changes in weathering rates, or feedbacks associated
with ocean and land sinks due to circulation changes (see
Sect. 6.3).

8 Conclusions

Earth’s modern icehouse climate is defined by the presence
of significant ice masses on land at both poles, but that ice
is now retreating. Understanding the drivers and scale of po-
lar ice growth during the initial inception of this icehouse at
the EOT, which involved cooling and glaciation under a yet
still warm Eocene–Oligocene climate, can provide crucial in-
sights into ice sheet stability and behaviour in a warm cli-
mate, something that is more critical than ever. Here, we have
reviewed the current literature regarding the EOT, in terms
of stratigraphic definitions, geological records of palaeogeo-
graphic and Earth system change, and modelling insights into
mechanisms of change. Marine records currently provide the
most extensive global record of temperature change across
the EOT, with a SST cooling found across most regions. The
marine records suggest a global average temperature change
of approximately −2.5 ◦C across the EOT, although individ-
ual records range from approximately 0 to −8 ◦C change.
Terrestrial records of temperature change are more geograph-
ically limited, with a concentration of records in the midlat-
itude Northern Hemisphere and very little coverage of the
Southern Hemisphere. The terrestrial records average change
is −2.3 ◦C, but, like the marine records, the change recorded
at individual locations ranges from approximately 0 to−8 ◦C
across the EOT. Records of CO2 across the EOT also indicate
some differences between marine and terrestrial records. Ma-
rine records suggest a higher concentration of CO2 overall
and a clearer transition towards lower CO2 across the EOT.
Terrestrial records, by contrast, indicate a lower CO2 con-
centration overall and a more gradual CO2 decline with no
obvious shift coinciding with the EOT. There is an ongoing
need to reconcile the different CO2 signals found in the ma-
rine and terrestrial realms.

A new model–data comparison presented in this paper re-
veals that a halving of atmospheric CO2 across the EOT has
a substantially greater effect on global mean and regional
SAT than either the onset of Antarctic glaciation or changes
in palaeogeography. The response to CO2 forcing is robust
across models, with cooling increasing towards higher lat-
itudes, helping to explain high-latitude cooling in the ma-
rine records. While individual models achieved a better fit to
the data by including palaeogeographic forcing and ice sheet
forcing, these changes are more variable across the models.
As a result, the best fit in the ensemble mean is dominated
by decreasing CO2 by a factor of 1.58, with ice sheet forc-
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ing and palaeogeography forcing playing a secondary role.
Assuming an Oligocene value of 560 ppmv, the correspond-
ing pre-EOT value is 885 ppmv. However, we do not ex-
clude the importance of contributions from other forcings.
Indeed, two models in the ensemble achieve their best fit to
the temperature records with a combination of CO2 and ice-
sheet-induced changes, while two models show an improved
fit when palaeogeographic changes are combined with CO2
forcing. Palaeogeographic changes and ice sheet feedbacks
are inherently regional and harder to aggregate across dif-
ferent model experiments. Nevertheless, it remains possible
that gateway-induced ocean circulation change is somehow
implicated in CO2 decline. For a more complete understand-
ing of these feedbacks, future climate modelling of the EOT
must incorporate dynamic feedbacks between these different
forcing factors.
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Appendix A: List of acronyms

ACC Antarctic Circumpolar Current
AMOC Atlantic meridional overturning circulation
CCD Calcite compensation depth
CMMT Cold-month mean temperature
CLAMP Climate Leaf Analysis Multivariate Program
EAIS East Antarctic Ice Sheet
EOGM Early Oligocene glacial maximum
EOB Eocene–Oligocene boundary
EOT Eocene–Oligocene transition
EOIS Early Oligocene oxygen isotope step
GSSP Global boundary stratotype section and point
MAT mean annual temperature
MECO Middle Eocene climatic optimum
NLR Nearest living relative
ODP Ocean Drilling Program
PrOM Priabonian oxygen isotope maximum
SAT Surface air temperature
SST Sea surface temperature
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Kvaček, Z., Teodoridis, V., Mach, K., Přikryl, T., and
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