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A large part of the scientific legacy of Maurice Kleman concerns topological defects in liquid crystals. Here, we focus on the very first article of Kleman on liquid crystals coauthored with Jacques Friedel and devoted to linear defects in cholesterics discovered in 1921 by François Grandjean who observed them in wedges made from partially cleaved mica sheets. Kleman and Friedel interpreted the thin (single) and thick (double) Grandjean lines as dislocations with Burgers vectors equal respectively to p/2 (half pitch) or p (whole pitch) and have shown that they are composed of pairs of disclinations that they called τ and λ. We report on a recent work accomplished specifically in memoriam of Maurice Kleman, with the aim to show the beauty of nets of Grandjean lines in wedges made of mica sheets. We stress that such nets carry also information on the crystal structure and cleavage properties of the muscovite mica. Beside classical wedges made with partially cleaved mica sheets, we used also wedges made with crossed cylindrical mica sheets. This alternative setup allowed us to nucleate in a controlled manner dislocation loops of the two kinds. We show that due their metastability both types of dislocation loops can persist indefinitely independently of the local thickness and angle of the wedge. We show also that in thin wedges, surprisingly, the double dislocation loops are not smooth but contain one or two cusps corresponding to kinks predicted by Kleman and Friedel. Their presence is a fingerprint of the helicoidal symmetry of cholesterics.

Introduction

"Lignes de dislocations dans les cholestériques"

A large part of the scientific legacy of Maurice Kleman concerns topological defects of liquid crystals [START_REF] Kleman | Points. Lignes. Parois[END_REF][START_REF] Kleman | Defects in liquid crystals[END_REF][START_REF] Kleman | Disclinations, dislocations, and continuous defects: A reappraisal[END_REF][START_REF] Kleman | Soft Matter Physics[END_REF][START_REF] Toulouse | Principles of a classification of defects in ordered media[END_REF]. He started to explore them in 1969 at the Solid State Physics Laboratory in Orsay where in a very stimulating and competitive atmosphere several young teams (directed by George Durand, Madelaine Veyssie, Etienne Guyon and Maurice Kleman himself) were exploring the word of liquid crystals. Progresses were rapid and spectacular thanks, among others, to permanent interactions with Jacques Friedel and Pierre-Gilles de Gennes.

The first article of Kleman on liquid crystals, co-authored with Jacques Friedel, was entitled Lignes de dislocations dans les cholestériques [START_REF] Kleman | Lignes de dislocations dans les cholestériques[END_REF]. The choice of this subject had probably several reasons: CONTACT P. Pieranski. Email: pawel.pieranski@u-psud.fr Kleman and Friedel [6]. a) Definitions of axes -→ λ , -→ τ and -→ χ used for rotations in the Volterra process. b) Disclinations λ +1/2 and λ -1/2 obtained by by rotations +π and -π around the axis -→ λ . c) Disclinations τ +1/2 and τ -1/2 obtained by rotations by +π and -π around the axis -→ τ . d) Generation of the disclination χ +1/2 by the Volterra process in five steps: I-incision, II-splitting, III-rotation of molecules around the axis -→ χ , IV-suture, V-viscoelastic healing. e) Generation of a dislocation with Burgers vector equal to p/2 (equivalent to the disclination χ +1/2 ) by an alternative Volterra process in which the step III consists in introduction of a p/2 thick slice of the cholesteric texture into the gap created by steps I and II. f and g) Generation of the disclination χ +1 equivalent to the dislocation with the Burgers vector b=p. In experiments, disclinations χ +1/2 (dislocations p/2) appear as single (thin) Grandjean lines while disclinations χ +1 (dislocations p) correspond to thick (double) Grandjean lines.

(1) As a grandson of Georges Friedel, Jacques Friedel knew his generic work on mesophases [START_REF] Friedel | Etats mésomorphes de la matière[END_REF] as well as that of François Grandjean on observation of networks of thin lines (called by F.G. "lignes de niveau" (level lines)) in cholesterics confined in wedges made with partially cleaved crystals such as mica [START_REF] Grandjean | Sur l'existence des plans différenciés équidistants normaux l'axe optique dans les liquides anistropes (cristaux liquides)[END_REF]. (2) Kleman and Friedel were also aware of the work of P. Chatelain and R. Cano who observed such lines, called by them "cloisons de Grandjean" (Grandjean walls), in wedges made of glass slides and cylindrical lenses buffed in one direction for the planar anchoring. Chatelain et Cano interpreted these lines as discontinuities ∆N = 1 of the number N of half-pitches of the cholesteric helix located between surfaces of wedges [START_REF] Cano | Sur les variation de l'équidistance des plans de Grandjean avec le titre des mélanges de cyanobenzalaminocinnamate d'amyl actif et inactif[END_REF][START_REF] Cano | Interprétation des discontinuités de Grandjean[END_REF]. (3) Similar observations made by the Orsay Liquid Crystal Group in 1969 [START_REF] Liquid | Existence of magnetic unstability of double disclination lines in cholesteric liquid crystals[END_REF] unveiled a new type of lines in Cano wedges that were called double because they were involving a discontinuity ∆N = 2 i.e. double of that of the original Grandjean walls. (4) For Jacques Friedel and Maurice Kleman who were experts in dislocations in solids and who were aware also of the concept of disclinations introduced by Charles Frank, these lines in cholesterics endowed with a helix-like periodic structure appeared as very attractive to investigate because on one hand they were similar to dislocations in solid crystals and on the other hand they could be considered as disclinations of the director field.

In their article, Kleman and Friedel did not limit their interest to these single and double lines in Grandjean or Cano wedges but they considered, from a general topological point of view, the whole variety of defects that can be generated in cholesterics by the Volterra process. In the frame of the Volterra model, Kleman and Friedel made distinction between two types of disclinations : disclinations λ and τ generated by rotations Ω = 2πm (m = ±1/2, ±1, ±2, ...) around the axes -→ λ and -→ τ orthogonal to the axis -→ χ of cholesteric helix defined Fig. 1a. disclinations χ generated by rotations Ω = 2πm (m = ±1/2, ±1, ±2, ...) around the axis -→ χ of the cholesteric helix.

Disclinations λ and τ are depicted in Figs. 1b andc. The difference between them has been stated by Kleman and Friedel in these terms:

disclination line τ is orthogonal to molecules on its path disclination line λ is parallel to molecules on its path For this reason, as shown Fig. 1c andb, disclinations τ have a singular core while disclinations λ are non singular. In these close-up views, disclinations τ appear as identical with disclinations in nematics.

In terms of this classification, the Grandjean walls correspond to disclinations χ with m=1/2 for single lines and m=1 for double lines or, alternatively can be seen as edge dislocations with Burgers vectors of length p/2 and p.

Kleman and Friedel emphasized also that the director field of the single Grandjean lines must contain pairs of τ and λ disclinations (see Fig. 1 and Fig. 12). Moreover, in the case of doubles lines at least two configurations of the director field are possible: the first one shown in Fig. 1f contains disclinations τ +1/2 and τ -1/2 with singular cores, while the second one in Fig. 1g contains the nonsingular disclinations λ +1/2 and λ -1/2 .

Grandjean lines in Grandjean wedges

As a corner stone of the theory of disclinations in cholesterics, the article of Kleman and Friedel is widely quoted even if its accessibility is limited because it is essentially theoretical and written in French. The generic article of Grandjean, the source of all researches on defects in cholesterics, is also frequently quoted but one can doubt if it was really frequently read because it is also written in French. Both articles are illustrated with drawings but they lack of images of real disclinations in wedges. Since 1969, this lack was largerly remedied by publication of countless pictures of Grandjean lines in Cano wedges made with glass surfaces. Nevertheless, as far as we know, illustrations of Grandjean lines in Grandjean wedges i.e. made of partially cleaved mica sheets are quite scarce.

We report here on a recent work accomplished specifically for the purpose of this memorial issue of Liquid Crystals Reviews in honor of Maurice Kleman, with the aim to show how beautiful are Grandjean lines in Grandjean wedges. This is obvious at first sight on the series of six pictures in Fig. 2. Beside their esthetic aspect, pictures in Fig. 2 carry also a lot of informations not only on disclinations in cholesterics but also on the structure of the muscovite mica and on its easy cleavage planes as well as on the elastic deformation of the mica sheets and on the light propagation in mica and in the cholesteric liquid crystal. One can thus say that experiments with Grandjean lines in Grandjean wedges are very instructive so that they certainly deserve to be performed in undergraduate labs.

To be more precise, let us start with a few remarks on the most striking features of pictures in Fig. 2:

Level lines : All pictures show nets of dislocation lines parallel to coloured interference fringes. As their colour is related to the local thickness of the wedge, the original Grandjean's denomination level lines appears as fully justified. Two types of cleavages in mica muscovite : All pictures are divided in brighter and darker fields labeled CR and CL. Beside this difference in colour they differ also by the spatial layout of lines: in fields CL the whole set of lines is closer to the wedge edge then the corresponding set of lines in fields CR. This is obvious in the picture a where lines in adjacent CR and CL fields are indexed (1, 2, ...).

In section 1.3 we will explain that this presence of the two types of fields in Grandjean wedges is related to the crystal structure of the muscovite mica. Single lines : In pictures a-c taken at a higher magnification all lines are located in the vicinity of the wedge edge where the thickness as small. As it is well known, for this reason all lines are single (or thin) and they are labeled SL. Double lines : In pictures d-e taken at a lower magnification, the lines located in the vicinity of the wedge edge are also single (SL) but those in the thicker part of the wedge are double (DL) as reported by the OLCG [START_REF] Liquid | Existence of magnetic unstability of double disclination lines in cholesteric liquid crystals[END_REF]. These denominations single line and double line are fully justified by the insert of Fig. 2c showing a splitting of a double line into two single lines. We will discuss this issue in section 2.3. Elastic deformation of the mica sheets : The distance between the single lines and the distance between the double lines decreases as a function of x -the distance from the edge wedge. This is due to the fact that local thickness h(x) of the wedge varies with x accordingly to the law describing deformation of an elastic cantilever of length L clamped at one extremity and loaded on the other one h(x) = ax 2 (3L -x). This issue of elasticity will be discussed in section 2. 

Cleavage of mica and the anchoring on cleaved surfaces

The anchoring of the nematic liquid crystal PAA (para-azoxyanisole) on freshly cleaved surfaces of mica was discovered in 1913 by Charles Mauguin [START_REF] Mauguin | L'orientation des cristaux liquides anisotropes par les lames de mica[END_REF] (and confirmed by Franois Grandjean in 1916 [START_REF] Grandjean | L'orientation des liquides anisotropes sur les cristaux[END_REF]). Mauguin inserted crystals of PAA (para-Azoxyanisole) in a fresh cleavage of a mica sheet and made melt them into the nematic phase. For observations with a polarising microscope he took care of compensating the birefringence of the cleaved mica sheet by means of a second mica sheet of the same thickness oriented with its optical axes orthogonal to those of the cleaved one. He found that two types of cleavages were possible. In those represented in Fig. 3b the optical axis of the nematic was rotating by 60 following a dextrogyre helix between the lower and upper surfaces of the cleavage. On the second type of cleavage the configuration of the optical axis was a mirror reflection of the one in (b). From such experiments Mauguin drew following conclusions:

(1) Freshly cleaved surfaces of mica orient the optical axis in one of the two directions labeled D and G in Fig. 3a and belonging to the so-called pressure or percussion figures made of fracture lines generated by a sharp tool (for example a needle) pushing or percussing a hexagonal mica crystal laying on a soft substrate. (2) On the two surfaces resulting from a cleavage, orientations were different: they were either D on the lower surface and R and the upper one or, inversly, R on the lower surface and D on the upper one as shown in Fig. 3ab andc.

Today the structure of the muscovite mica is well known and the findings of Mauguin can be reinterpreted in terms of this detailed knowledge. For the sake of brevity we will use a simplified model of the mica muscovite structure represented in Fig. sheets belonging to the triplet T1. c) Structure of the upper and lower surfaces of the triplet T2. The hexagonal symmetry of the Kagome lattice of oxygen atoms is also broken by the shift between the two Si 2 O 5 sheets of the triplet T2. However, in this triplet T2 the staggering vector l 2 is different: it makes the angle of 120 • with l 1 . For this reason, the planar anchorings on surfaces obtained by cleavages A and B have different orientations. As they are parallel (or orthogonal) to the staggering vectors l 1 and l 2 , they make angles of +120 • for the cleavage A and -120 • for the cleavage B.
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T 2 form the angle of 60 • .

In mica muscovite alternating triplets T 1 and T 2 are intercalated with K + ions. As the cleavage of mica occurs along the planes made of K + ions it becomes obvious why the two types of cleavages considered by Mauguin are possible.

The surfaces resulting from a cleavage are thus essentially made of oxygens disposed on a slightly deformed Kagome lattice and of K + ions disposed at random. If the Kagome lattice was perfect its symmetry would be p6mm. The anchoring of nematics on such a surface would be multistable (hexa-or dodeca-stable) because if one direction of the anchoring was allowed then all other directions symmetrical to it with respect to all elements of the p6mm group would be allowed. However, the shifts l 1 or l 2 between the adjacent [Si 2 O 5 ] 2-layers in the mica triplets break the p6mm symmetry into a mirror symmetry with the mirror plane σ parallel to the stagerring vectors l 1 or l 2 .

On surfaces with such a low symmetry, the planar anchoring can be only monostable, with orientations parallel or orthogonal to the symmetry plane, or bistable when the anchoring direction is oblique with respect σ [START_REF] Pieranski | Adsorption-induced anchoring transitions[END_REF].

In experiments of Mauguin, the anchoring of the nematic PAA was monostable with orientations D and G parallel to the mirror planes σ i.e. to the stagerring vectors l 1 or l 2 making the angle of 60 • .

We will show below that in experiments with 5CB/CB15 mixtures directions of the planar anchorings on surfaces of mica wedges are the same : parallel to l 1 or to l 2 .

Straight dislocation lines

Nets of single dislocations in mica wedges

The two layouts of dislocations nets (made of single lines) labeled CL and CR in pictures of Fig. 2 are due to the two types of cleavages of mica muscovite, CL and CR defined in Fig. 3. Let us consider, for example, the field delimited with a dotted rectangle in Fig. 2a. It is shown again in Fig. 5a.

For the sake of simplicity we will suppose that surfaces produced by these cleavages are flat and make an angle α defined in Fig. 5e. In this approximation, the dislocations in the nets should be equally spaced as shown in Figs. 5c ande.

Positions of dislocations in a wedge with parallel anchoring directions shown in Fig. 5e are located at x positions where the local gap thickness is

h m (x) = (2m -1) p 4 with m = 1, 2, 3, ... (1) 
One obtains this expression from equality of densities of the elastic energy in fields adjacent to a single dislocation line:

1 2 K q - (m -1)π h m (x) 2 = 1 2 K q - mπ h m (x) 2 with q = 2π p ( 2 
)
where p is the pitch of the cholesteric helix.

In wedges obtained by the cleavage of mica, the equation 2 is modified because of the angle of +π/3 or -π/3 between the anchorings D and G: and the expression 1 is modified as follows

1 2 K q - (m -1)π ± π/3 h m (x) 2 = 1 2 K q - mπ ± π/3 h m (x) 2 (3) 
h m (x) = (2m -1) p 4 ± p 6 with m = 1, 2, 3, ... (4) 
As the positions of dislocations are given by x m = h m (x)/α, whole nets of single dislocation lines are shifted by ±(1/6)p/α with respect to the net of single lines in the wedge with parallel anchorings. All these considerations are represented graphically in Fig. 5. Let us note that dislocations are located halfway between two adjacent positions x in wedges with thicknesses such that the cholesteric helix can be located there without deformation. In schemes (b), (d) and (e) of this figure we assumed implicitly that the cholesteric helix is dextrogyre (right-handed). However, if the cholesteric helix was levogyre, the labels CL and CR in pictures (a) and (c) should be exchanged.

The handedness of the cholesteric helix in mixtures 5CB/CB15 are known, for example, from the work of Oswald et al. [START_REF] Oswald | Lehmann rotatory power: a new concept in cholesteric liquid crystals[END_REF] : it is dextrogyre. Nevertheless we made a very simple experiment depicted in Fig. 6 that gave as the handedness of the helix in 5CB/CB15 mixtures. A thin layer (about 20µm) of pure 5CB was spread on a freshly cleaved thin mica sheet. The birefringence of the mica sheet was compensated by means a Babinet compensator and crossed polarised were oriented for extinction of the transmitted white light. Subsequently, a very small droplet of a 5CB/CB15 mixture was deposited on the 5CB nematic layer and the vicinity of the deposited droplet was observed. The series of three pictures in Fig. 6 (b),(c) and (d) shows that the twist deformation grows with concentration of CB15 and the helix handedness, detected by means of a rotating analyser, was right-handed.

In conclusion, all schemes in Fig. 5 apply to the case of 5CB/CB15 mixtures. 

Elastic deformation of mica sheets

The drawback of experiments on dislocations in Grandjean wedges made with partially cleaved mica sheets is that the local thickness h(x) is not known à priori unlike in experiments with Cano wedges where gaps plate/plate, plate/cylinder or plate/lens have known shapes. However, when the pitch of the cholesteric helix is so large that the Mauguin wave-guide mode of light propagation holds (the Mauguin criterion p∆n λ is satisfied), the local thickness h(x) can be inferred from the system of interference fringes in polarised light. In this Mauguin wave-guide limit, the phase shift between the two linearly polarised interfering modes is given by the expression :

∆ϕ = 2π ∆nh(x) λ with ∆n = n e -n o (5) 
identical with the one for nematic wedges. Knowing that the black fringes observed between crossed polarisers are located at positions x N such that ∆ϕ = N 2π with N=1,2,3,... we can calculate the local thickness using equation 5 :

h N = N λ/∆n (6) 
As an example of this method, let us consider the picture of interference fringes, taken in monochromatic green light, shown in Fig. 7a. Beside the interference fringes this picture shows also the two indexed systems of single dislocation lines in cleavages CL and CR. Using pictures of the interference fringes taken far enough from the CL/CR frontier (where dislocation lines are deformed) and shown in Figs. 8(c one end and loaded at the other end :

h = H 2L 3 x 2 (3L -x) (7)
where H is the deflection at x=L (H and L are defined in Fig. 7b). Knowing shapes h(x) of wedges and positions x m of dislocations represented by vertical blue lines in Figs. 8(e) and (f), local thicknesses h m (x) have been determined graphically and plotted versus the dislocation's index m in Fig. 8(g). These experimental results fit well (continuous red and bleu lines) to the linear dependence given by equation 4.

Nets of single and double lines

So far we have considered only nets made of single lines (SL) but we know from section 1.2 that thicker parts of Grandjean wedges contain nets of dislocations made of lines of the second type called "double" (DL). For the purpose of the forthcoming discussion we made an experiment illustrated by a series of six pictures in Fig. 9. In this experiment dislocation lines are generated by the Isotropic ⇒ Cholesteric transition realised in the presence of a temperature gradient. In these conditions, the Isotropic/Cholesteric interface sweeps the sample in the direction of the temperature gradient gradT indicated by an arrow in Fig. 9a. The direction of gradT is oblique with respect to the thickness gradient gradh of the wedge. The angle β between gradT and gradh is less than 90 • .

For some reasons which remain to be explained, when β < 90 • , lines generated in the wedge are in majority double as shown in Fig. 9b but they are often connected to pairs of single lines.

The configuration of lines in Fig. 9b is unstable and it relaxes as shown in the next four pictures. The configuration shown in the last picture is very close to equilibrium.

The most striking results of this experiment are the following ones:

1 -Relative stability of single and double lines : In the thinner part of the wedge (on the left) single lines are more stable than the double ones so that double lines split into pairs of single lines and are replaced by them. In the thicker part of the edge the double lines are more stable so that pairs of single lines coalesce into double lines. 2 -Two nets of double lines : This relaxation process leads to an equilibrium configuration in which the net of single lines located in the thin part of the wedge coexists with two systems of double lines shifted one with respect to the other. 3 -Positions of the double lines in the wedge : At first sight on the picture in Fig. 9f, the double lines of the two systems seem to be located halfway between virtual positions of single lines indicated with thin blue lines. 4-Interface between the two systems of double lines : The interface between the two systems of double lines is made of a sinusoidally-shaped single line. 

Positions of double lines

Positions of double lines in a Grandjean wedge result from equality of densities of the elastic energy in fields adjacent to the lines:

1 2 K q - (n -1)2π ± π/3 h n (x) 2 = 1 2 K q - n2π ± π/3 h n (x) 2 with n = 1, 2, 3, ... (8) 
for the system DL1 and

1 2 K q - (n -1)2π + π ± π/3 h n (x) 2 = 1 2 K q - n2π + π ± π/3 h n (x) 2 with n = 1, 2, 3, ... (9 
) for the system DL2.

These equations lead to:

h n (x) = (2n -1) p 2 ± p 6 with n = 1, 2, 3, ... ( 10 
)
for the system DL1 and

h n (x) = 2n p 2 ± p 6 with n = 1, 2, 3, ... (11) 
for the system DL2.

In view of these results, the systems DL1 and DL2 should rather be called DLO (odd) and DLE (even) because in the first case double lines are located between fields with the odd number (2n-1) of half pitches while in the second case the adjacent fields contain the even number 2n of half pitches.

The set of three equations -4, 10 and 11 -explains also why the double lines are located halfway between virtual positions of single lines, as observed.

Relative stability of single and double lines.

The relative stability of single and double lines in Grandjean wedges depends on the elastic energy which has two contributions :

F = F f ields + F lines (12) 
The first term accounts for the elastic energy in fields between lines and the second for the elastic energy of lines. To be more precise let us consider the example of a junction between two single lines and one double line shown in Fig. 10a. In this experiment, the motion of the triple junction is visualised by the series of 10 pictures shown in Fig. 10b.

Clearly, the double line splits into two single lines and, at the same time, fields with i=3 and i=5 are converted in the field i=4 (i is the number of half pitches p/2 confined locally in the wedge).

Let dy by a displacement of the triple junction along the y axis. The corresponding variation of the total elastic energy in fields with i=3, 4 and 5 can be written as with

dF f ields = dF 4 -(dF 3 + dF 5 ) (13) 
dF i = Kdy 2α hi+1 hi q - iπ h 2 hdh ( 14 
)
dF i-1 = Kdy 2α (hi+hi+1)/2 hi q - (i -1)π h 2 hdh ( 15 
)
dF i+1 = Kdy 2α hi+1 (hi+hi+1)/2 q - (i + 1)π h 2 hdh (16) 
and i=4. These terms generate a force on the triple junction

f f ields = - dF f ields dy (17) 
It has been calculated numerically and is represented by a blue line as a function of the index i in the graph of Fig. 11. The force f f ields is thus always positive and favors the splitting. Let us note that it grows when the index i gets smaller. It also grows when the wedge angle α decreases.

The force f f ields is opposed by the tensions of lines, T SL and T DL , that exert on the triple junction the total force :

f lines = 2T SL -T DL (18) 
In the case of the experiment represented in Figs.9 and 10, this force is negative and pulls the triple junction "down". In Fig. 11 it is represented by the red line and its absolute value was chosen with the aim to obtain the intersection located between i=4 and i=5 as observed in the experiment. 

Structural details of single and double lines, DL ⇒ 2SL splitting

The negative sign of the force f lines results from structures of the single and double lines shown in figure 12 where schemes (a-b) and (c-d) show plausible configurations of the director field in cross sections AB and CD defined in Fig. 10(a). The detailed configuration of single lines (edge dislocations with Burgers vector of length p/2) varies with their z position along the helix axis. In crystallography such motion of dislocations is called glide. For example, after a glide by p/4, the configuration from Fig. 12a changes to the one shown in Fig. 12b. Let us note that both configurations contain disclinations τ with singular cores. Due to the elastic anisotropy, the two configuration can have sightly different energies and the resulting energy barrier can hinder the glide.

The Volterra process applied for creation of double lines (edge dislocations with the Burgers vector of length p) can result in at least two very different configurations. The one shown in Fig. 12c contains two disclinations τ of ranks 1/2 and -1/2. In this case, the splitting of the double line into two single lines seems obvious from topological point of view. However, as shown in Fig. 12d after a glide by p/4 the double line contains only two non singular disclinations λ. For this reason the energy of the double line can be smaller than that of two single lines.

In conclusion, the total force f lines defined in Eq.18 has a sign opposite to that of f f ields defined in Eq.17 

Dislocation loops

Crossed cylinders geometry

In experiments discussed above with Grandjean wedges made with partially cleaved mica sheets, dislocation lines were parallel to level lines of the wedge edge i.e. straight. They were also assumed implicitly to have infinite length.

In alternative geometries -sphere/plane or cylinder/cylinder -the level lines are closed so that we have to deal with dislocations having shapes of loops. Thin mica sheets are very flexible so that they are well adapted for experiments in the cylinder/cylinder geometry depicted in Figs. 13a andb.

At first sight, when the local radius of curvature of the level lines in Fig. 13b is much larger than the local thickness of the wedge, this cylinder/cylinder geometry seemed to be approximatively equivalent to that the classical Grandjean one so that we expected results similar to those obtained with straight wedges discussed in section 2.3: the presence of single lines in the thinnest area of the wedge and of double lines in the thicker peripheral area.

This expectation was first confirmed by the experiment depicted in Figs. 13c end d where the picture (c) shows coexistence of single and double lines generated by a turbulent mixing. In the second picture (d) taken after relaxation of about one hour, the single lines loops are stabilised in the central area of small thickness where splitting of a double line into a pairs of single lines occurred. In the peripheral thicker area with larger wedge angle, two nets double lines DL1 and DL2 are stabilised after coalescence of pairs of single lines (see the example of coalescence inside the dashed rectangle).

Metastable systems of single and double lines

We were surprised to find in other experiments that the cylinder/cylinder wedge can be filled entirely either with single lines or alternatively with double lines as it is shown in Figs.13e end f. We know from section 2.3 that such configurations cannot be stable but only metastable. Nevertheless, as we point out below, in the absence of adequate macroscopic perturbations these metastable states can persist indefinitely independently of the local thickness and angle of the wedge.

In our experiments with the crossed cylindrical mica sheets, the minimal gap thickness h o in the centre is controlled with accuracy of 1µm by means of a micrometric translation stage. When h o increases slowly enough, the dislocation loops shrink and collapse one after another. Upon a more rapid positive change of the thickness, the wrinkling Herfrich-Hurault instability can occur. It would deserve a more detailed discussion but in the frame of this article such a discussion is rather out of scope.

When h o decreases, the existing dislocation loops inflate and new loops are nucleated in the centre of the gap. One could therefore think as mentioned above that the new loops should belong to the class of single lines which are stable in the thinnest portion of the wedge with small slopes as discussed in the previous section 3. This belief has been contradicted by our experiments. Indeed, in the absence of large dust particles or other imperfections such as high steps on mica surfaces, not single (thin) but double (thick) line loops are nucleated in the central area of the gap. The thick blue line is the trajectory followed during the experiment represented in the series of six pictures a-f. Segments A-F correspond respectively to events shown in pictures a-f. The thick red line is followed in experiments described in section 3.7 on unitary nucleation of double lines loops.

Nucleation and expansion of double lines loops

Another example of the serial nucleation and expansion of double line loops is shown in Fig. 15. This experiment starts from the texture of four loops labeled d11-d8 shown in Fig. 15a. This quasi-equilibrium texture of double lines contains among others crossings of double lines (two of them are indicated by arrows) which on a longer time scale of days can move and annihilate by pairs. In the diagram of Fig. 15e, radii of the four loops are represented by yellow circles located on the horizontal dotted line corresponding the minimal thickness h o1 = 15p/2. Upon a very cautious (slow) reduction of the minimal thickness from h o1 = 15p/2 to h o2 = 5p/2, the four loops expand. In the diagram of Fig. 15e their radii follow trajectories drawn with red lines given by

h i = h oi - r 2 i 2R c or r i = 2R c (h oi -h i ) ( 19 
)
where R c = 75mm is the effective radius of curvature of the cylinder/cylinder gap. Let us note that the two external loops, d11 and d10, expand so much that their trajectories cross the thick blue line which represents variation of the radius R m of the cholesteric droplet, of volume V = 0.96mm 3 , as a function of its minimal thickness h o . In experiments, when the two loops d11 and d10 touch the meniscus they disappear. The two other loops, d8 and d9, reach their equilibrium radii in the vicinity of the meniscus (see Fig. 15b).

While the two loops d8 and d9 in Fig. 15b are in quasi-equilibrium, the whole texture is metastable because five loops, d7-d3, are missing. The elastic strain in the gap center is so large that a subsequent very small reduction of the gap thickness triggers serial nucleation of four new double line loops, d7-d4, (see Fig. 15c) that expand and reach their quasi-equilibrium sizes shown in Fig. 15d.

Once again, while the six loops d5-d9 are in quasi-equilibrium, the whole texture is in an out-of-equilibrium metastable state because the dislocation loop d3 is missing. Its nucleation together with that of loops d2 and d1 is triggered by reduction of the gap thickness from h o2 = 5p/2 to h o2 = p/2. After expansion of the three new loops, the quasi-equilibrium texture shown in Fig. 15e is reached.

The last nucleation of the single line loop S1 occurs upon reduction of the gap thickness to zero (see Fig. 15f).

Serial nucleation of double lines loops

When the initial minimal thickness h o of the cylinder/cylinder gap is much larger than 6p/2, serial nucleations of double line loops can occur upon a large enough compression of the gap. As an example we show in Figs. 14a-c and 16 a serial nucleation of four double lines loops upon reduction of the initial equilibrium thickness from h o ≈ 24p/2 to h o ≈ 10p/2. Nucleation of all four loops occurs on the small dust particle indicated by an arrow in Fig. 16b.

This first serial nucleation of four double lines loops followed by their expansion reduces the number N of cholesteric half-pitches from 24 to 16 but the equilibrium state is not reached in the center of the sample because the minimal thickness is there h o ≈ 10p/2 (not 16p/2). We must thus conclude that the remaining elastic strain is lower than some threshold value. In the diagram of Fig. 14g this threshold is represented by a horizontal dotted line labeled "nucleation threshold". 

b) During very slow reduction of the minimal

thickness from h o1 = 15p/2 to h o2 = 5p/2, the four loops expand so much that the two external ones, d11 and d10, disappear at the meniscus. c) Serial nucleation of four new loops d7-d4. d) Quasi-equilibrium texture after expansion of the four new loops d7-d4. e) Quasi-equilibrium texture reached after the serial nucleation and expansion of three new loops d3-d1 due to reduction of the minimal thickness from h o2 = 5p/2 to h o3 = p/2. f) The last single line loop s1 is nucleated upon the reduction of the gap thickness to zero. g) Thin plain lines: plots of the equilibrium radii of the double line loops as a function of the minimal thickness ho of the cylinder/cylinder gap. Thick blue line: plot of the meniscus radius Rm versus the minimal thickness ho for the volume V = 0.96mm 3 of the cholesteric droplet kept constant. A second serial nucleation of five double line loops occurs upon reduction of the minimal thickness from h o ≈ 10p/2 to h o ≈ 4p/2 (see Figs. 14d-e).

In the diagram of Fig. 14g the set of curves (drawn with plain red and dotted blue lines) represent variation of the elastic energy density f el as a function of the minimal thickness h o for samples with different numbers N of half pitches located in the gap :

f el = K 22 q 2 o 2 N h o /(p/2) -1 2 (20) 
The two serial nucleations of loops described above occur along the saw-tooth shaped path indicated with a thick blue line in Fig. 14g. This path follows first the segment AB along the red curve labeled N=24 until the nucleation threshold is significantly crossed. The subsequent vertical segment BC represents the serial nucleation of four loops followed by their expansion. The next segment DE follows the red curve N=16 and the nucleation threshold is significantly crossed again. The last vertical segment corresponds to nucleation and expansion of five new loops.

Serial nucleation of single lines loops

When a large dust particle is present in the centre of the cylinder/cylinder gap nucleation of single line loops occurs preferentially. As an example we show in Figs. 17a-f the series of four pictures in Figs.17g-j.

Serial nucleation seen as rotation of spiral dislocation lines

The process of the serial nucleation of single lines loops in Figs.17g-j is similar to that of the serial nucleation of double lines loops shown in Fig. 16. In both resulting textures the dislocation loops can be numbered as 1,2,3,... in the order of their nucleation priority. This interpretation of textures in Figs.17g-j and 16 as results of serial nucleations of dislocation loops one by one is not unique. An alternative interpretation is suggested by the fact that in these textures all pairs of adjacent dislocation loops are always connected by one four-arm junction.

If one considers these junctions as crossing of roads than they can be seen either as one-level or as two-levels crossings (see the point TLC in Fig. 18e). In this second case, the textures in Figs.17g-j and 16 can be seen alternatively as made of two spiral-shaped dislocation lines which are nor coplanar as it is depicted in Fig. 18a-i where the orange spiral is located below the blue one except for the extremal point MP where the two spirals match. The apparent nucleation of dislocation loops observed in experiments can thus be a result of the anticlockwise and clockwise rotations of the blue and orange spirals located at different z levels. The plausibility of this two-levels crossings model is strengthen by the fact that the four-arm junctions Figs.17g-j and 16 are stable.

The experiment represented in Fig. 19 confirmed the veracity of the level-model. The experiment consists in submitting a system of single dislocation loops to a diverging Poiseuille flow generated by a reduction of the gap thickness. Fig. 19a shows a texture of dislocations in equilibrium while in Fig. 19b the same texture is perturbed by the flow. In the dashed rectangle labeled "1" the distance ∆x between the crossing dislocations is modified because their vertical positions z are not the same so that they are convected with different velocities v(z). From this observation we infer that this crossing of dislocations is of the two-level type. In the dashed rectangles labeled "2" and "3" the flow v(z) unravels the presence of kinks.

We will show below, that the z positions of dislocation lines is strongly correlated to their orientations (see eq.21) so that they should not be at the same level when they cross.

Unitary nucleation of dislocation loops

In terms of the model represented Fig. 14g, the serial nucleation of dislocation loops is likely when the initial minimal thickness h o is large enough.

In the case of thinner gaps, when for example N = h o /(p/2) = 6, during the compression of the wedge the elastic energy density follows the red thick line from the point F to G. After nucleation of one double line loop, the elastic energy density falls to the point H below the threshold value and the nucleation process stops. A second compression along the line HI is necessary for nucleation of the last double line loop.

Obviously, the two loops nucleated one after another are not connected.

Necessity of kinks and cusps in double line loops

Metastability of the double lines loops allowed us to observe their interesting feature conjectured by Kleman and Friedel in the section IVb of their paper. On the basis The same texture perturbed by the flow. In the dashed rectangle labeled "1", the distance ∆x between the crossing dislocations is modified because their vertical positions z are not the same so that they are convected with different velocities v(z). The two-levels type of the dislocations crossing is thus confirmed. The Poiseiuille flow v(z) unravels also the presence of kinks in the dashed rectangles labeled "2" and "3".

of theoretical considerations they considered a possibility of loops which are not flat and smooth but made of four helicoidal segments connected by four kinks (see Fig. 20b reproduced from ref. [START_REF] Kleman | Lignes de dislocations dans les cholestériques[END_REF]).

In our experiments, when the minimal thickness h o of the cylinder/cylinder gap is small, typically between 3 and 9 half pitches p/2, the shape of nucleated loops deviates from that of flat ellipses. The deviation consists in the presence of one or two cusps shown respectively in pictures in Figs. 21a andb. In thicker samples with h o larger than 9p/2, such cusps exist too but are less and less visible when h o grows.

For us, this observation of such loops with cusps was at first sight surprising because in nematics, which can be seen as cholesterics with the infinite pitch p, disclination loops, with or without topological charges, have always smooth shapes.

The explanation of this apparent paradox is due to the difference of symmetries of the nematic and cholesteric phases. The nematic phase in its ground state is symmetric, among others, with respect to the continuous group of rotation around the axis C ∞ parallel to the director n. For this reason, a disclination line lying in the plane orthogonal to C ∞ can change its azimuthal direction without any energy expense.

The cholesteric phase in its ground state is symmetric with respect to the helicoidal axis for which a rotation by an angle ϕ is associated with the translation δz = pϕ/(2π) along the helicoidal axis parallel to z (see Fig. 22). For this reason the energy per unit length of a double line remains unchanged only when it has a helicoidal shape such as the one shown in Fig. 22.

However, when a double line is constrained to form a closed loop it must deviate from the ideal helicoidal shape with some expense of the elastic energy if only because extremities of its one or two helicoidal segments must be connected by kinks. For this reason, double lines loops have shapes shown in Figs. [START_REF] Malet | Etude optique des structures des lignes de Grandjean dans les cholestériques à très grand pas[END_REF] and 24 : either one helicoidal segment with extremities connected by a kink of height p (Fig. 23) or two helicoidal segments with ends connected by kinks of height p/2 (Figs. [START_REF] Leforestier | Supramolecular Ordering of DNA in the Cholesteric Liquid Crystalline Phase: An Ultrastructural Study[END_REF]. These two figures show that in such helicoidal segments, the director texture in cross sections orthogonal to the segments remains in its ground state configuration with two non singular λ disclinations. The excess elastic energy is thus localised in kinks of short lengths.

In experiments performed with a confocal microscope by Smalyukh and Lavrentovich [START_REF] Smalyukh | Three-dimensional structures of defects in Gandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy[END_REF][START_REF] Smalyukh | Anchoring-Mediated Interaction of Edge Dislocations with Bounding Surfaces in Confined Cholesteric Liquid Crystals[END_REF] discussed in section 3.9 three-dimensional structure of kinks has been detected in details. In our experiments, small aperture objectives were used so that the field depth is not small enough for such a precise and direct detection of the kinks' structure. Fortunately, in the presence of kinks, dislocation loops show also large deviations from smooth shapes in the (x,y) plane. Each kink appears as an angular cusp-like singularity.

Previous works on Grandjean lines with kinks (cusps)

Observations of cusps on single and double Grandjean lines were reported and discussed previously by Bouligand [START_REF] Bouligand | Recherche sur les textures des états mésomorphes. 6-Dislocations coins et signification des cloisons de Grandjean-Cano dans les cholestériques[END_REF], Malet and Martin [START_REF] Malet | Etude optique des structures des lignes de Grandjean dans les cholestériques à très grand pas[END_REF] and Smalyukh and Lavrentovich [START_REF] Smalyukh | Three-dimensional structures of defects in Gandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy[END_REF][START_REF] Smalyukh | Anchoring-Mediated Interaction of Edge Dislocations with Bounding Surfaces in Confined Cholesteric Liquid Crystals[END_REF].

The article of Bouligand, devoted to description of defects in cholesteric textures, contains several pictures in black and white of defect lines. Discussion of these observations are illustrated with many handmade drawings representing beautifully detailed cholesteric textures containing the observed defects. Among others, Bouligand observed double lines loops with one (Fig. 5b in ref. [START_REF] Bouligand | Recherche sur les textures des états mésomorphes. 6-Dislocations coins et signification des cloisons de Grandjean-Cano dans les cholestériques[END_REF]) or two cusps (Fig. 5i in ref. [START_REF] Bouligand | Recherche sur les textures des états mésomorphes. 6-Dislocations coins et signification des cloisons de Grandjean-Cano dans les cholestériques[END_REF]). The handmade drawings of the corresponding textures (Fig. 6d and b in ref. [START_REF] Bouligand | Recherche sur les textures des états mésomorphes. 6-Dislocations coins et signification des cloisons de Grandjean-Cano dans les cholestériques[END_REF]) are almost identical with those in Figs. [START_REF] Malet | Etude optique des structures des lignes de Grandjean dans les cholestériques à très grand pas[END_REF] and 24 except for two details. The first difference is that in the work of Bouligand the double lines enclose areas with one extra cholesteric layer of thickness p, while in the present work, they enclose areas with one missing layer. The second difference is that Bouligand made observations on loops generated at random while in the present work the double lines loops are nucleated in a controlled manner using the system of crossed cylinders with variable gap.

The article of Malet and Martin [START_REF] Malet | Etude optique des structures des lignes de Grandjean dans les cholestériques à très grand pas[END_REF] reports on observations of Grandjean lines in Cano wedges made with glass surfaces. Due to a very large pitch > 50µm, optical observations with a polarising microscope and monochromatic illumination and with a phase contrast microscope allowed to resolve the composite structures of dislocations. As proposed by Kleman and Friedel [START_REF] Kleman | Lignes de dislocations dans les cholestériques[END_REF] dislocations with the Burgers vectors p/2 and p contain respectively τ -λ + and λ -λ + disclinations pairs. The much more recent articles of Smalyukh and Lavrentovich [START_REF] Smalyukh | Three-dimensional structures of defects in Gandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy[END_REF][START_REF] Smalyukh | Anchoring-Mediated Interaction of Edge Dislocations with Bounding Surfaces in Confined Cholesteric Liquid Crystals[END_REF] as well as that of Trivedi et al. [START_REF] Trivedia | Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media[END_REF] report on studies of dislocations in cholesterics by means of the fluorescence confocal microscopy. This technique allowed to resolve three-dimensional structures of straight dislocation lines containing disclinations pairs τ -λ + and λ -λ + .

In particular, in ref. [START_REF] Smalyukh | Three-dimensional structures of defects in Gandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy[END_REF][START_REF] Smalyukh | Anchoring-Mediated Interaction of Edge Dislocations with Bounding Surfaces in Confined Cholesteric Liquid Crystals[END_REF], the authors focussed on the issue of the glide motion of dislocations i.e. changes of their z position inside the confined layer. They have pointed out that in cholesterics, like in solid crystals, the glide is mediated by motions of kinks and anti-kinks. In their experiments, motion of dislocations toward or away of boundaries was driven by elastic interactions which is repulsive when the anchoring is planar and strong but remarkably can be also attractive when the anchoring is degenerate. Smalyukh and Lavrentovich have also pointed out that cusp on double dislocation lines projected on the (x,y) plane of the confining wedge are associated with kinks having a complex three-dimensional structure similar to that imagined by Bouligand.

Angular positions of cusps

As mentioned above, double line loops can be nucleated in the centre of the cylinder/cylinder gap when the compression of the cylinder/cylinder gap is large enough. Loops nucleated in experiments with the initial gap thickness h o = N (p/2) with N = 3, 4, 5, and 6 are represented in the series of four pictures in Figs. 25a-d.

It is obvious at first sight that the angular position of the cusp is related to the initial gap thickness. Colloquially speaking, in Figs. 25a-d the cusp points respectively in East, South, West and North directions. We will point out below that these direction of the cusp result from minimisation of the energy of the elastic interaction of double line dislocation with mica surfaces providing the anchorings.

For the sake of simplicity we will suppose that:

(1) the azimuthal directions of the planar anchoring on the two limit surfaces are the same, (2) the dislocation has its non-singular configuration of minimal energy shown in Fig. 12d, (3) the cusp angle is so small that in the first approximation it can be neglected.

Effect of sharper cusp angles will be discussed in section 3.11.

Let us consider a prismatic surface, shown in Fig. 25e, with the base having the shape of the double line loop with one cusp shown in Fig. 25b. Its lateral size is such that it is located in the area where the cholesteric texture is made of N=4 layers of thickness p/2. For the sake of readability, its height is exaggerated by a large factor. In the first approximation we will suppose that the cusp angle is negligibly small. Let us cut this surface along the vertical line passing through the tip of the cusp and unroll it (see Fig. 25f) into the rectangle shown in Fig. 25g.

The red line represents here the most favorable helicoidal trajectory

z = aξ (21) 
on which the dislocation keeps its non singular configuration of minimal energy shown in Fig. 12d . With this assumption, let us consider now the energy (per unit length on the axis ξ) of interaction of the dislocation with mica surfaces f int . Its expansion in powers of the distance with surfaces must be, for symmetry reasons :

f int (z) = A -Bz 2 + ... (22) 
The total length of the dislocation along the axis ξ is L = p/a. If ξ 1 is the position of the cusp on the ξ axis, then the total energy of interaction can then be written then as

F int = ξ1+L ξ1 f int (z(ξ))dξ = AL + 1/3Ba 2 L 3 + Ba 2 L 2 ξ 1 + Ba 2 Lξ 2 1 ( 23 
)
F int is minimal when ξ 1 = -L/2 as shown in Figs. 25e andg.

The role of sharper cusps

In the case of loops shown in Figs. 25a andb, the cusp angle Φ c is of order of 90 • so that it cannot be neglected. The deviation from the cylindrical approximation discussed above has two important consequences: 1-The cholesteric pattern inside the rectangle obtained by cutting and unrolling the prismatic surface based on a loop with a sharp cusp (see Figs. 25h-j) is different from that obtained in the cylindrical approximation (see Figs. 25f-g). This change is due to the fact the local orientation of the prismatic surface with respect to the x axis is more complex. Let us express this orientation by the angle ϕ(ξ), defined in Fig. 25h, between the local tangent to the surface and the axis x. In the cylindrical When the dislocation with the Burgers vector p follows the red line the elastic energy of its interaction with mica surfaces is minimised. h) Prismatic surface built on the double line loop with one cusp shown in (b). i) Unrolling the prismatic surface after a cut. j) Cholesteric texture in the rectangle obtained by the unrolling of the prismatic surface shown in (h). When the dislocation with the Burgers vector p follows the red line the elastic energy of its interaction with mica surfaces is minimised. Remark: Due to the cusped shape of the prismatic surface the length of the vertical kink is shorter than in the case of the cylindrical surface shown in (g). k-m) The same as in (e-g) except for the number N1=5 instead of N1=4. Due to this difference, the position of the kink is shifted by 90 • with respect to that in (g).

approximation, this angle was varying linearly with the coordinate ξ from -180 • to 180 • . In the case of the prismatic surface with a cusp of angle Φ c , the function ϕ(ξ) varies between -180 • +Φ c /2 and 180 • -Φ c /2 and passes through one minimum and one maximum.

2-As a result, when the double dislocation line respects its configuration of minimal energy (represented in Fig. 10d), its trajectory in the (ξ, z) plane has no more the sawtooth shape made of one straight oblique and one vertical segments shown in Fig. 25g. Instead of that, the oblique segment is smoothly curved in the vicinity of the kink so that the vertical segment of the kink itself is shorter.

In conclusion, cusped shapes of dislocation loops in cholesterics allow to reduce heights of kinks and by this means to reduce their energy. This reduction is maximal when the cusp angle Φ c is equal to 180 • . In such a case the height of kinks is reduced by the factor of 2. On the other hand, the total length of a dislocation line in a cusped loop grows when the angle Φ c of cusps on it increases. The observed shapes of dislocation loops with one or two cusps correspond thus to minimisation of the total elastic energy.

Conclusion

Experiments presented here were performed with the initial aim to illustrate the theoretical considerations of Maurice Kleman and Jacques Friedel with colour pictures of real dislocations in cholesterics confined in mica wedges.

As experiments delivered progressively their results, the corner-stone character of the article "Lignes de dislocations dans les cholestériques" appeared in a more and more striking manner. In particular, the reasons for which the authors focussed on the issue of curved dislocation lines became clear and the meaning of their Figure 15 reproduced here in Fig. 20 was elucidated. Following Kleman and Friedel the double line loop "can be described as a composition of two perfect disclinations and of a uniform density of infinitesimal disclinations" or as "segments of helicoidal lines connected by 4 pairs of kinks". Experiments reported here prove that the second conjuncture is true with one exception: double line loops contain not four but one or two kinks.

Beside the confirmation of this conjuncture, experiments performed in the cylinder/cylinder geometry delivered also several unexpected results:

(1) Contrary to common beliefs, new dislocation loops nucleated in the centre of the gap upon reduction of its thickness are not always made of single lines (with the Burgers vector equal to the half pitch p/2). In the absence of large nucleation centres, double line loops (with the Burgers vector equal to the pitch p) are nucleated preferentially here and they persist indefinitely in spite of their metastability. (2) When the initial gap thickness is large enough, the nucleation process does not stops until the elastic energy density due to the compression falls below some threshold value. By this means the whole cylinder/cylinder gap can be filled with double lines. (3) In the presence of a large nucleation center, single disclination loops can be nucleated upon reduction of the gap thickness and the whole gap can be filled with single lines. (4) The corresponding continuous nucleation processes can be interpreted in terms of rotation of disclinations having shapes of growing spirals. Such interpretation is reminiscent of the celebrated Frank-Read model with one important exception: for symmetry reasons, the two rotating spiral dislocations are not located at the same level so that they do not coalesce unlike dislocation in the genuine Frank-Read model. [START_REF] Toulouse | Principles of a classification of defects in ordered media[END_REF] In thinner gaps, double dislocation loops can be nucleated one by one.

Inspired by remarks of one of the referees we reexamined videos (not discussed above) showing expansion of double line loops, containing one cusp, after their nucleation. We have found that quite frequently the angular position of the cusp varies during the growth of loop: the cusp rotates on the loop in clockwise or anticlockwise directions. In terms of the model shown in Fig. 23, this occurs when the loop glides respectively in down or up directions. Such a behaviour is expected (see ref. [START_REF] Smalyukh | Three-dimensional structures of defects in Gandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy[END_REF][START_REF] Smalyukh | Anchoring-Mediated Interaction of Edge Dislocations with Bounding Surfaces in Confined Cholesteric Liquid Crystals[END_REF] and section 3.10) when loops nucleate not at mid-height of the gap but in the vicinity of the upper or lower mica sheets.

Finally, let us stress that experiments reported here are very simple technically and not expensive. In particular, the cleaved mica muscovite sheets appeared as very convenient for construction of wedges because they are very flexible and simultaneously they provide the planar anchoring for the cholesteric liquid crystal. For these reasons, experiments reported here are well adapted for undergraduate labs.

Figure 1 .

 1 Figure1. Classification of disclinations in cholesterics proposed by Kleman and Friedel[START_REF] Kleman | Lignes de dislocations dans les cholestériques[END_REF]. a) Definitions of axes -→ λ , -→ τ and -→ χ used for rotations in the Volterra process. b) Disclinations λ +1/2 and λ -1/2 obtained by by rotations +π and -π around the axis -→ λ . c) Disclinations τ +1/2 and τ -1/2 obtained by rotations by +π and -π around the axis -→ τ . d) Generation of the disclination χ +1/2 by the Volterra process in five steps: I-incision, II-splitting, III-rotation of molecules around the axis -→ χ , IV-suture, V-viscoelastic healing. e) Generation of a dislocation with Burgers vector equal to p/2 (equivalent to the disclination χ +1/2 ) by an alternative Volterra process in which the step III consists in introduction of a p/2 thick slice of the cholesteric texture into the gap created by steps I and II. f and g) Generation of the disclination χ +1 equivalent to the dislocation with the Burgers vector b=p. In experiments, disclinations χ +1/2 (dislocations p/2) appear as single (thin) Grandjean lines while disclinations χ +1 (dislocations p) correspond to thick (double) Grandjean lines.
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 23 Figure 2. Nets of dislocations in Grandjean wedges produced by a partial cleavage of mica sheets and filled with 5CB/CB15 cholesteric mixtures. a-c) Single dislocations lines (SL) located in the thinnest areas of wedges. d-f) Coexistence of single (SL) and double (DL) dislocations lines. The double lines are located in the thicker areas of wedges. Note that all these pictures are made of two types of fields: darker and lighter. Their presence unveils the fact that in the muscovite mica two types of cleavages are possible. Both cleavages produce pairs of surfaces with planar anchorings having different azimuthal orientations on the top and bottom surfaces. In the case of the cleavage labeled CR the upper anchoring is twisted with respect to the lower anchoring by 60 • in clockwise direction. They have thus a right screw configuration. The configuration of the anchorings on surfaces produced by the cleavage CL has the mirror symmetry with respect to the cleavage R i.e. a left screw configuration.

Figure 4 .

 4 Figure 4. Structure of cleaved mica muscovite surfaces. a) Stack of alternating triplets T1 and T2 made of pairs of Si 2 O 5 sheets intercalated with Al 3+ ions. Triplets are intercalated with K + ions. Two cleavages along K + planes A and B are possible. b) Structure of the upper and lower surfaces of the triplet T1. The hexagonal symmetry of the Kagome lattice of oxygen atoms is broken by the shift l 1 between the two Si 2 O 5 sheets belonging to the triplet T1. c) Structure of the upper and lower surfaces of the triplet T2. The hexagonal symmetry of the Kagome lattice of oxygen atoms is also broken by the shift between the two Si 2 O 5 sheets of the triplet T2. However, in this triplet T2 the staggering vector l 2 is different: it makes the angle of 120 • with l 1 . For this reason, the planar anchorings on surfaces obtained by cleavages A and B have different orientations. As they are parallel (or orthogonal) to the staggering vectors l 1 and l 2 , they make angles of +120 • for the cleavage A and -120 • for the cleavage B.
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 56 Figure 6. Determination of the right handedness of the cholesteric helix in 5CB/CB15 mixtures. a) First, a thin layer of pure 5CB is spread on a mica sheet. Subsequently a droplet of a 5CB/CB15 mixture is deposited on it. Direction of the resulting concentration gradient is indicated by an arrow. b-d) Views of the area of the field delimited with a dotted rectangle in (a). Orientation of the polariser is constant while the analyser is rotated as shown. e-f) Orientation of the director field at the 5CB/air interface is inferred orientation of the analyser : extinction is obtained when the analyser is orthogonal to the director field.

Figure 7 .

 7 Figure 7. Dislocation net in a sample with a very large pitch. a) Picture of a dislocation net taken in polarised monochromatic light. The interference fringes allow to determine the local thickness hm at x positions of dislocations in cleavages R and L (see Fig.8). b) Topography of the wedge surfaces.
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 8 Figure 8. Nets of dislocations in the wedge, obtained by a partial cleavage of a mica muscovite sheet, filled with a E9/CB15 cholesteric mixture. a) Vicinity of the first dislocation (m=1) in the wedge with surfaces resulting from the cleavage A. b) Vicinity of the first dislocation (m=1) in the wedge with surfaces resulting from the cleavage B.c-d) Interference fringes in monochromatic polarised light produced by wedges filled with a 5CB/CB15 mixture with a very large pitch p=68µm. The interference pattern is not perturbed by the net of dislocations because the adiabatic approximation (eigenmodes with linear polarisation that follows the director rotation in the cholesteric helix). e-f) Plots of the local thickness h i (x i )=iλ/∆n at positions x i of the interference fringes. x i coordinates of the interference fringes are measured in pictures c and d. The continuous lines are fits to the expression h(x) = ax 2 (3L -x) of the deflection of a cantilever of length L clamped at one end (x=0) and loaded on the other end (x=L). Blue vertical lines indicate xm coordinates of dislocations indexed with m. g) Plots of the local thicknesses h(m) determined from diagrams in e and f. Continuous red and blue lines represent linear fits.

Figure 9 .

 9 Figure 9. Systems of single and double lines generated in a Grandjean wedge by the Isotropic ⇒ Cholesteric transition. a) View of the Ch/I interface moving in the direction of the temperature gradient. The angle between gradT and gradh is smaller than 90 • . b-f) Viscoelastic relaxation leads to formation of a set of single lines SL coexisting with two systems of doubles lines labeled DL1 and DL2. f) Double lines of the two systems seem to be located halfway between virtual position if single lines drawn with thin blue lines.

Figure 10 .Figure 11 .

 1011 Figure 10. Splitting of a double line into two single lines in a Grandjean wedge. a) Picture taken at t=230 s during the experiment represented in Fig.9. b) Series of 10 pictures taken at intervals of 1 s shows the dynamics of the splitting.

Figure 12 .

 12 Figure 12. Splitting of a double line into two single lines in a Grandjean wedge. a and b) Two possible configurations of the director field in the cross section of the two single lines along the dashed line AB defined in Fig.10(a). In both cases, the two single lines contain each one τ disclination with a singular core. c and d) Two possible configurations of the director field in the cross section of the double line along the dashed line CD defined in Fig.10(a). The configuration shown in (c) contains two τ disclinations with singular cores while the configuration shown in (d) contains two disclinations λ which are non singular.

  .

Figure 13 .

 13 Figure 13. Dislocation lines in the gap between two crossed cylindrical surfaces made of cleaved mica sheets. a) Perspective view of the wedge. b) Top view of elliptical level lines in the wedge. c) Transitory coexistence of single (SL) and double (DL) lines generated by a turbulent perturbation. d) After elastic relaxation, single lines are stabilised in the central area of small thickness while the double lines DL1 and DL2 are stabilized in the peripheral thicker area of with larger wedge angles. e-f) Nets of single and double lines generated in a controlled manner. Due to their metastability they persist indefinitely independently of their position in the cylinder/cylinder wedge.

Figure 14 .

 14 Figure 14. Serial nucleations of double line loops. a) Equilibrium texture of dislocations inside the cylinder/cylinder gap of minimal thickness ho = 24p/2. b) Reduction of the gap thickness to ho ≈ 10p/2. c) Serial nucleation of four double line loops subsequently to the reduction of the gap thickness. d) Equilibrium texture after expansion of the four new double lines. e) Serial nucleation of five double line loops upon the second reduction of the gap thickness from ho ≈ 10p/2 to ho ≈ 5p/2. f) Equilibrium texture after expansion of the five new loops. g) Plots of the elastic energy density versus the minimal thickness ho, given by equation 20, for different numbers N of half pitches located in the cylinder/cylinder gap. Horizontal dotted line represents the threshold for the serial nucleation of loops. The thick blue line is the trajectory followed during the experiment represented in the series of six pictures a-f. Segments A-F correspond respectively to events shown in pictures a-f. The thick red line is followed in experiments described in section 3.7 on unitary nucleation of double lines loops.

Figure 15 .

 15 Figure[START_REF] Oswald | Lehmann rotatory power: a new concept in cholesteric liquid crystals[END_REF]. Evolution of double line loops. a) Quasi-equilibrium texture of four double lines loops inside the cylinder/cylinder gap of minimal thickness h o1 = 15p/2. b) During very slow reduction of the minimal thickness from h o1 = 15p/2 to h o2 = 5p/2, the four loops expand so much that the two external ones, d11 and d10, disappear at the meniscus. c) Serial nucleation of four new loops d7-d4. d) Quasi-equilibrium texture after expansion of the four new loops d7-d4. e) Quasi-equilibrium texture reached after the serial nucleation and expansion of three new loops d3-d1 due to reduction of the minimal thickness from h o2 = 5p/2 to h o3 = p/2. f) The last single line loop s1 is nucleated upon the reduction of the gap thickness to zero. g) Thin plain lines: plots of the equilibrium radii of the double line loops as a function of the minimal thickness ho of the cylinder/cylinder gap. Thick blue line: plot of the meniscus radius Rm versus the minimal thickness ho for the volume V = 0.96mm 3 of the cholesteric droplet kept constant.

Figure 16 .

 16 Figure 16. Serial nucleation of four double line loops.

Figure 17 .

 17 Figure 17. Serial nucleation of single line loops.

Figure 18 .Figure 19 .

 1819 Figure 18. Two modes of nucleation of dislocation loops in the cylinder/cylinder geometry. a-i) A model for continuous nucleation of dislocation loops. The dislocation line is composed of two symmetrical counterrotating spiral segments. The blue segment is located above the orange one except for the point MP where the two segments match. Crossings of the two spirals are of the two-level type (TMC) depicted in the insert of picture (e). j-l) Nucleation of dislocation loops one-by-one.

Figure 20 .

 20 Figure 20. Smooth and kinked shapes of dislocation loops in cholesterics discussed by Kleman in Friedel in "Lignes de dislocations dans les cholestériques". a) The two λ disclinations in a flat loop. b) The two λ disclinations in of a loop made of four helicoidal segments connected by four kinks. (reproduced from the ref.[6].

Figure 21 .

 21 Figure 21. Loops of double dislocation lines with cusps nucleated in a thin cylinder/cylinder gap. a) Nucleation of a double line loop with one cusp on a very small dust particle. b) Nucleation of a double line loop with two cusps resulting from splitting of a preexisting meandering Lehmann cluster.

zFigure 22 .Figure 23 .Figure 24 .

 222324 Figure 22. Helicoidal line in the bulk of a cholesteric free of defects. It is symmetrical with respect to the helicoidal axis z.

Figure 25 .

 25 Figure 25. Double lines loops with one cusp. a) Shape of the double line loop with one cusp separating fields with N1=3 and N2=1 (numbers of half pitches). b-d) The same with N1=4,5,6 and N2=2,3,4. e) Prismaticsurface with a circular base (cylinder). f) Unrolling the cylindrical surface after a cut. g) Cholesteric texture in the rectangle obtained by the unrolling of the cylindrical surface shown in (e) where N1=4. When the dislocation with the Burgers vector p follows the red line the elastic energy of its interaction with mica surfaces is minimised. h) Prismatic surface built on the double line loop with one cusp shown in (b). i) Unrolling the prismatic surface after a cut. j) Cholesteric texture in the rectangle obtained by the unrolling of the prismatic surface shown in (h). When the dislocation with the Burgers vector p follows the red line the elastic energy of its interaction with mica surfaces is minimised. Remark: Due to the cusped shape of the prismatic surface the length of the vertical kink is shorter than in the case of the cylindrical surface shown in (g). k-m) The same as in (e-g) except for the number N1=5 instead of N1=4. Due to this difference, the position of the kink is shifted by 90 • with respect to that in (g).

  

  4. Mica muscovite is a mineral belonging to the class of phyllosilicates made of stacks of [Si 2 O 5 ] 2-layers. In mica muscovite two [Si 2 O 5 ] 2-layers, intercalated with a sheet of Al 3+ ions, are assembled into two types of triplets labeled T1 or T2. The two [Si 2 O 5 ] 2-layers of each triplet have "head-to-tail" orientations: the apical oxygens of the SiO 4 octahedra belonging the upper [Si 2 O 5 ] 2-layer are directed downward while those in the lower [Si 2 O 5 ] 2-layer have the upward orientation. The intercalating Al 3+ ions are located in octahedral cavities obtained by a horizontal shift l between the two [Si 2 O 5 ] 2-layers in triplets. The shift (staggering) vectors l 1 and l 2 in triplets T 1 and
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