
HAL Id: hal-03844262
https://hal.science/hal-03844262

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MANTa: Efficient Gradient-Based Tokenization for
Robust End-to-End Language Modeling

Nathan Godey, Roman Castagné, Eric Villemonte de La Clergerie, Benoît
Sagot

To cite this version:
Nathan Godey, Roman Castagné, Eric Villemonte de La Clergerie, Benoît Sagot. MANTa: Efficient
Gradient-Based Tokenization for Robust End-to-End Language Modeling. EMNLP 2022 - The 2022
Conference on Empirical Methods in Natural Language Processing, Dec 2022, Abu Dhabi, United
Arab Emirates. �hal-03844262�

https://hal.science/hal-03844262
https://hal.archives-ouvertes.fr


MANTa: Efficient Gradient-Based Tokenization
for Robust End-to-End Language Modeling

Nathan Godey∗1,2 Roman Castagné∗1,2 Éric de la Clergerie1 Benoît Sagot1
1Inria, Paris, France

2Sorbonne Université, Paris, France
{nathan.godey,roman.castagne,eric.de_la_clergerie,benoit.sagot}@inria.fr

Abstract

Static subword tokenization algorithms have
been an essential component of recent works
on language modeling. However, their static
nature results in important flaws that degrade
the models’ downstream performance and ro-
bustness. In this work, we propose MANTa,
a Module for Adaptive Neural TokenizAtion.
MANTa is a differentiable tokenizer trained
end-to-end with the language model. The re-
sulting system offers a trade-off between the ex-
pressiveness of byte-level models and the speed
of models trained using subword tokenization.
In addition, our tokenizer is highly explainable
since it produces an explicit segmentation of
sequences into blocks. We evaluate our pre-
trained model on several English datasets from
different domains as well as on synthetic noise.
We find that MANTa improves robustness to
character perturbations and out-of-domain data.
We then show that MANTa performs compa-
rably to other models on the general-domain
GLUE benchmark. Finally, we show that it
is considerably faster than strictly byte-level
models.

1 Introduction

In order to improve Language Models (LMs), the
Natural Language Processing field has removed
most of the system-induced biases in the last few
years. For instance, practices that were once stan-
dard such as lemmatization, stemming and fea-
ture engineering have progressively disappeared
in favor of general architectures trained on huge
amounts of data, learning end-to-end which fea-
tures may be leveraged to attain better perfor-
mances. However, one essential part of LMs has
seen little evolution: tokenization. Tokenizers con-
vert sequences of characters into sequences of to-
kens (substrings of smaller length) which can then
be embedded by the model. Subword tokeniza-
tion algorithms (Sennrich et al., 2016; Wu et al.,
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Figure 1: The differentiable tokenization scheme of
MANTa-LM. Input bytes are first assigned a separation
probability using a Sliding Window Attention Trans-
former. These probabilities are used to compute the
contribution of each byte embedding in the pooled rep-
resentations of the blocks. The block embeddings are
fed to the Encoder-Decoder layers which predict the
masked bytes. All the components are optimized with
the LM objective.

2016; Kudo, 2018) are a specific class of tokeniz-
ers designed in such a way that almost every string
can be encoded and decoded with very few out-
of-vocabulary tokens. They are used in the vast
majority of recent LMs, but have been an essential
part of NLP systems since much longer (Mielke
et al., 2021).

The success of these algorithms can be attributed
to several reasons. Firstly, they produce token se-
quences whose length is greatly reduced compared
to the original character sequence. This characteris-
tic is helpful because limitations in compute power
and architectural constraints, such as the quadratic
complexity with respect to sequence length of
Transformers (Vaswani et al., 2017), prevent mod-
els from processing arbitrary long sequences. Sec-



ondly, they compress the corpus using occurrence
statistics that may help LMs. For instance, if a
word appears frequently in the training corpus, it
will be encoded as a single token in the vocabulary
and the model will be able to build a representation
for that particular token more easily.

However, the induced biases of tokenizers are
also harmful for modelization. One such limita-
tion lies in their brittleness to character deforma-
tions which are commonly found in real world,
noisy data. For instance, BERT’s tokenizer (De-
vlin et al., 2019) encodes “performance” as
[“performance”] but “perfonmance” as [‘per’,
‘##fo’, ‘##n’, ‘##man’, ‘##ce’], which
makes it hard for the model to behave simi-
larly in both cases. Moreover, the tokenizer is
fixed after its training and is therefore impos-
sible to update, for instance to reflect new do-
mains (El Boukkouri et al., 2020) where tokeniza-
tion might over-segment specific or technical terms.
Clark et al. (2022) list other issues emerging when
using static subword tokenizers, especially when
modeling languages with a more complex morphol-
ogy than English.

To overcome these issues, tokenization-free mod-
els (Clark et al., 2022; Xue et al., 2022; Tay et al.,
2021) produce character-based or byte-based em-
beddings for LMs instead of subword embeddings.
These methods improve the robustness of LMs
to naturally occurring noise as well as their ex-
pressiveness when dealing with out-of-domain or
multilingual data. In order to cope with increased
input lengths, some of these methods compress
sequences with constant reduction rates obtained
using specialized modules (Clark et al., 2022; Tay
et al., 2021), subsequently removing any notion of
subwords.

We argue that learning a subword tokenization
together with input representations in an end-to-
end fashion is beneficial for language modeling. In
this work, we introduce MANTa, a gradient-based
tokenizer and embedding module. It can easily be
plugged-in to replace the classical combination of
fixed tokenizers and trainable subword embedding
matrices existing in most encoder-decoder models,
without any increase in the total number of train-
able parameters. We also introduce MANTa-LM,
a Transformer encoder-decoder that incorporates
MANTa and that is trained end-to-end. By learning
a soft, adaptive segmentation of input sequences
jointly with the LM pre-training objective, MANTa-

LM produces byte-based representations with se-
quence lengths similar to those produced by static
subword tokenizers. Additionally, by propagating
gradients through our soft segmentation module
during fine-tuning as well, we are able to adapt the
segmentation to new domains, removing the limita-
tions imposed by static subword tokenization.

We show that MANTa-LM is robust to noisy text
data and able to adapt to new domains while being
significantly faster than byte-level models. Inter-
estingly, MANTa learns a simple but explainable
segmentation using only the LM objective while
effectively reducing the length of byte sequences.

In summary, the contributions of this paper are
the following:

• We introduce MANTa, a gradient-based tok-
enization and pooling module that can learn
jointly with an encoder-decoder LM;

• We train MANTa-LM on English data and
we evaluate its robustness to synthetic and
natural variation and its ability to adapt to new
domains compared to byte-level models.

2 Related Work

Non-neural subword-level tokenization methods
have dominated in the last few years as the de-
fault way to encode textual data, the most used
being BPE (Sennrich et al., 2016), WordPiece (Wu
et al., 2016) and Unigram (Kudo, 2018). However,
they have inherent flaws that limit their multilin-
gual performance (Rust et al., 2021), their adapt-
ability to new languages and new domains after
pre-training (El Boukkouri et al., 2020; Garcia
et al., 2021) and the downstream performance of
language models in general (Bostrom and Durrett,
2020).

To alleviate these issues, tokenization-free (or
character-level) models leverage characters instead
of subwords to build text representations. Some
of the first neural networks for sequence genera-
tion used characters directly as inputs (Sutskever
et al., 2011; Graves, 2013), and following works
modified the approach to create input word repre-
sentations based on characters (Kim et al., 2016;
Józefowicz et al., 2016; Peters et al., 2018). Sim-
ilar architectures were recently adapted to work
with Transformers (El Boukkouri et al., 2020; Ma
et al., 2020). Nevertheless, they still rely on fixed
tokenization heuristics (for instance segmenting us-
ing whitespaces) which may not be suited to some



languages or certain types of language variations.
Recent works have tried to remove these induced
biases by working purely with characters or bytes
as input (Clark et al., 2022; Tay et al., 2021; Xue
et al., 2022). However, they either have to use var-
ious tricks to reduce the sequence lengths based
on other induced biases like downsampling rates
(Clark et al., 2022; Tay et al., 2021) or have ex-
tremely low training and inference speeds (Xue
et al., 2022). Chung et al. (2016) create tokens
in a differentiable manner by predicting frontiers
and using the representations of each character in-
side a “token”, but it remains unclear how their
model could be adapted to be used with newer ar-
chitectures such as Transformers. Mofijul Islam
et al. (2022) propose to segment tokens using a
trained “frontier predictor.” Nevertheless, this dif-
ferentiable tokenizer is not trained with the main
language model objective but instead mimics a BPE
subword tokenizer, carrying some of its flaws.

3 MANTa

3.1 Differentiable Tokenization
Our main contribution is the introduction of an end-
to-end differentiable tokenization architecture that
consists in softly aggregating input bytes into what
we refer to as blocks. As an analogy with hard
tokenization schemes, blocks can be compared to
tokens with smooth borders.

We decompose the tokenization process into sev-
eral differentiable operations, ensuring that our
model can be trained end-to-end. Our approach
consists in predicting a segmentation, and then
combining byte embeddings according to this seg-
mentation. MANTa can be divided in three differ-
ent parts:

• Predicting block frontiers using a parameter-
ized layer to assign a probability pFi to each
input byte bi of being a frontier;1

• Building a byte-block unnormalized joint
distribution using the frontier probabilities
(pFi)i∈[1,L] corresponding to a soft assign-
ment from bytes to blocks;

• Pooling byte representations for each block
Bj weighted by the probability of each byte
to belong in the current block P (bi ∈ Bj).

This process results in a sequence of embeddings
that can be given directly to the encoder-decoder

1F in pFi stands for Frontier.

model. We provide an overview of the entire model
in Figure 1. We also summarize the process of
mapping byte embeddings to block embeddings in
appendix D.

3.1.1 Predicting Subword Frontiers
Our frontier predictor consists in a parameterized
module mapping each byte bi to the probability of
being a block frontier pFi . In a first part, we embed
each byte bi to an embedding ebi . Working with
bytes instead of characters allows modeling a larger
array of symbols while having very small embed-
ding matrices with 256× hidden size parameters.
Since the input sequences fed to the frontier predic-
tor may be particularly long, we use a Transformer
with sliding window attention (Beltagy et al., 2020).
This layer achieves a linear complexity with respect
to sequence length by computing attention using
only a local context. This reduced context forces
the model to focus on local surface features rather
than long-range dependencies which may be hard
to model at the byte level.

We make the assumption that long-range depen-
dencies are not relevant for segmentation and that
this reduced context window should not harm the
quality of the tokenization.

3.1.2 Modeling the Byte-Block Assignment
Once the frontier probabilities (pFi)i∈[1,L] are pre-
dicted for the whole sequence, we use them to
model an assignment between bytes and block slots.
Each byte is given a probability distribution over
the available block slots, and the expected block
position of a byte in the block sequence increases
along the byte sequence (i.e. the next byte is always
more likely to be assigned to the next block).

Let us introduce (B, bi), the slot random vari-
ables for each byte bi, describing the position of
the block containing bi in the block sequence. In
other words, the event (B = k, bi) describes the
fact that the i-th byte belongs in the k-th block.
These variables can only take values in [1, L], as
there cannot be more blocks than there are bytes.
We can model the (B, bi) as a cumulative sum of
the random variables Fi: the position of the block
in which a byte belongs is exactly the number of
frontier bytes before this one.

Since Fi ∼ B(pFi), we can model the block
index variables B depending on the index of the
bytes b using the Poisson Binomial distribution
PB which models the cumulative sum of Bernoulli
variables: (B, bi) ∼ PB

(
(pFk

)k≤i

)
. There exists



no closed form for this distribution’s mass func-
tion, but some fast methods have been developed to
avoid exploring the whole event tree (Biscarri et al.,
2018; Zhang et al., 2017). However, to reduce com-
putational cost, we use a truncated Gaussian kernel
G with the same mean and variance to approximate
the (B, bi) probability mass function:

∀k ∈ [1, LB], P (B = k, bi) ≃ Pk,i ≜
1

Z
Gµi,σi(k)

where Z =
∑

1≤k≤LB

Gµi,σi(k) is a normalization

term, and:

LB = min (L, (µL + 3σL))

µi =
∑i

k=1 pFi

σi =
√∑i

k=1 pFi (1− pFi)

(1)

We denote by Pk,i the approximation of the prob-
ability of membership of the byte i to block k. We
display an example of this map at different steps
during training in Figure 2. We truncate the block
sequences after (µL + 3σL) since all the probabili-
ties beyond this position are negligible.

3.1.3 Pooling Block Embeddings
At this point in the forward pass, we have esti-
mated the position of the block in which each input
byte belongs, along with the block sequence max-
imum plausible length LB . In order to provide
block embeddings to the LM, we now focus on
the contribution of each byte to the block given by
the block-byte assignment map. For each block
position k ∈ [1, LB], this map actually provides
an unnormalized contribution (Pk,i)i∈[1,L] of each
byte in this block. We can then use the byte embed-
dings eb from the frontier predictor described in
Section 3.1.1 and, for the k-th block, build a block
embedding where each byte bi contributes based
on its probability of being in this block Pk,i.

To build eBk , the embedding of block Bk in k-th
position, we first compute the weighted byte em-
beddings

(
Pk,i × ebi

)
i∈[1,L] ∈ RH , with H the hid-

den size of the byte embeddings. To make the block
embeddings aware of the ordering of the bytes (so
that ape and pea can have different representations),
we proceed to a depthwise 1-D convolution along
the dimension of the bytes after weighting. This
convolution also improves the expressiveness of
the block embeddings. We discuss our efficient
implementation of these operations in Appendix A.

Step 0

Step 3,000

Step 7,000

Step 13,000

Figure 2: The block-byte assignment P during the first
pre-training steps. MANTa learns to downsample input
sequences so that no information is lost through trunca-
tion, but also converges towards a sharp segmentation.

We finally apply a max-pooling operation on the
contextualized weighted byte embeddings for each
block. This yields one embedding per block, with
the same dimension as the byte embeddings. We
use a linear layer to map the block embeddings to
the right input dimension for the encoder-decoder
model, i.e. its hidden size.

The final step consists in truncating the block
embedding sequence to a fixed length L̂ =
min(LB, L/K) with K ∈ N∗ a fixed truncation
factor. This simple heuristic ensures that all se-
quences fed to the encoder-decoder have a length
at least K times shorter than the input byte se-
quence length. We choose K = 4 throughout the
paper which is in average the number of bytes in
an English BPE token. Most importantly, this trun-
cation incentivizes the frontier predictor to produce
sufficiently long blocks. We discuss the influence
of this mechanism in more depth in Section 6.1.

3.2 Model Training
We obtain from the differentiable tokenizer and
pooling module a sequence of block embeddings



that can be used exactly like subword embeddings.
Thus, we use an encoder decoder architecture iden-
tical to T5 (Raffel et al., 2020). Nevertheless,
since we do not have a fixed subword vocabulary,
our decoder operates at the byte level similarly to
ByT5 (Xue et al., 2022).

3.2.1 Pre-Training Details
Objective Our objective is identical to the one
used in ByT5. We mask 15% of bytes randomly
and choose a number of spans such that each has
an average length of 20 bytes. Each span is then
replaced by an <extra_id_i> token with i iden-
tifying the order of the span in the sequence. On
the decoder side, the model has to predict in an au-
toregressive way the span identifier and the masked
bytes.

Data We pre-train our model on English text
data using C4 (Raffel et al., 2020), a large corpus
scraped from the Internet. This corpus is particu-
larly suited to our pre-training due to its diversity
in terms of content and linguistic variations. In
addition, it enables a better comparison with other
tokenizer-free models trained using it such as Char-
former. Since this dataset is not available publicly,
we use the English split of the mC4 distributed by
AllenAI. We filter long documents containing more
than 215 bytes, which is a simple proxy to remove
important quantities of unwanted code data.

Hyperparameters We pre-train two ver-
sions of our model: MANTa-LMSmall and
MANTa-LMBase. Each of them stacks a
MANTaSmall (resp. MANTaBase) tokenizer
and embedding module and a T5Small (resp.
T5Base) encoder-decoder model stripped of its
tokenizer and subword embedding matrix. Details
about MANTa hyperparameters can be found in
Appendix B.

Following T5 and ByT5, we use the Adafac-
tor optimizer with a learning rate of 10−2 for the
encoder-decoder model, parameter scaling for the
whole system and no weight decay. However, to
maintain stability of our differentiable tokenizer,
we use a learning rate of 10−3 for the parameters
of the byte embeddings, the frontier predictor, and
the pooling module. We also use a triangular learn-
ing rate schedule with 1000 (resp. 5000) warm-up
steps for batch size 1024 (resp. 64).

Training We train T5Small, MANTa-LMSmall,
and MANTa-LMBase for 65k steps with a batch

size of 1024. Sequence lengths are respectively
1024 for Small models and 2048 for the Base
model. Thus, the models are trained on roughly the
same amount of bytes as in Tay et al. (2021), where
a batch size of 64 is used for 1M steps.

We also train a ByT5Small model on the same
data, using a batch size of 64 and a sequence length
of 1024. We consider the “Scaled” architecture
which provides the encoder with more layers than
the decoder (Xue et al., 2022). To avoid prohibitive
computation costs and ensure fairness in terms
of available resources between models, we limit
its training time to the one of MANTa-LMSmall.
Hence, our ByT5Small is only trained for 200k
steps.

4 Experiments and Results

4.1 Evaluation on GLUE

To ensure that our model is competitive with exist-
ing language models exploiting subword tokeniza-
tion algorithms, we evaluate it on several English
datasets and compare it with other baseline models.

Setup We use GLUE (Wang et al., 2018), a Natu-
ral Language Understanding benchmark consisting
of 7 tasks, to evaluate our model. Similarly to T5,
we cast the classification tasks as generation tasks
where the model has to predict autoregressively the
bytes forming the answer.

We compare our model to an encoder-decoder
model with subword tokenization (pre-trained with
the same denoising objective as T5) and a fully
byte-level encoder-decoder, similar to ByT5. We
compare Small models with our pre-trained ver-
sions, and Base models with results mentioned
in Tay et al. (2021). We report the number
of parameters given in Tay et al. (2021) for
Byte-level T5Base, and gather from its low value
that their implementation corresponds to a T5Base

architecture trained on byte-level inputs.

Results Results can be found on Tables 1 and 2.
Overall, MANTa-LM exhibits a performance
slightly below Charformer but stays within a small
margin on average (1.1 points below). Nonetheless,
the main objective of our method is to balance de-
cent performance with robustness and speed which
we show in the following sections.

4.2 Robustness to Domain Change

Static subword tokenizers tend to show important
limitations when used with texts originating from



Model |θ| MNLI QNLI MRPC SST-2 QQP STSB COLA AVG

T5Small 60M 79.7/79.7 85.7 80.2/86.2 89.0 90.2/86.6 80.0 30.3 76.6
MANTa-LMSmall (ours) 57M 79.2/78.6 84.5 82.3/87.2 89.6 89.9/86.5 81.4 32.0 77.1

Table 1: Results on dev sets for the GLUE benchmark for small models following our pre-training procedure.

Model |θ| MNLI QNLI MRPC SST-2 QQP STSB COLA AVG

BERT†
Base 110M 84.4 / - 88.4 86.7/- 92.7 - - - -

T5†
Base 220M 84.2/84.6 90.5 88.9/92.1 92.7 91.6/88.7 88.0 53.8 84.3

CharBERT§
Base 125M - 91.7 87.8/- - 91/- - 59.1 -

Byte-level T5†
Base 200M 82.5/82.7 88.7 87.3/91.0 91.6 90.9/87.7 84.3 45.1 81.5

Charformer†Base 203M 82.6/82.7 89.0 87.3/91.1 91.6 91.2/88.1 85.3 42.6 81.4
MANTa-LMBase (ours) 200M 77.5/78.8 88.2 82.4/88.2 91.3 90.8/87.7 79.2 51.0 80.3

Table 2: Results on dev sets for the GLUE benchmark. † indicates results obtained by Tay et al. (2021), which are
very similar to our models in terms of compute, but use a smaller batch size which may enhance their performance.
§ indicates results obtained by Ma et al. (2020). The top section concerns model trained using a subword tokenizer.

Model Accuracy

BERT‡
Base 77.7

CharacterBERT‡
Base 77.9

T5Small 75.3
MANTa-LMSmall (ours) 75.6

Table 3: Results on MedNLI. ‡ indicates results from
El Boukkouri et al. (2020), who use a different pre-
training corpus than C4. All other results are from
models trained with our codebase.

a domain unseen during training. For instance,
El Boukkouri et al. (2020) show that tokenizing
medical texts with a tokenizer trained on Wikipedia
data often results in an over-segmentation of tech-
nical terms which in turn affects the downstream
performance. By removing this static bottleneck
in MANTa-LM, we hope that it should be able to
adapt more easily to new domains. To test this
hypothesis, we finetune it on a medical Natural
Language Inference dataset.

Setup We finetune MANTa-LM on
MEDNLI (Romanov and Shivade, 2018), a
dataset consisting of 14,049 sentence pairs
extracted from clinical notes. We follow the same
finetuning setup than for the GLUE Benchmark
i.e. use the same batch size and learning rate.
We compare our results to the ones obtained
by El Boukkouri et al. (2020) with models
pretrained on the general domain.

Results We present our results on Table 3. Al-
though we notice a significant drop in perfor-

mance compared to the encoder models trained
by (El Boukkouri et al., 2020), we believe this drop
may be due to the different pretraining data used—
CharacterBERT uses splits of Wikipedia, which
may be helpful to learn some technical terms re-
lated to the clinical domain—, and the different
model sizes—CharacterBERT uses all of its param-
eters to encode example, while we keep half of the
parameters in the decoder. Nonetheless, we note
that MANTa-LM reaches a better performance than
its subword tokenization counterpart T5.

4.3 Robustness to Noisy Data

Although LMs may learn complex patterns even
from noisy input texts, this ability is conditioned by
how the tokenizer segments character sequences.
Since MANTa is not static and can be finetuned on
non-standard data, we expect it should be able to
learn to be more robust to variation/noise compared
to a subword tokenizer paired with a LM. To eval-
uate this hypothesis, we study how MANTa-LM
behaves on both naturally occurring text variation
and multiple levels of synthetic noise.

4.3.1 Naturally Occurring Noise
Setup Similarly to Tay et al. (2021), we test
our model on a toxicity detection task constructed
with user generated data. We use the TOXICCOM-
MENTS dataset (Wulczyn et al., 2017) which con-
tains 223,549 sentences annotated with a binary
label indicating whether each sentence can be clas-
sified as toxic or not. We also use the same finetun-
ing setup here as the one used for evaluating on the



Model Accuracy

T5†
Base 91.5

Charformer†Base 92.7
MANTa-LMBase (ours) 93.2

Table 4: Results on the TOXICCOMMENTS dataset. Re-
sults indicated by † are from Tay et al. (2021).

Model |θ| Seconds/step

Byte-level T5Small 57M 9.06 (× 8.0)
MANTa-LMSmall 57M 2.61 (× 2.3)
T5Small 60M 1.13 (× 1)

Table 5: Comparison of training speeds. All the exper-
iments were run on 16 NVIDIA V100 GPUs using a
batch size of 1024 and a sequence length of 1024 bytes
or 256 tokens

GLUE benchmark.

Results We present our results in Table 4 and
compare them to the ones reported in Tay et al.
(2021). As expected, noisy user generated data is
particularly harmful for models using subword tok-
enization. On the other hand, constructing sentence
representations with byte-level information helps
and our model is more accurate than Charformer.
This gain may be due to a better segmentation of
specific terms encountered in the data.

4.3.2 Synthetic Noise
Setup We also compare T5 and ByT5 with our
approach when facing different levels of noise.
This study pictures how these models react to un-
seen noise at evaluation time (DEV-ONLY setup)
and how they adapt to a given noise via fine-tuning
(TRAIN-DEV setup). We apply synthetic noise at
different levels τ ∈ {0.05, 0.10, 0.15} by picking
randomly τ × L positions in the byte sequences
and equiprobably deleting, replacing or inserting
bytes at these positions.

Results We found that models performed simi-
larly for the different noise levels in the DEV-ONLY

setting. On the contrary, in the TRAIN-DEV setting,
MANTa-LM can be finetuned as well as ByT5 for
all levels of noise, while the performance of T5
quickly degrades.

5 Training Speedups

In terms of speed, we compare our model to
MANTa-LMSmall to T5Small counterparts: one
that is trained at the classical subword-level, and
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Figure 3: Best accuracy on the SST-2 development set
as the noise level increases. The TRAIN-DEV setting
corresponds to models finetuned on noisy data while
models in the DEV-ONLY setting have been finetuned
on clean data.

one trained at byte-level, hence using sequences
that are roughly 4 times longer. We also report
the speed of the larger ByT5Small architecture as
described in Xue et al. (2022).

MANTa-LM is approximately 4 times faster
than Byte-level T5Small, and 5 times faster than
ByT5Small, which can be explained by the reduced
sequence length we use in the encoder-decoder
model. MANTa-LM is only 2.3 times slower than
T5Small which furthermore benefits from already
tokenized sequences at training time.

6 Discussion

6.1 Truncating Embedding Sequences

Once we obtain block embeddings, the final step
in MANTa consists in truncating sequences to a
length 4 times smaller than the original byte se-
quence, as described in Section 3.1.3. This is es-
sential to make MANTa-LM work.

First, it increases the control over the encoder-
decoder’s computation cost. Without this bottle-
neck, the Transformer can receive sequences vary-



Original Oh, it’s me vandalising?xD See here. Greetings,
MANTa O|h|,| |i|t|’|s| |m|e| |v|a|n|d|a|l|i|s|i|n|g|?|x|D| |S|e|e| |h|e|r|e|.| |G|r|e|e|t|i|n|g|s|,
T5 tokenizer O|h|,| |i|t|’|s| |m|e| |v|a|n|d|a|l|i|s|i|n|g|?|x|D| |S|e|e| |h|e|r|e|.| |G|r|e|e|t|i|n|g|s|,

Original The patient was started on Levophed at 0.01mcg/kg/min.
MANTa T|h|e| |p|a|t|i|e|n|t| |w|a|s| |s|t|a|r|t|e|d| |o|n| |L|e|v|o|p|h|e|d| |a|t| |0|.|0|1|m|c|g|/|k|g|/|m|i|n|.
T5 tokenizer T|h|e| |p|a|t|i|e|n|t| |w|a|s| |s|t|a|r|t|e|d| |o|n| |L|e|v|o|p|h|e|d| |a|t| |0|.|0|1|m|c|g|/|k|g|/|m|i|n|.

Table 6: Examples of segmentations produced by our module (pre-trained only) and by T5’s BPE tokenizer. The
sentences are samples from TOXICCOMMENTS and MEDNLI.

ing from a single block containing the whole se-
quence (LB = 1) to one block per byte in the
sequence (LB = L). In the latter case, which mim-
ics ByT5’s input segmentation, the computation
becomes extremely slow due to the quadratic cost
of the attention with respect to the sequence length.
Using the bottleneck ensures that we can control
the worst case complexity of the encoder Trans-
former and keep it similar to that of a subword-
based encoder model.

Second, it serves as a kind of regularization for
the block segmentations. We noted that training our
module without the bottleneck often led to block se-
quences as long as byte sequences (LB = L). This
may be due to the beginning of training where hav-
ing very local information helps - for instance bytes
to the left and right of masked spans. However,
such a segmentation degrades the model speed and
performance later in training. Truncating the se-
quence forces the model to construct larger blocks
in order to “fit” all the information from the input
sequence.

6.2 Learnt Block Segmentation

Segmentation examples can be found in Table 6.
For each byte, we retrieve the expected block posi-
tion produced by MANTa and approximate it with
the closest integer to mimic hard tokenization. We
found that MANTa is not keen to produce sub-
word level segmentations. Most of the key sym-
bols for word separation have been identified as
block delimiters during pre-training. As expected,
MANTa is less prone to over-segmentation of un-
known words like named entities. We also found
that a trained MANTa produced spiked separation
probabilities, meaning that it converged towards a
“hard” segmentation. This can also be observed by
monitoring the value min(pFi , 1 − pFi) which al-
ways converges towards values of magnitude 10−5.

6.3 Gradient-Based Segmentation

We employ a radically different downsampling ap-
proach compared to other gradient-based tokeniza-
tion methods such as CANINE (Clark et al., 2022)
or Charformer (Tay et al., 2021). While CANINE
downsamples sequences using a fixed rate after
byte contextualization and Charformer’s GBST
(Gradient Based Subword Tokenizer) pools rep-
resentations created using various downsampling
rates, MANTa only applies downsampling right be-
fore the LM to limit the length of block sequences.
Hence, our model is able to build word-level repre-
sentations of arbitrary length as long as it divides
the whole byte sequence length by a fixed factor.

We also argue that our method yields more ex-
plainable pooled representations as the segmenta-
tion can be explicitly derived from the outputs of
MANTa. Indeed, contrary to CANINE and Char-
former, MANTa disentangles the segmentation of
blocks from their representations, allowing to study
each part separately.

6.4 Main hyperparameters

We discuss here some of the major hyperparameters
of our method. Constrained by limited computa-
tional resources, we were unable to assess their
exact importance on MANTa’s performance. We
try to give some intuitions on their influence.

Frontier Predictor We used a small Transformer
network with sliding window attention for this mod-
ule. A much larger network would be slower and
may not bring significant improvements to the over-
all performance of the model, since it is only used
for predicting the block byte assignment but does
not “expand” the overall expressivity of the model.

Convolution kernel applied on byte embeddings
This kernel adds positional information to the byte
embeddings and expressivity when constructing
the block embeddings. Using a larger kernel or a
concatenation of kernels might help for better block
representations. However, our experiments did not



show any significant difference in the pretraining
performance.

Block embedding sequence truncation factor
Trimming block sequences was instrumental to pro-
duce meaningful input segmentations and blocks
containing more than a single byte. We settled
for a factor of 4 since other values led to minor
degradations early in training. This factor roughly
corresponds to the average number of bytes in a
subword created by an English tokenizer.

We believe that a more thorough hyperparame-
ter search could improve the performance of our
model. We leave this for future work due to com-
putational limitations.

7 Conclusion

In this work, we present MANTa, a fully differ-
entiable module that learns to segment input byte
sequences into blocks of arbitrary lengths, and con-
structs a robust representation for these blocks.
We train this module jointly with an encoder-
decoder LM on a span denoising objective to ob-
tain MANTa-LM. We then show that MANTa-LM
is more robust when applied to noisy or out-of-
domain data than models using static subword to-
kenizers. At the same time, it performs on par
with fully byte-level models on these setups while
operating with a much reduced computational cost.

Beyond the noisy and out-of-domain settings,
we believe that our approach could lead to interest-
ing results for a number of languages, especially
those whose writing system do not use whitespace
separators, such as Chinese.

Finally, tokenizers are hypothesized to be an
important limiting factor when segmenting multi-
lingual data (Rust et al., 2021). We believe MANTa
could be used in the multilingual setting to ensure
a more balanced segmentation between languages.

Limitations

Although MANTa can help alleviate some of the
inherent issues accompanying subword tokenizers,
it also suffers some flaws that we believe could be
addressed in future work.

Contrary to encoder-decoder models that can de-
code long sequences efficiently, our model has to
decode sequences byte-per-byte (similarly to Clark
et al. (2022); Xue et al. (2022); Tay et al. (2021))
which adds an important computational overhead
at generation time. Previous works have attempted

to reduce this computational cost by decreasing
the size of the decoder layers compared to the en-
coder (Xue et al., 2022) or by projecting embed-
dings to a smaller latent space (Jaegle et al., 2021)
for the decoding.

Finally, we presented in this work a proof of con-
cept of adaptive segmentation algorithms on rela-
tively small models, ranging from 50M to 200M pa-
rameters. Although we hypothesize that our model
would scale relatively well since it keeps most of
the encoder-decoder architecture untouched, this
hypothesis should be tested in a future work.
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A Improving Pooling Speed

Applying the 1-D convolution requires comput-
ing and storing O(LB × L×H) parameters since
we apply the 1D-convolution on every row of the
weighted embedding map P (eb)T . Therefore, this
operation may be particularly costly, especially if
the frontier predictor outputs a high number of
blocks. However, we can use the fact that the
weighted embedding map has a special form to
reduce the memory load when computing the con-
volution. Let K be the convolution kernel size,
(Cj)j∈[1,K] ∈ RK×H the convolution filters and “·”
denote the element-wise product. Then, omitting
padding and biases :

eBk = max
i∈[1,L]

K∑
j=1

Cj ·
(
Pk,i+j · ebi+j

)

= max
i∈[1,L]

K∑
j=1

Pk,i+j ·
(
Cj · ebi+j

)
Notice how the product between the convolution

filters and the byte embeddings Cj · ebi+j ∈ RH

does not depend on the block anymore. We cache

this computation, storing O(K × L×H) parame-
ters and only later apply the convolution per block
by summing these products with the block-byte
membership map P . Caching greatly lowers the
speed and memory requirements of MANTa, allow-
ing to save LB − 1 element-wise products.2 K is
usually small, so the products can be stored easily.

B Hyperparameters

Hyperparameter MANTaSmall MANTaBase

Input Embeddings size 64 128
Num. layers 1 2
Num. heads 8 8
Attention window 16 16
Convolution kernel size 3 3

Table 7: Hyperparameters for MANTa

Hyperparameter ByT5Small T5Small T5Base

Hidden size 1472 512 768
Num. layers (encoder) 12 6 12
Num. layers (decoder) 4 6 12
Num. heads 6 8 12
Feed-forward dim. 3584 2048 3072
Dropout rate 0.1 0.1 0.1

Table 8: Hyperparameters for encoder-decoders

2This caching would be exactly similar if the convolution
was not depthwise.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.48550/ARXIV.1702.01326
https://doi.org/10.48550/ARXIV.1702.01326
https://doi.org/10.48550/ARXIV.1702.01326


C Additional results

We include here the scores obtained by MANTa-LM on the GLUE test sets for reproducibility and future
comparisons. The development sets are used in the main body to allow a fair comparison, as the test
scores are not reported in Charformer (Tay et al., 2021) and CharBERT (Ma et al., 2020).

Model |θ| MNLI QNLI MRPC SST-2 QQP STSB COLA AVG

MANTa-LMBase (ours) 200M 78.1/78.2 88.6 83.6/88.6 91.0 70.7/88.6 74.1 45.0 78.7

Table 9: Results on test sets for the GLUE benchmark.
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Figure 4: A detailed view of the MANTa module described in section 3.1. We denote by hb the dimension of the
byte embeddings, by hLM the dimension of the block embeddings that will be fed to the encoder-decoder model, L
the length of the input sequence and LB the length of the block sequence. We omit batch sizes for simplicity.


