
HAL Id: hal-03844571
https://hal.science/hal-03844571

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Quasispecies for the Wright–Fisher Model
Raphaël Cerf, Joseba Dalmau

To cite this version:
Raphaël Cerf, Joseba Dalmau. The Quasispecies for the Wright–Fisher Model. Evolutionary Biology,
2018, 45 (3), pp.318-323. �10.1007/s11692-018-9452-0�. �hal-03844571�

https://hal.science/hal-03844571
https://hal.archives-ouvertes.fr


The quasispecies for the Wright–Fisher model

Raphaël Cerf ∗† and Joseba Dalmau‡

March 6, 2018

Summary. We consider the classical Wright–Fisher model of population
genetics. We prove the existence of an error threshold for the mutation
probability per nucleotide, below which a quasispecies is formed. We show
a new phenomenon, specific to a finite population model, namely the exis-
tence of a population threshold: to ensure the stability of the quasispecies,
the population size has to be at least of the same order as the genome
length. We derive an explicit formula describing the quasispecies.

Introduction. According to the Darwinian theory of evolution, mutation
and selection are the fundamental forces governing the evolution of living
creatures. The mutations occur during the reproduction process. A muta-
tion on a fixed nucleotide has a low probability, but for long genomes, it
is very likely that several randomly chosen nucleotides undergo a mutation
event. The selection force is quantified by the Darwinian fitness, which
measures the mean number of offspring of an individual. A fundamen-
tal problem is to develop a quantitative understanding of the statistical
structure of a biological population in equilibrium. Such an equilibrium
realizes a delicate balance between mutation and selection. In the absence
of mutations, a typical stable situation occurs when the genomes of all
the individuals are identical. Because of the mutations, genetic diversity
is constantly reintroduced in the population and a typical stable situation
occurs when the genomes of the population are very close to a specific well
fit genotype, called the wild type or the master sequence. Hence the pop-
ulation looks like a cloud of mutants centered around the wild type. This
kind of equilibrium was discovered within the framework of Eigen’s model
and was called a quasispecies9,10. Another fundamental discovery of Eigen
is the existence of an error threshold. Namely, the quasispecies is stable
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only if the mutation probability per nucleotide is below a critical value,
which scales as the inverse of the length of the genome. These notions had
a profound impact on the understanding of molecular evolution7. It seems
that some RNA viruses, like the HIV virus, evolve with a rather high mu-
tation rate, which is adjusted to be close to an error threshold8,17. Some
promising antiviral strategies consist in using mutagenic drugs that induce
an error catastrophe1,5.

The original goal of Eigen was to understand the first stages of life on
Earth. Most presumably, the first living creatures were complex macro-
molecules. Eigen suggested that, at the macroscopic level, their evolution
could be adequately described by a collection of chemical reactions. These
reactions model the replication or the degradation of each type of macro-
molecule. The concentrations of each type of macromolecule obey a system
of differential equations, derived from the laws of chemical kinetics. Thus
Eigen’s model is formulated for an infinite population and the evolution is
deterministic. This creates a major obstacle if one wishes to extend the
notions of quasispecies and error threshold to population genetics. Biolog-
ical populations are finite, and even if they are large so that they might
be considered infinite in some approximate scheme, it is not coherent to
consider situations where the size of the population is much larger than the
number of possible genotypes. Moreover, it has long been recognized that
random effects play a major role in the genetic evolution of populations13,
yet they are ruled out from the start in a deterministic infinite population
model. Therefore, it is crucial to develop a finite population counterpart to
Eigen’s model, which incorporates stochastic effects10,19. Here, we achieve
this program within the framework of the classical Wright–Fisher model of
population genetics. We prove the existence of an error threshold for the
mutation probability per nucleotide, below which a quasispecies is formed.
We show a new phenomenon, specific to a finite population model, namely
the existence of a population threshold: to ensure the stability of the qua-
sispecies, the population size has to be at least of the same order as the
genome length. In addition, we derive an explicit formula describing the
quasispecies. Our results hold also for the Moran model and are supported
by computer simulations.

The Wright–Fisher model. A population of m individuals evolves un-
der selection and mutation. The individuals are characterized by their
genotype. Let us denote by ` the length of the genome of an individual.
A genotype is a sequence of ` nucleotides chosen among A,U,G,C. In the
Wright–Fisher model, the generations do not overlap. Let us explain the
mechanism to build the generation n+ 1 from generation n. We first select
m individuals randomly with replacement from the generation n. The indi-
viduals are not chosen uniformly, but according to their Darwinian fitness.
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Figure 1: The transition mechanism of the Wright–Fisher model

The probability to select an individual is equal to the fitness of the individ-
ual divided by the sum of the fitnesses of all the individuals in generation n.
Note that in particular, the fitness function that we consider is frequency–
independent. The m selected individuals undergo a reproduction phase
and their m offspring constitute the generation n + 1. Yet the reproduc-
tion mechanism is error–prone and gives rise to mutations. We suppose
that mutations occur only in the form of substitutions, independently on
each nucleotide of the genome and we denote by q the mutation probability
per nucleotide. Whenever a mutation occurs, the final nucleotide is chosen
randomly with uniform probability among the three remaining nucleotides
in A,U,G,C. The average number of mutations during the reproduction
cycle of an individual is then equal to a = `q. The transition mechanism
of the Wright–Fisher process is represented schematically in figure 1. This
model is already very difficult to analyze, especially on an arbitrary fitness
landscape. We consider here the case of the sharp peak landscape. We sup-
pose that there exists a specific genotype, denoted by w∗, and called the
wild type or the Master sequence, which has a superior fitness σ > 1, while
all other genotypes have fitness equal to 1. In the end, the population dy-
namics is governed by four parameters: m, `, q, σ. We wish to understand
the picture at equilibrium, after many generations, and we would like to
answer the following questions. Does the population concentrate around
the wild type? Will the wild type be lost? What is the probability of each
of these scenarios?

Mutation and population threshold. The previous questions seem to
be intractable for fixed values of the parameters m, `, q, σ. We will consider
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the asymptotic regime of long genomes and large populations, which en-
ables us to discover sharply contrasted pictures. In this asymptotic regime,
we prove the existence of critical thresholds for the mutation probability
per nucleotide and the population size. Namely, the equilibrium state of
the population critically depends on the ratio m/` and the product a = `q.

Theorem. There exists a function ψ(a) such that the following holds.
1) If m/` < ψ(a), then, at equilibrium, with probability going to 1 as m, `
go to ∞, the population does not contain the wild type.
2) If m/` > ψ(a), then, at equilibrium, with probability going to 1 as m, `
go to ∞, the population contains a positive fraction of the wild type.
The function ψ(a) is finite positive on (0, lnσ) and ψ(lnσ) = +∞.

This theorem is rigorously proved3. The proof involves classical proba-
bilistic tools, namely the ergodic theorem, a renewal argument, lumping,
coupling, large deviations estimates. Although we stated our result in the
framework of the Wright–Fisher model, we proved it also for the Moran
model2, in which successive generations do overlap. The conclusions are
essentially the same, only the function ψ is different. This leads us to
believe that the result is quite robust and should hold for many variants
of mutation–selection models. Two qualitative conclusions can be drawn
from the two quantitative results of the theorem:
1) There exists an error threshold for the mutation probability per nu-
cleotide, above which the system undergoes an error catastrophe: whatever
large the population size is, the wild type is likely to be lost.
2) There exists also a population threshold: below the error threshold, the
wild type is likely to be present in the population at equilibrium only if the
population size is large enough.
The first conclusion is the counterpart for the Wright–Fisher model of the
error threshold phenomenon in the Eigen model. The second conclusion
shows that a new phenomenon occurs for finite populations, and that the
ratio

m

`
=

size of the population

length of the genome

is crucial to determine the stable equilibrium. More precisely, a quasispecies
can emerge only if

m

`
> minψ , `q < lnσ . (1)

Hence, for the quasispecies to be a stable equilibrium, the mutation prob-
ability per nucleotide has to be of order the inverse of the genome length,
while the size of the population has to be of the same order as the genome
length.
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Figure 2: The quasispecies distribution as a function of a for σ = 5
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Figure 3: The quasispecies distribution as a function of a for σ = 106
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The quasispecies formula. Another fundamental question concerning
the quasispecies model is the following: when a quasispecies is formed, what
does it look like? The first works on Eigen’s model describe a quasispecies
as a cloud of mutants centered around the master sequence. A quasispecies
is formed at equilibrium, when the mutation probability per nucleotide is
below the error threshold. To put in evidence the error threshold phe-
nomenon, we have to consider the asymptotic regime of long genomes.
There are exactly 3` mutants that are one mutation away from the wild
type. Due to the symmetry of the mutation and selection mechanisms,
all of them will have the same concentration at equilibrium. When the
length of the genome is very long, the concentration of every single mutant
becomes negligible. We collect together in a single class all the mutants
that are one mutation away from the wild type, and we call this class the
first mutant class. The second mutant class is built by collecting together
all the mutants that are exactly two mutations away from the wild type.
The third, fourth and following mutant classes are built in a similar way.
The zeroth class is formed by the wild type alone. At equilibrium, when a
quasispecies is formed, all these classes have positive concentrations. The
concentration of the wild type is given by ρ0 = (σe−a − 1)/(σ − 1). More
generally, the concentration of the kth mutant class is given by the formula

ρk = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
. (2)

The sequence (ρk)k≥0 is a probability distribution on the non–negative in-
tegers, Q(σ, a), which we call the quasispecies distribution with parameters
σ and a4,6. Recall that σ represents the selective advantage of the master
sequence, and a = `q represents the mean number of mutations per genome
per generation. Thus, the population size m is a fundamental parameter in
order to decide whether a quasispecies can form or not, but if it does form,
the distribution of the quasispecies is independent of the population size.
The figures 2, 3 show the concentrations of the different mutant classes as
a function of a, for fixed values of σ. Similar curves have been obtained in
the framework of Eigen’s model10. The curves obtained in these previous
works were generated by simulating Eigen’s system of differential equations.
The quasispecies distribution provides now an exact formula for generating
the same curves. The formula for the quasispecies distribution possesses
an extremely rich combinatorial structure, and it is linked to several classi-
cal mathematical sequences of numbers, like the Eulerian numbers and the
Stirling numbers of the second kind.

Computer simulations. These results are supported by simulations.
Figures 4, 5, 6 show the fraction of the Master sequence in the equilibrium
population as a funtion of both a = `q and m/`. In figure 4, the ratio m/` is
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Figure 4: Density of the first mutant classes as a function of a = `q, for
the Wright–Fisher model with parameters σ = 2, ` = 32, m/` = 3
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Figure 6: Density of the wild type as a function of `q and m/`, for the
Wright–Fisher model with parameters σ = 2, ` = 24, q,m varying

fixed and we vary a = `q, while in figure 5, the parameter a = `q is fixed and
we vary m/`. In figure 6, we vary simultaneously m/` and a = `q, and we
obtain a two–dimensional surface. The programs are written in C with the
help of the GNU scientific library and the graphical output is generated
with the help of the Gnuplot program. The number of generations in a
simulation run was adjusted empirically in order to stabilize the output
within a reasonable amount of time. Typically, in a simulation of the
model with parameters `,m, the number of generations is taken to be
100 000×2max(`,m) multiplied by a factor between 1 and 100. The good news
is that, already for small values of `, the simulations are very conclusive.

Heuristics. The proof of the theorem is rather long. However the heuris-
tics behind it are quite simple. In the finite population model, the number
of copies of the master sequence fluctuates with time. Suppose that the
process starts with a population of size m containing exactly one master
sequence. The master sequence is likely to invade the whole population
and become dominant. Then the master sequence will be present in the
population for a very long time without interruption. We call this time the
persistence time of the master sequence. The destruction of all the mas-
ter sequences of the population is quite unlikely, nevertheless it will happen
and the process will eventually land in the neutral region consisting of the
populations devoid of master sequences. The process will wander randomly
throughout this region for a very long time. We call this time the discov-
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ery time of the master sequence. Because the cardinality of the possible
genotypes is enormous, the master sequence is difficult to discover, nev-
ertheless the mutations will eventually succeed and the process will start
again with a population containing exactly one master sequence. If, on
average, the discovery time is much larger than the persistence time, then,
by the ergodic theorem, the equilibrium state will be totally random, while
a quasispecies will be formed if the persistence time is much larger than
the discovery time. The crucial problem is to estimate the persistence time
and the discovery time of the master sequence. For the persistence time, we
rely on a classical computation from mathematical genetics. Suppose we
start with a population containing m−1 copies of the master sequence and
another non master sequence. The non master sequence is very unlikely
to invade the whole population, yet it has a small probability to do so,
called the fixation probability. If we neglect the mutations, standard com-
putations yield that, in a population of size m, if the master sequence has
a selective advantage of σ > 1, the fixation probability of the non master
sequence is roughly of order 1/σm. Now the persistence time can be viewed
as the time needed for non master sequences to invade the population. This
time is approximately equal to the inverse of the fixation probability of the
non master sequence, that is of order σm. For the discovery time, there
is no miracle: before discovering the master sequence, the process is likely
to explore a significant portion of the genotype space, hence the discovery
time should be of order 4`. These simple heuristics indicate that the persis-
tence time depends on the selection drift, while the discovery time depends
on the spatial entropy. Suppose that we send m, ` to ∞ simultaneously.
If the discovery time is much larger than the persistence time, then the
population will be neutral most of the time and the fraction of the master
sequence at equilibrium will be null. If the persistence time is much larger
than the discovery time, then the population will be invaded by the mas-
ter sequence most of the time and the fraction of the master sequence at
equilibrium will be positive. This leads to an interesting feature, namely
the existence of a critical population size for the emergence of a quasis-
pecies. For chromosomes of length `, a quasispecies can be formed only if
the population size m is such that the ratio m/` is large enough. In order
to go further, we must put the heuristics on a firmer ground and we should
take the mutations into account when estimating the persistence time. The
main problem is to obtain finer estimates on the persistence and discovery
times. We cannot compute explicitly the laws of these random times, so
we will compare the Wright–Fisher model with simpler processes. In the
non neutral populations, we shall compare the process with a jump process
(Zn)n≥0 on { 0, . . . ,m }, which approximates the number of copies of the
master sequence present in the population. (In the cas of the Moran model,
the process (Zn)n≥0 on { 0, . . . ,m } was already introduced by Nowak and
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Schuster15). We analyze the dynamics of this process with the help of the
Freidlin–Wentzell theory of random perturbations of dynamical systems.
We obtain that

persistence time ∼ exp
(
mφ(a)

)
. (3)

In the neutral populations, we shall replace the process with a random walk
on A`, or equivalently an Ehrenfest process (Yn)n≥0 on { 0, . . . , ` }. The
value Yn represents the distance of the walker to the master sequence. A
celebrated theorem of Kac12 from 1947, which helped to resolve a famous
paradox of statistical mechanics, yields that

discovery time ∼ 4` . (4)

The critical curve is then obtained by equating the persistence time and
the discovery time. It is certainly well known that the population dynamics
depends on the population size19. Van Nimwegen, Crutchfield and Huy-
nen14 show that an important parameter is the product of the population
size and the mutation rate. The nature of the dynamics changes radically
depending on whether this product is small or large11,16. Van Nimwegen
and Crutchfield18 observe and discuss the transition from the quasispecies
regime for large populations to the disordered regime for small populations.

Conclusion. We have shown rigorously the existence of an error threshold
phenomenon for the sharp peak landscape and the Wright–Fisher model.
We have derived the explicit formula 2 for the distribution of the quasis-
pecies. Compared to the Eigen model, a new phenomenon occurs for a
stochastic population model with finite size: to ensure the stability of the
quasispecies, the population size has to be at least of order of the inverse
of the genome length. Thus, even in the very simple framework of the
Wright–Fisher model on the sharp peak landscape, cooperation is neces-
sary to achieve the survival of the wild type.
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