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On Local Chirp Rate Estimation in Noisy
Multicomponent Signals: With an Application to

Mode Reconstruction
N. Laurent, M. A. Colominas, S. Meignen

Abstract—In this paper, our goal is to investigate local chirp
rate (CR) estimation in noisy multicomponent signals. The focus
is put on improving a specific type of local CR estimator used
in the second order synchrosqueezing transform, which proves
to be very inaccurate in the presence of noise. More precisely,
the noise creates spurious oscillations in the local CR estimate,
and we first put the emphasis on the terms responsible for these
oscillations. Then we propose a novel technique to filter them out,
resulting in a much more accurate local CR estimator. We finally
show how to use the latter to improve mode reconstruction and
investigate in what way the new CR estimator is useful in the
context of voice signals.

Index Terms—Time-frequency analysis, Fourier-based syn-
chrosqueezing transform, reassignment methods

I. INTRODUCTION

T IME-FREQUENCY (TF) analysis is a very dynamic field
of signal processing, since it enables to process non-

stationary signals [1], [2] encountered in many fields such as
audio (speech and music), or biomedicine (electrocardiogram,
thoracic, and abdominal movement signals) [3], [4]. These
signals are often modeled as multicomponent signals (MCSs),
namely the sum of AM/FM components (or modes) and
time-frequency representations (TFRs) such as the continuous
wavelet transform [5]–[7] or the short-time Fourier transform
(STFT) [8] are commonly used for their study. The main
reason why such TFRs are so popular for studying MCSs is
that each mode can be associated with a TF curve, called ridge,
corresponding to local modulus maxima of the TFR along
the frequency axis. In particular, many mode reconstruction
techniques are based on the analysis of these TFRs in the
vicinity of these ridges [9], [10].

However, these TFRs are hampered by the choice for the
window or wavelet which is constrained by the Heisenberg-
Gabor uncertainty principle [11]: a very short temporal win-
dow in STFT or a wavelet associated with a good time
localization in CWT both lead to a bad frequency localiza-
tion, and vice-versa. Many works in the past decades have
tackled this limitation, by using, for instance, quadratic TFRs,
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e.g. Wigner-Ville distributions [2], which are not constrained
by the uncertainty principle, but exhibit strong interference
hampering the representation. Another technique, called the
reassignment method (RM) [12], proposed another means
to improve the readability of the TFR by reassigning its
coefficients, the reassigned representation being however not
invertible.

To improve the readability of the continuous wavelet trans-
form of an MCS, an invertible reassignment process called
synchrosqueezing transform was introduced [13], [14], and
then adapted to STFT to obtain the so-called STFT-based SST
[15]–[18]. As synchrosqueezing transforms in their initial for-
mulation are only efficient on signals made of quasi-harmonic
components, variants were proposed to deal with modes con-
taining local linear chirp-like frequency modulations, through
the so-called second order synchrosqueezing transform in the
STFT framework [18], [19] and also in the wavelet framework
[20]. Synchrosqueezing transform was finally generalized to
modes with fast oscillating phases, through the higher order
synchrosqueezing transform [21].

One of the specificity of second and higher order syn-
chrosqueezing transforms is that they are based on a local
chirp rate (CR) estimator, which is computed in a non-
parametric way, CR being yet another term for the derivative
of the frequency. CR estimation is very important in the
domain of synthetic aperture radar and inverse synthetic
aperture radar imaging [22], since, due to the motion of a
target, the radar return signals are usually chirps, and their
CRs include the information about the target, such as the
location and the velocity. Therefore, CR estimation is critically
important in these applications. Most CR estimators for that
type of applications assume the modes are linear chirps [23],
therefore associated with constant CRs. On the contrary, in
speech processing, high-resolution speech analysis needs the
definition of local CR estimators in particular in applications
such as speech transformation and objective voice function
assessment for detection of voice disorders [24]. Moreover,
for voice signals CR is related to the jitter phenomenon
[25], [26]. Classically, the local CR estimators are derived by
windowing the signal, assuming the latter is locally stationary.
Note that, contrary to the local CR estimators used in second
and higher order synchrosqueezing transforms, all the just
mentioned CR estimators are parametric and therefore non-
adaptive. Unfortunately, the local CR estimator used in the
definition of the second order synchrosqueezing transform is
very unstable in the presence of noise. So, our first concern
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here is to find a way to reduce this instability, while preserving
the adaptive nature of the local CR estimation. Once this
is done, we propose two applications of our improved local
CR estimator, one on mode reconstruction based on linear
chirp approximation [27], and another one on the analysis of
frequency variations in voice signals.

After having briefly recalled, in Section II, some useful def-
initions regarding STFT, the multicomponent signals (MCSs)
we are dealing with, and the local CR estimator used in second
order synchrosqueezing transform, we illustrate the oscillatory
behavior of the latter in the presence of noise in Section
III. Based on the definition of a simpler local CR estimator,
behaving similarly to the original one in the presence of noise,
we characterize more precisely the oscillations of the original
CR estimator, and finally find a way to filter them out to obtain
a much more accurate CR estimator. In the final section of the
paper, we investigate the two different applications mentioned
in the previous paragraph.

II. DEFINITIONS AND NOTATIONS

A. Short-Time Fourier Transform

In this section, we introduce a series of definitions that
will be used throughout the paper. Considering a signal f ∈
L1(R)∩L2(R) and a real window g ∈ L1(R)∩L2(R), where
Lp(R) stands for the functions h such that

∫
R |h(t)|pdt < +∞,

the (modified) short-time Fourier transform (STFT) is defined
as:

V g
f (t, η) =

∫
R
f(τ)g(τ − t)e−2iπ(τ−t)ηdτ. (1)

The original signal f can then be retrieved through the
following synthesis formula, provided g(0) ̸= 0:

f(t) =
1

g(0)

∫
R
V g
f (t, η)dη. (2)

The definition of the STFT given in (1) can be easily extended
to tempered distributions [28]. Indeed, when one considers
an idealized zero-mean complex white Gaussian noise n(t)
with covariance matrix σ2

nI , the integral
∫
R n(τ)ψ(τ − t)dτ ,

for a function ψ ∈ L2(R) should be interpreted as an Itô
integral (i.e. as

∫
ψ(τ − t)dBτ , the integration with respect

to 1-parameter Brownian motion Bτ ). Therefore, such an
integration results in a complex Gaussian random variable
with zero-mean and covariance matrix σ2

n∥ψ∥2I [29], with
∥ψ∥2 =

∫
R ψ

2(t)dt being the squared L2-norm of ψ, and
V g
n (t, η) (the STFT of complex white Gaussian noise n(t)) is

well defined.
In the sequel, we will use multicomponent signals (MCSs)

defined as the superimposition of AM/FM components,
namely:

f(t) =

P∑
p=1

fp(t) with fp(t) = Ap(t)e
2iπϕp(t), (3)

in which Ap(t) and ϕp(t) correspond respectively to the
instantaneous amplitude (IA) and phase (IP) of the pth mode.
We assume that Ap(t) > 0, ϕ′p(t) > 0 and ϕ′p+1(t) > ϕ′p(t),
where ϕ′p(t) denotes the instantaneous frequency (IF) of fp at
time t.

B. Local Chirp Rate Estimator Used in Second Order Syn-
chrosqueezing Transforms

The definition of the local CR estimator used in the
second order synchrosqueezing transform uses two complex
reassignment operators ω̃f (t, η) =

∂tV
g
f (t,η)

2iπV g
f (t,η)

and t̃f (t, η) =

t − ∂ηV
g
f (t,η)

2iπV g
f (t,η)

. It can be defined following [21] as (we omit
(t, η) for the sake of simplicity):

q̂f = ℜ
{
∂ηω̃f

∂η t̃f

}
= ℜ


∂η

(
∂tV

g
f

V g
f

)
2iπ − ∂η

(
∂ηV

g
f

V g
f

)


= − 1

2π
ℑ


(
V g
f

)2
− V g′

f V tg
f + V g

f V
tg′

f

V g
f V

t2g
f −

(
V tg
f

)2
 ,

(4)

where ℜ (resp. ℑ) denotes the real (resp. imaginary) part. Note
that q̂f is exact if f is a Gaussian modulated linear chirp.

When the window g is the Gaussian function g(t) = e−π t2

σ2 ,

we have V g′

f = − 2π
σ2 V

tg
f and thus

−V g′
f V tg

f +V g
f V tg′

f

V g
f V t2g

f −(V tg
f )

2 is a real

number, and thus we obtain the simpler expression:

q̂f = − 1

2π
ℑ

{
(V g

f )
2

V g
f V

t2g
f − (V tg

f )2

}
. (5)

We shall remark here that, in the seminal paper introducing
the second order synchrosqueezing transform [30], the local
CR estimate was defined as ℜ{∂tω̃f

∂t t̃f
}, which is equal to q̂f

defined in (5) when g is a Gaussian window [31].

III. ANALYSIS OF LOCAL CHIRP RATE ESTIMATE

In this section, our goal is to investigate the behavior of q̂f ,
defined in (5), in the vicinity of the STFT ridges associated
with the modes of an MCS. After having noticed that this CR
estimator is very oscillatory in the presence of noise, we are
going to define a simplified local CR estimator which behaves
similarly to the initial CR estimator in the presence of noise
on STFT ridges. Such a definition will enable us to analyze
the nature of the oscillations in the initial CR estimator and
then to filter them out.

A. Definition of a Simplified Local CR Estimator

Our motivation for the definition of a simplified version of
q̂f is based on the fact that, if one adds a complex white
Gaussian noise n to f , then q̂f+n is very oscillatory on
the STFT ridges of the noisy signal, as illustrated in Fig. 1
second row. Indeed, on the first row of that figure, we display
the STFT moduli of three different mono-component signals,
along with the STFT ridge associated with the mode in each
case. On the second row of that figure, we display a zoomed-
in version in time of q̂f+n on STFT ridges and the true CR,
namely ϕ′′(t), and we notice that, for the three signals, the
former oscillates a lot around the expected value. Our goal is
thus to define an approximation of q̂f+n on STFT ridges that
would help us to understand the nature of these oscillations.
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Fig. 1: (a): STFT modulus of a noisy linear chirp with the STFT ridge superimposed; (b): same as (a) but for a noisy chirp
with fourth order polynomial phase; (c): same as (a) but for a noisy mode with oscillating phase; (d): CR estimator q̂f+n or
q̄f+n estimated on the STFT ridge of the noisy signal whose STFT modulus is represented in (a), along with the true CR, for
t between 0.3 and 0.5; (e): same as (d) but for the signal whose STFT modulus is represented in (b); (f): same as (d) but for
the signal whose STFT modulus is represented in (c). The input SNR is 10 dB.

For that purpose, let us consider that f(t) is a linear chirp
Ae2iπϕ(t), with ϕ′′(t) = C. For such a signal, since one has
[19]

V g
f (t, η) = V g

f (t, ϕ
′(t))e

−πσ2(1+iϕ′′(t)σ2)

1+(ϕ′′(t)σ2)2
(η−ϕ′(t))2

, (6)

one obtains that V tg
f (t, ϕ′(t)) = i

2π∂ηV
g
f (t, ϕ

′(t)) = 0. So,
one can reasonably assume that, when (t, η) is in the vicinity
of the STFT ridge, namely the TF curve (t, ϕ′(t)), |V tg

f (t, η)|
is small compared with both |V g

f (t, η)| and |V t2g
f (t, η)|. Doing

a first order Taylor expansion of q̂f (t, η) with respect to the

variable
(V tg

f (t,η))2

V g
f (t,η)V t2g

f (t,η)
leads to the following approximation

of q̂f (we omit (t, η) for the sake of simplicity):

q̂f = − 1

2π
ℑ


V g
f

V t2g
f

1

1− (V tg
f )2

V g
f V t2g

f

 ≈ − 1

2π
ℑ

{
V g
f

V t2g
f

}
. (7)

In what follows, we will denote by q̄f the approximation of
q̂f associated with equation (7). Note that, because V tg

f is
null on STFT ridge and as q̂f (t, ϕ′(t)) = ϕ′′(t), one also has
q̄f (t, ϕ

′(t)) = ϕ′′(t).
Now, adding a complex white Gaussian noise n to f , one

can consider, in the vicinity of the ridge of the noisy STFT,

the local CR estimator:

q̄f+n = − 1

2π
ℑ

{
V g
f + V g

n

V t2g
f + V t2g

n

}
, (8)

which appears to be very close numerically to q̂f+n, on the
STFT ridges of noisy signals and even at a high noise level
(see the second row of Fig. 1 for illustrations, where the input
SNR is 10 dB). To clarify this aspect, we plot, in Fig. 2,
∥q̂f+n−q̄f+n∥2

∥q̂f+n∥2
for the three signals corresponding to the first

row of Fig. 1, and observe that this ratio is very low at a low
noise level for the three signals and remains so at high noise
level for the first two signals, while the ratio increases slightly
for the last signal but only at a high noise level. To investigate
the oscillations of q̂f+n, we study, in the next section, q̄f+n

which is much more amenable to mathematical study than
q̂f+n.

B. Study of the Simplified CR Estimate

We here study more in detail the local CR estimator q̄f+n.
For that purpose, we first compute the estimation bias and then
explain which terms are responsible for the oscillations in the
estimation. To characterize the bias, let us first set Z(t, η) =
V g
f+n(t,η)

V t2g
f+n(t,η)

and then study − 1
2πℑ{Z(t, η)}, for which we have
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Fig. 2: comparison of q̂f+n, with q̄f+n on the STFT ridge of
the noisy signal, for the three signals of Fig. 1.

the following proposition (omitting (t, ϕ′(t)) for the sake of
simplicity):

Proposition III.1. At a STFT ridge point (t, ϕ′(t)) of a linear
chirp one has:

E {q̄f+n} = E
{
− 1

2π
ℑ{Z}

}
= ϕ′′(t)

1− e
−

|V t2g
f

|2

σ2
n∥t2g∥2

 ,

where σ2
n is the variance of the noise.

The proof is available in Appendix A. From (6) and from
the fact that V tg

f (t, η) = i
2π∂ηV

g
f (t, η), we get that for a linear

chirp f(t) = Ae2iπϕ(t), one has [31]

V tkg
f (t, η) =

(
i

2π

)k

∂kηV
g
f (t, η) =

−σ2(1 + iϕ′′(t)σ2)

1 + (ϕ′′(t)σ2)2[
i(η − ϕ′(t))V tk−1g

f (t, η)− k − 1

2π
V tk−2g
f (t, η)

]
,

(9)

and thus,

V tkg
f (t, ϕ′(t)) =

σ2(1 + iϕ′′(t)σ2)

1 + (ϕ′′(t)σ2)2
k − 1

2π
V tk−2g
f (t, ϕ′(t)),

(10)
which implies that[19, proposition 1] (omitting (t, ϕ′(t)) for
the sake of simplicity):

|V t2g
f | =

σ2
∣∣∣V g

f

∣∣∣
2π
√
1 + (ϕ′′(t)σ2)2

=
Aσ2

2π(1 + (ϕ′′(t)σ2)2)3/4
. (11)

Then since ∥t2g∥2 = σ5
∫
τ4e−2πτ2

dτ = 3σ5

(2π)24
√
2

, we
deduce that:

|V t2g
f |2

∥t2g∥2
=

A24
√
2

3σ(1 + (ϕ′′(t)σ2)2)3/2
. (12)

As from Proposition III.1 when σn ≪ |V t2g
f |

∥t2g∥ the estimator is
only slightly biased on the STFT ridge, (12) tells us that the
bias increases when the modulation of the mode increases.
Nevertheless, for the linear chirp of Fig 1. (a) and for an
input SNR of 0 dB, averaging over many realizations of
the noise, we get that q̄f+n is very slightly biased, and this
small estimation bias is not responsible for the oscillations put
forward in the previous section.

Assuming that E
{

|V t2g
n |

|V t2g
f |

}
= σn∥t2g∥

|V t2g
f |

is small in the

vicinity of the STFT ridges of noisy signals, we do a first
order Taylor expansion of q̄f+n with respect to the variable
V t2g
n

V t2g
f

at these TF locations, to get:

q̄f+n = − 1

2π
ℑ

{
V g
f + V g

n

V t2g
f + V t2g

n

}

= − 1

2π
ℑ

 V g
f

V t2g
f

1

1 + V t2g
n

V t2g
f

+
V g
n

V t2g
f

1

1 + V t2g
n

V t2g
f


≈ − 1

2π
ℑ

{
V g
f

V t2g
f

(1− V t2g
n

V t2g
f

) +
V g
n

V t2g
f

(1− V t2g
n

V t2g
f

)

}

≈ q̄f +
1

2π
ℑ

{
V g
f V

t2g
n

(V t2g
f )2

− V g
n

V t2g
f

}
,

(13)

the last approximation being obtained by assuming

ℑ
{

V g
n V t2g

n

(V t2g
f )2

}
is negligible compared with the other noise

contributions. In what follows, we will denote by q̃f+n the
approximation of q̄f+n given by (13). We numerically notice
that q̃f+n is still very close to q̂f+n when evaluated on the
STFT ridges of noisy linear chirps whatever the noise level
as shown in Fig. 3, the difference being only significant when
the mode has a fast oscillating phase and at low SNRs.

Thus, as q̄f equals ϕ′′ on the STFT ridge of a linear chirp,
the oscillations for more general signals are mainly due to the

term 1
2πℑ

{
V g
f V t2g

n

(V t2g
f )2

− V g
n

V t2g
f

}
, which we now analyze more in

detail. As on the STFT ridge of a linear chirp, from (10),
one has

V g
f (t,ϕ′(t))

V t2g
f (t,ϕ′(t))

= 2π
σ2 (1− iϕ′′(t)σ2), thus one may write

(omitting (t, ϕ′(t)) for the sake of simplicity):

ℑ

{
V g
f V

t2g
n

(V t2g
f )2

− V g
n

V t2g
f

}
= ℑ

{
V g
f

V t2g
f

(
V t2g
n

V t2g
f

− V g
n

V g
f

)}

= ℑ

{
V g
f

V t2g
f

}
ℜ

{
V t2g
n

V t2g
f

− V g
n

V g
f

}

+ℜ

{
V g
f

V t2g
f

}
ℑ

{
V t2g
n

V t2g
f

− V g
n

V g
f

}

= −2πϕ′′(t)ℜ

{
V t2g
n

V t2g
f

− V g
n

V g
f

}
+

2π

σ2
ℑ

{
V t2g
n

V t2g
f

− V g
n

V g
f

}
,

(14)

meaning the oscillations are related to G(t) :=
V t2g
n

V t2g
f

− V g
n

V g
f

,

which we analyze more carefully.

First, in the particular case where ϕ′′(t) is null, namely
f(t) = e2iπη0t, we remark that V g

f (t, ϕ
′(t)) = f(t) and

rewrite:

G(t) =
2π

σ2

V t2g
n

V g
f

− V g
n

V g
f

=

(
2π

σ2
V t2g
n − V g

n

)
e−2iπη0t, (15)

to get the following:
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Fig. 3: comparison of q̂f+n with q̃f+n on the STFT ridge of
the noisy signal, for the three signals of Fig. 1.

Proposition III.2. The power spectral density of G(t) is

PG(η) = σ2
nσ

64π2η4e−2πσ2η2

.

The proof is available in Appendix B. Now let us consider
the more general case of a linear chirp f(t) = e2iπ(at+

b
2 t

2) =
e2iπϕ(t), for which we may write on the STFT ridge, using
(10),

V g
f

V t2g
f

=
2π(1 + (bσ2)2)

σ2(1 + ibσ2)
=

2π

σ2
(1− ibσ2), (16)

and thus:

G(t) =
2π
σ2 (1− ibσ2)V t2g

n − V g
n

V g
f

, (17)

leading to the following:

Proposition III.3. The power spectral density of G(t) is

PG(η) =
σ2
nσ

64π2η4

(1 + b2σ4)2
e
− 2πσ2η2

1+b2σ4 .

The proof is available in Appendix C.

C. Low-Pass Filtering Local CR Estimator
In this section, we investigate how to practically filter out

the oscillations in the local CR estimator q̂f+n using a low-
pass filter, designed using the power spectral densities of the
function G derived in the previous section.

For that purpose, we remark first that, when ϕ′′ is null,
the square root of PG, denoted by HG in what follows,
passes through a maximum at ηm = 1√

πσ
, and HG(ηm) =

2σσne
−1. Then, one remarks that the frequency ηc,0 at which

HG(ηc,0) = cHG(ηm) (with c < 1 representing a fraction of
the maximum value) corresponds to

σnσ
32πη2c,0e

−πσ2η2
c,0 = 2σσnce

−1

⇔ ηc,0 =

√
−W(−ce−1)

σ
√
π

,
(18)

with W(·) the Lambert W function [32]. So, to filter out the
oscillations, we propose to low-pass filter q̂f+n by multiplying
its frequency spectrum with 1[0,ηc,0].

When ϕ′′ = b, HG attains its maximum at ηm =
√
1+b2σ4

σ
√
π

,
with HG(ηm) = 2σnσe

−1, and thus the frequency ηc,b at

which HG(ηc,b) = cHG(ηm) corresponds to

σnσ
32πη2c,b

(1 + b2σ4)
e
−

πσ2η2
c,b

1+b2σ4 = 2cσnσe
−1

⇔ ηc,b = (1 + σ4b2)1/2
√
−W(−ce−1)

σ
√
π

,

(19)

which generalizes the previous result. From this last equation,
we observe that the chirp rate ϕ′′ = b shifts the cut-off
frequency to the right. However, since in practice we do not
have access to b, we will consider filtering the oscillations in
q̂f+n still by multiplying its frequency spectrum with 1[0,ηc,0].
This will prove enough for most of the signals encountered in
practice. For example, if the signal is a linear chirp, then q̂f
is a constant function (with frequency content only at zero
frequency), and the low-pass filtering process will keep all
the signal-related information, repelling most of the noise. We
show that this filtering process is good enough also for other
types of signals. From now on, we consider that F (q̂f+n) is
the filtered version of q̂f+n using the cut-off frequency ηc,0.

IV. RESULTS

The purpose of this section is three-fold. The first one is
to investigate the quality of the filtering process proposed
in Section III-C to see how F (q̂f+n) improves the original
CR estimator q̂f+n in various situations. Note that to improve
CR estimation can be profitable to CR-based ridge detection
[33], to mode separation in case of interference [34] and to
mode retrieval based on linear chirp approximation [27], to
name a few. Therefore, a second objective of this section is
to show in what way the CR estimator F (q̂f+n) improves the
mode retrieval technique based on linear chirp approximation
proposed in [27]. Finally, we will see how a better CR
estimator could be profitably used in the study of voice signals.

A. Evaluating the Filtering Process

We would like to assess the improvement brought by
the low-pass filtering process to CR estimation, namely to
compare F (q̂f+n) to q̂f+n, on the STFT ridges of a wide
range of noisy signals. To do so, we compare F (q̂f+n) and
q̂f+n to the actual ϕ′′(t) for the three signals of Fig. 1, when
the input SNR varies. The quality of the estimation is measured
in terms of the output SNR, namely:

SNRout(φ, ϕ
′′) = 10 log10

(
∥ϕ′′∥2

∥φ− ϕ′′∥2

)
, (20)

where φ is either q̂f+n or F (q̂f+n) both evaluated on the
STFT ridges of noisy signals. The results depicted in Fig. 4
first row, for the three signals of Fig. 1, show that filtering q̂f+n

brings an important estimation improvement. These figures
also tell us that the variance of the filtered estimate remains
low, that the worst filtered estimates not considered as outliers
are always better than the best estimates without filtering not
considered as outliers, and finally that there are very few
outliers in both estimation processes (the outliers correspond
to red stars on the graphs of the first row of Fig. 4). The only
notable exception is for the signal associated with of Fig. 1
(c) for which, at 0 dB, ridge detection may fail which makes
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Fig. 4: (a): boxplot corresponding to the output SNR associated with CR estimators q̂f+n or F (q̂f+n) evaluated on the STFT
ridges of the noisy signal corresponding to Fig. 1 (a) over 100 realizations of the noise when the input SNR varies; (b): same
as (a) but for the noisy signal corresponding to Fig. 1 (b); (c): same as (a) but for the noisy signal corresponding to Fig. 1
(c); (d): q̂f+n and F (q̂f+n) computed for a noisy version of the signal of Fig. 1 (a), along with the ground truth ϕ′′(t) (input
SNR = 10 dB); (e): same as (d) but for the signal of Fig. 1 (b); (f): same as (d) but for the signal of Fig. 1 (c).
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Fig. 5: (a): magnitude of the DFT of ϕ′′ for the signals of Fig.
1 (a) and Fig. 1 (b); (b): same as (a) but for the signal of Fig.
1 (c).

CR estimation results hard to interpret. We may also remark
that the results for the signal of Fig. 1 (a) and (b), displayed
in Fig. 4 (a) and (b), are pretty much the same which means
that to filter out the oscillations using the cut-off frequency
ηc,0 is efficient even when the mode is frequency modulated.

On the second row of Fig. 4, we plot illustrations of
F (q̂f+n) and q̂f+n computed on noisy versions of the signals
of Fig. 1 along with the ground truth ϕ′′ (the input SNR equals
10 dB in each case). We notice that the proposed procedure
succeeds in filtering out most of the oscillations of q̂f+n.

However, because those three signals contain different types
of frequency modulations, we now check that the choice of the
cut-off frequency only removes the oscillations associated with
the noise. In the simulations, we considered c = 1/

√
10 in the

definition of ηc,0, meaning that we take the cut-off frequency
at the 10% of the maximum energy. By considering the mul-
tiplication of the frequency spectrum of q̂f+n by 1[0,ηc,0], one
removes all the more oscillations that the signal is modulated.
However, we should also check that the proposed threshold
does not damage too much the frequencies associated with
ϕ′′. In this regard, on Fig. 5, we display the discrete Fourier
transform (DFT) of ϕ′′ for the three signals of Fig. 1, along
with the cut-off frequency computed with c = 1/

√
10. In

each case, the frequencies corresponding to the signal are very
well-preserved, which tells us that this value for c is suitable.
Therefore, in the following simulations, we will keep this value
for parameter c.

B. Improving Linear Chirp Based Mode Retrieval

In this section, we investigate how to use the filtered CR
estimator defined in Section III-C to improve linear chirp
based mode retrieval (LCR) technique introduced in [27].
In a nutshell, this technique assumes a local linear chirp
approximation for a mode, thus its STFT can be approximated
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Fig. 6: (a): percentage of improvement for the LCR technique computed using (28) for the signal of Fig. 1 (a) where the
estimates for (ϕ′′, ϕ′) are (F (q̂f+n(t, Rf+n(t))), ω

[2]
f+n(t, Rf+n(t))), (F (q̂f+n(t, Rf+n(t))), ϕ

′), or (ϕ′′, ϕ′);(b): same as (a)
but for the signal of Fig. 1 (b) ;(c): same as (a) but for the signal of Fig. 1 (c)

by [19]:

V g
f (t, η) ≈ V g

f,approx(t, η) := A(t)e
−πσ2 1+iC(t)σ2

1+(C(t)σ2)2
(η−B(t))2

,
(21)

where A(t), B(t) and C(t) are respectively estimates of
V g
f (t, ϕ

′(t)), ϕ′(t) and ϕ′′(t). In that context, mode recon-
struction is performed by summing the approximation given
by (21) over frequencies to obtain:

f(t) ≈ 1

g(0)

∫
R
V g
f,approx(t, η)dη, (22)

LCR technique is then based on a specific choice for A(t),
B(t) and C(t). To compute the estimate B(t) of ϕ′(t), the
technique uses the local instantaneous frequency estimator
ω̂
[2]
f = ℜ

{
ω̃
[2]
f

}
used in the definition of the second order

synchrosqueezing transform [19], with:

ω̃
[2]
f =

{
ω̃f +

∂ηω̃f

∂η t̃f
× (t− t̃f ) if ∂η t̃f ̸= 0

ω̃f otherwise,
(23)

where ω̃f and t̃f were introduced in Section II-B. More
precisely, denoting by Rf (t) the STFT ridge corresponding
to f , B(t) is set to ω̂

[2]
f (t, Rf (t)), C(t) to q̂f (t, Rf (t)), and

finally A(t) to V g
f (t, ω̂

[2]
f (t, Rf (t))). When one considers the

noisy signal f + n with n a complex Gaussian white noise,
similar estimates are derived replacing f by f + n in the
definitions of A, B and C, which are thus all impacted by
noise.

We now investigate the improvement brought by setting
C(t) to F (q̂f+n(t, Rf+n(t))) instead of q̂f+n(t, Rf+n(t)) in
LCR technique, A(t) and B(t) remaining unchanged. We
are going to compare this technique to original LCR and, to
measure the impact of the estimator B on LCR technique, to
implementations of LCR in which B(t) is set to ϕ′(t) and
C(t) either to F (q̂f+n(t, Rf+n(t))) or to ϕ′′(t). To clarify
this, as LCR can be viewed as a function of 3 parameters, we
define:

LCRA,B,C(t, η) := A(t)e
−πσ2 1+iC(t)σ2

1+(C(t)σ2)2
(η−B(t))2

. (24)

0 1 2
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1000

1500

2000

Fig. 7: ridge corresponding to the fundamental frequency
superimposed on the STFT of the recording 62 taken from
[35].

In that framework, the original LCR technique corresponds to

(A,B,C) = (A0, B0, C0)

:= (V g
f+n(t, ω̂

[2]
f+n(t, Rf+n(t))),

ω̂
[2]
f+n(t, Rf+n(t)), q̂f+n(t, Rf+n(t))),

(25)

the proposed technique to:

(A,B,C) = (A0, B0, F (q̂f+n(t, Rf+n(t)))), (26)

while the other two references to

(A,B,C) = (A0, ϕ
′(t), F (q̂f+n(t, Rf+n(t))))

(A,B,C) = (A0, ϕ
′(t), ϕ′′(t)).

(27)

For a monocomponent signal f , we define f(A,B,C) the
reconstructed signal using LCR technique with the set of
parameters (A,B,C). Then using the definition of SNRout

introduced in (20), we compute the percentage of improvement
brought by using a set (A,B,C) different from (A0, B0, C0)
as follows:
SNRout(f(A,B,C), f)− SNRout(f(A0,B0,C0), f)

SNRout(f(A0,B0,C0), f)
× 100. (28)

The results are depicted in Fig. 6 for the three signals of
Fig. 1 and when (A,B,C) are either defined by (26) or (27).
First, these clearly show the improvement brought by using
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Fig. 8: (a): for 100 realizations of the noise, the range corresponding to the 5% and 95% quantiles of q̂f+n evaluated on the
STFT ridge corresponding to the fundamental frequency of the noisy signal whose STFT modulus is displayed in Fig. 7, q̂f
on the ridge corresponding to the fundamental frequency of the noiseless signal being also superimposed (input SNR = 5 dB
for the noise); (b): same as (a) but with input SNR= 10 dB; (c): same as (a) but with input SNR= 15 dB. (d): same as (a) but
using the filtered estimator F (q̂f+n) instead of q̂f+n, F (q̂f ) is also superimposed ; (e): Same as (d) but with input SNR= 10
dB; (f): same as (d) but with input SNR= 15 dB.

F (q̂f+n(t, Rf+n(t))) instead of q̂f+n(t, Rf+n(t)). Second,
these results also tell us that to know the actual ϕ′(t) does
not result in an extra improvement when compared with the
proposed method. Finally, we notice that to know the actual ϕ′′

enables a better mode reconstruction, but only at high SNRs
and only for the first two signals. On the contrary, the gain of
knowing the true IF and CR does not result in a significant
improvement in terms of reconstruction for the last signal,
except at very low SNR, but then ridge detection may fail,
making the interpretation of the results more difficult.

So, we reach the conclusion that the proposed esti-
mator (F (q̂f+n(t, Rf+n(t))), ω̂

[2]
f+n(t, Rf+n(t, Rf+n(t))) for

(ϕ′′, ϕ′) leads to nearly optimal reconstruction. If one would
like to further improve mode reconstruction with LCR tech-
nique one should investigate how to find a better estimate of
V g
f (t, ϕ

′(t)) than A0(t), but this is beyond the scope of the
present paper.

C. Application to Voice Signals

Time-frequency analysis techniques have been used on real
voice signals, and in particular, some rely on a CR estimator
as in [36] for mode reconstruction. Moreover, CR estimators
have been used to redefine the so-called jitter parameter,

obtaining results of the state of the art [26]. In this section,
we investigate the robustness to noise of CR estimators q̂f
and F (q̂f ) on the voice signal of a 22-year-old female taken
from the recording 62 of the Saarbruken Voice Database [35].
This signal contains 126902 samples for a length of 2.538
seconds and for efficiency purpose, we resample it by a factor
of 10. It contains sustained /a/ vowels of the type “low-high-
low” meaning there is a change in the pitch of the signal.
The modulus of this STFT is depicted in Fig. 7 along with
the ridge corresponding to the fundamental frequency of this
signal.

To test the robustness to noise of the CR estimators
mentioned above, we study how the same additive noise n
affects the original CR estimation made on the signal without
noise. Namely, we compare the stability of q̂f+n(t, Rf+n(t))
with that of F (q̂f+n(t, Rf+n(t))) using q̂f (t, Rf (t)) and
F (q̂f (t, Rf (t))) as respective references, and in which Rf (t)
and Rf+n(t) are the ridges corresponding to the fundamental
frequency of the noise-free and noisy signal respectively. To
carry out this study, we compute the 5% and 95% quantiles
over 100 realizations of noise for three different input SNRs:
5, 10 and 15 dB. The results depicted in Fig. 8 show
that F (q̂f+n(t, Rf+n(t))) is significantly more stable than
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q̂f+n(t, Rf+n(t)) since both quantiles are much closer to the
reference. Furthermore, it is important to note that the filtering
process preserved the variation of the pitch present at 0.75s
and 1.65s.

V. CONCLUSION

In this paper, our goal was to improve the chirp rate esti-
mator used in the second order synchrosqueezing transform,
which appeared very oscillatory in the presence of noise. For
that purpose, we made reasonable assumptions that allowed
us to define a simplified chirp rate estimator which enabled us
to understand where these oscillations came from, and then to
filter them out to obtain a more accurate chirp rate estimator.
This filtering procedure turned out to be efficient even at low
input SNR and for various types of signals. Secondly, we used
this new chirp rate estimator to improve mode reconstruction
based on linear chirp approximation. Finally, we proposed to
use the new chirp rate estimator on a voice signal taken from
the Saarbruken Voice Database and showed that the filtering
process used to design the new estimator resulted in a stable
estimation, making easier the following of pitch variations.
A potential perspective for this work would be to further
extend the filtering procedure to improve the estimation of
the short-time Fourier transform on the ridges associated with
the modes of noisy multicomponent signals to improve mode
reconstruction.

APPENDIX A
In what follows, we omit (t, η) in the definition of the

STFTs. Let us first remark that:

E{V g
f+n} = V g

f , E{V t2g
f+n} = V t2g

f

since V g
n and V t2g

n are both with zero mean. Let us denote
by m = (V g

f , V
t2g
f )T . Then denoting by v = (V g

f+n, V
t2g
f+n)

T ,
and σ2

n the variance of the noise (the real and imaginary part
of the noise are assumed to be decorrelated), we have:

E{(v −m)(v −m)H} =

[
E{|V g

n |2} E{V g
n (V

t2g
n )∗}

E{(V g
n )

∗V t2g
n } E{|V t2g

n |2}

]

=

[
σ2
n∥g∥2 σ2

n∥tg∥2
σ2
n∥tg∥2 σ2

n∥t2g∥2
]
.

Based on the results in [37, Eq. (44)], denoting Z =
V g
f+n

V t2g
f+n

,

we have that:

E {Z} =
V g
f

V t2g
f

+

(
∥tg∥2

∥t2g∥2
−

V g
f

V t2g
f

)
e
−

|V t2g
f

|2

σ2
n∥t2g∥2 ,

so that one gets:

E
{
− 1

2π
ℑ{Z}

}
= − 1

2π
ℑ

{
V g
f

V t2g
f

}
(1− e

−
|V t2g

f
|2

σ2
n∥t2g∥2 ).

At (t, ϕ′(t)) one finally has

E
{
− 1

2π
ℑ{Z}

}
= ϕ′′(t)

1− e
−

|V t2g
f

|2

σ2
n∥t2g∥2

 .

APPENDIX B

Remarking that in that case ϕ′(t) = η0, we may write:

V t2g
n (t, η0)e

−2iπη0t =

∫
R
n(τ)(τ − t)2g(τ − t)e−2iπη0τdτ

V g
n (t, η0)e

−2iπη0t =

∫
R
n(τ)g(τ − t)e−2iπη0τdτ,

so we get that:

G(t) =
2π

σ2
V t2g
n (t, η0)e

−2iπη0t − V g
n (t, η0)e

−2iπη0t

=

∫
R
n(τ)(

2π

σ2
(τ − t)2 − 1)g(τ − t)e−2iπη0τdτ

=
σ2

2π

∫
R
n(τ)g′′(τ − t)e−2iπη0τdτ.

Let us then write the auto-correlation function of this random
variable:

E [G(t)G(t− x)∗] =∫
R2

E [n(τ)n(τ ′)] g′′(τ)g′′(τ ′ + x)
σ4e−2iπη0(τ−τ ′)

4π2
dτdτ ′

=
σ4

4π2
σ2
n

∫
R
g′′(τ)g′′(τ + x)dτ =

σ4

4π2
σ2
ng

′′ ∗ g′′(−x),

using the fact that g′′ is even. So the studied process is wide-
sense stationary and its power spectral density, i.e. the Fourier
transform of the auto-correlation function, reads:

σ4

4π2σ
2
ng

′′ ∗ g′′(−x)
∧

(η) = σ2
n

σ4

4π2
g′′ ∗ g′′
∧

(η)∗ = σ2
n

σ4

4π2
ĝ′′(η)2

= σ2
nσ

44π2η4ĝ(η)2

= σ2
nσ

64π2η4e−2πσ2η2

.

APPENDIX C

In such a case, we have ϕ′(t) = a + bt, and thus we may
write:

V t2g
n (t, ϕ′(t))e−2iπϕ(t)

= eiπbt
2

∫
R
n(τ)(τ − t)2g(τ − t)e−2iπϕ′(t)τdτ

V g
n (t, ϕ

′(t))e−2iπϕ(t)

= eiπbt
2

∫
R
n(τ)g(τ − t)e−2iπϕ′(t)τdτ,

Furthermore, from [19, proposition 1], we may write:

V g
f (t, ϕ

′(t)) = (1 + b2σ4)−
1
4 e−i

atan(−bσ2)
2 e2iπϕ(t) = Be2iπϕ(t),

so that one may rewrite G as:

G(t) =

(
2π

σ2
(1− ibσ2)V t2g

n − V g
n

)
B−1e−2iπϕ(t)

= B−1eiπbt
2∫

R
n(τ)

(
2π

σ2
(1− ibσ2)(τ − t)2 − 1

)
g(τ − t)e−2iπϕ′(t)τdτ

= B−1eiπbt
2

[
σ2

2π

∫
R
n(τ)g′′(τ − t)e−2iπϕ′(t)τdτ

−i2πb
∫
R
n(τ)(τ − t)2g(τ − t)e−2iπϕ′(t)τdτ

]
.



10

Then the auto-correlation function of G reads:

E [G(t)G(t− x)∗] =
e−iπbx2

σ2
n

(1 + b2σ4)
1
2{

σ4

4π2

∫
R
g′′(τ)g′′(τ + x)e−2iπbxτdτ

ibσ2

∫
R
τ2g(τ)g′′(τ + x)e−2iπbxτdτ

−ibσ2

∫
R
(τ + x)2g′′(τ)g(τ + x)e−2iπbxτdτ

4π2b2
∫
R
τ2g(τ)(τ + x)2g(τ + x)e−2iπbxτdτ

}
.

So the process is wide-sense stationary. Now, making a last
change of variables, we obtain:

E [G(t)G(t− x)∗] =
σ2
n

(1 + b2σ4)
1
2{

σ4

4π2

∫
R
g′′(τ − x

2
)g′′(τ +

x

2
)e−2iπbxτdτ

+ibσ2

∫
R
(τ − x

2
)2g(τ − x

2
)g′′(τ +

x

2
)e−2iπbxτdτ

−ibσ2

∫
R
(τ +

x

2
)2g′′(τ − x

2
)g(τ +

x

2
)e−2iπbxτdτ

+4π2b2
∫
R
(τ − x

2
)2g(τ − x

2
)(τ +

x

2
)2g(τ +

x

2
)e−2iπbxτdτ

}
.

Now, one can check that the auto-correlation function can be
rewritten in terms of the function:

L(τ) =

(
σ2

2π
g′′(τ)− i2πbτ2g(τ)

)
eiπbτ

2

since one has:

E [G(t)G(t− x)∗] =
σ2
n

(1 + b2σ4)
1
2

∫
R
L(τ − x

2
)L(τ +

x

2
)∗dτ.

So, computing the Fourier transform of this auto-correlation,
one gets: ∫

R
E [G(t)G(t− x)∗] e−2iπxηdx

=
σ2
n

(1 + b2σ4)
1
2

∫
R

∫
R
L(τ − x

2
)L(τ +

x

2
)∗e−2iπxηdxdτ

=
σ2
n

(1 + b2σ4)
1
2

∫
R
WL(τ, η)dτ,

in which WL is the Wigner-Ville distribution of L. From the
properties of the Wigner-Ville distribution, we deduce that the
modulus squared of the Fourier transform of L reads:

|L̂(η)|2 =

∫
R
WL(τ, η)dτ.

Now as we use a Gaussian window we can have an analytic
expression for L̂. Indeed, some simple computations lead to:

L(τ) = ((
2π

σ2
τ2 − 1)− i2πbτ2)g(τ)eiπbτ

2

= (−2π(− 1

σ2
+ ib)τ2 − 1)eπ(−

1
σ2 +ib)τ2

So, if one considers the Fourier transform of this function, one
gets:

L̂(η) = −1+ibσ2

2πσ2

d2e−π( 1−ibσ2

σ2 )τ2

)

∧

dη2 (η)− e−π( 1−ibσ2

σ2 )τ2

∧

(η)

= − (1−ibσ2)
1
2

2πσ
d2e

−π( σ2

1−ibσ2 )η2

dη2 − σe
−π( σ2

1−ibσ2 )η2

(1−ibσ2)
1
2

= − σ32π

(1−ibσ2)
3
2
η2e

−π( σ2

1−ibσ2 )η2

.

From this, we finally deduce that the power spectral density
of G1 is:

PG1(η) =
σ2
nσ

64π2η4

(1 + b2σ4)2
e
− 2πσ2η2

1+b2σ4 .
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