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We consider on-board networks in satellites interconnecting entering signals (inputs) to amplifiers (outputs). The
connections are made via expensive switches with four links available. The paths connecting inputs to outputs should
be link-disjoint. Among the input signals, some of them, called priorities, must be connected to the amplifiers which
provide the best quality of service (that is to some specific outputs). In practice, amplifiers are subject to faults that
cannot be repaired. Therefore we need to add extra outputs to ensure the existence of sufficient many valid ones. Given
n inputs, p priorities and k faults, the problem consists in designing a low cost network (i. e. with the minimum number
of switches) where it is possible to route the p priorities to the p best quality amplifiers and the other inputs to some
valid amplifiers, for any sets of  faulty and p best quality amplifiers. Let N(n,p,k) be the minimum number of switches
of such a network. We prove here that N(n,p,0) < n— p+ 4 [log, p] and give exact values of N(n,p k) for small p and
k.

Keywords: switching networks, fault tolerance

Modern telecommunications satellites are very complex to design and an important industrial issue is
to provide robustness at the lowest possible cost. A key component of telecommunication satellites is an
interconnection network which allows to redirect signals received by the satellite to a set of amplifiers where
the signals will be retransmitted. The network is made of expensive switches ; so we want to minimise their
number subject to the following conditions: Each input and output is adjacent to exactly one link ; each
switch is adjacent to exactly four links ; there are n inputs (signals) and n + k outputs (amplifiers) ; among
the n + k outputs, k can fail permanently; and finally all the input signals should be sent to valid outputs
via link-disjoint paths. Designing such networks is a complex problem that was proposed by Alcatel Space
Industries and solutions are given in [3] and [4]. It was proposed also to consider the case where each signal
needs a specific amplifier; that leads to design a network realizing any permutation from the inputs to the
outputs (see [1], [2]). Here we consider a new problem asked recently by Alcatel Space Industries. Among
the n input signals, p of them called priorities must be connected to the amplifiers providing the best quality
of service (that is to some specific outputs) and the others signals should be sent to other amplifiers. Note
that the priority signals are given, but the amplifiers providing the quality of service change according the
position of the satellite and so the networks should be able to route the signals for any set of k failed outputs
and route the p priorities to any set of p valid outputs.

This problem can be restated more formally as follows:

Definition 1 A (n,p,k)-network G is a graph (V,E) where the vertex set V is partitioned into four subsets
P, I, O and S called respectively the priorities, the ordinary inputs, the outputs and the switches, satisfying
the following constraints:

- there are p priorities, n — p ordinary inputs and 1 + k outputs;

- each priority, each ordinary input and each output is connected to exactly one switch;

- switches have degree 4.

A (n,p,k)-network is valid if for any disjoint subsets F and B of O with |F| = k and |B| = p, there exist
in G, n edge-disjoint paths, p of them from P to B and the n — p others joining / to O\ (BU F). The set
F corresponds to set of failures and B to the set of amplifiers providing the best quality of service. We



denote N(n,p,k) the minimum number of switches (i.e. cardinality of S) of a valid (n,p,k)-network. A valid
(n,p,k) — network with N(n,p k) switches will be called minimum.

Problem 1 Determine N(n,p,k) and construct minimum (or almost minimum) valid networks.

As indicated above, the problem with no priority (that is p = 0) has been considered in [3] and almost
solved in [4]. In these papers, the authors called (n,0,k)-networks (n,k) networks and denoted N(n,0,k) by
N(n.k). In [3], it is shown that N(n,0,2) = n. In [4], it is proved that % - 0(3) < N(n0k) < 32—" + O(k).
The following values for small & are also given:

N(n04)=n+ [g]

n n
N(n0.8)=n+ 3+ \/;+ o(1)

n 2 [n 4
N(n,0,8)-n+§+§\/;+ o(*\/n)

N(n0,12)=n+ 37’{ + O(v/n)

Theorem 1 N(n,1,0)=n—1

Proof. In a minimum (#n,1,0)-network, there is no switch connected to 2 ordinary inputs or more. Indeed,
either there is an output connected to such a switch s and putting this output in B gives a contradiction;
otherwise removing such a switch s and connecting its two adjacent ordinary inputs to its two others neigh-
bours we obtain a smaller valid network. Thus N(n,1,0) > n — 1. Let G be the graph with one priority
p, ordinary input set {i),i2,...,i,—1}, output set {01,02,...,0,} and switch set {s1,52,...,5,—1} such that
(p,$1,52,---,Sn—1,0,) is a path and for 1 <! < n—1, i; and o; are adjacent to s;. (See Figure 1.) Clearly, G
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is valid. Indeed, suppose that o; is the priority output. Since 0,_; and o, are equivalent, we may suppose
that j # n. Then Po = (p,51,52,...,5;,05), Pj = (i;,5j,5j+1,.--,Sn—1,0) and for [ # j, and P; = (i;,51,0;) are
the desired paths. 0O

Theorem 2 Forn>p > 1,

(i) N(2n,2p,0

) 2N(n,p,0) +n—1
(it) N(2n+1,.2p,0)

)

)

N(n+1,p,0)+N(n,p,0)+n
N(n,p+10)+N(np0)+n
Nn+1,p+1,0)+N(n,p,0)+n

(iii) N(2n2p+1,0
(iv) N2n+1.2p,0

IAIA IN A

Proof. (i) Let G' and G? be two valid (n,p,0)-networks. For i = 1,2, let I, P!, O' = {0},0},...,0,} and
S' be the ordinary input set, priority set, output set and switch set of G'. Let H be the graph defined as
follows : Its ordinary input set is / = I' U2, its priority set is P = P' U P2, its switch set is S' US?U S with
S={s51,52,...,5,—1} and its output set is O = {0,0,...,0u-1} U{0},05,...,0"_, }U{o},02}. And for every
1< j<n-1,s;jislinked to o}, o’j, the neighbour of 0; in G) and the neighbour of o} in G3. (See Figure 2)
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We claim that H is a valid (2n,2p,0)-network. Indeed, let B be a 2p-subset of O. Clearly, one can partition
O in two n-sets Oy and O; such that for i = 1,2, 0}, € 0;, [BNO;| = pand forall 1 < j<n-—1,]|0;N
{oj,og-}l =1.Fori=1.2,let B; = BN O;. Since G' and G? are valid (n,p,0)-networks, there are edge-
disjoint paths joining P to B; and I' to O; \ B;. Hence, there are edge-disjoint paths joining P to B and I to
O\B.

The proofs of (ii), (iii) and (iv) are similar. O

Corollary 1 N(n,p.0) < n—p+5[log, p]
Theorem 3 N(n,2,0) = [¥ - 3]

Proof. Theorem 2 gives N(n,2,0) < [ —3].

Let G be a minimum (n,2,0)-network G. An ordinary switch is a switch that is adjacent to one ordinary
input. A switch adjacent to no ordinary input is a usual switch. Let s be the number of usual switches. A
cluster of G is a maximal connected induced subgraph containing no usual switches. Let C be a cluster. Its
degree deg(C) is the number of edges joining a vertex of C to a vertex of V(G)\ C. Because C is connected
one can check that : deg(C) < in(C) +2 — out(C) — pr(C) (*1). Moreover deg(C) > in(C) + pr(C) — out(C)
(*2) because in(C) + pr(C) — out{C) paths must leave C. It follows that pr(C) < 2.

Let us now prove that C has at most one output. Indeed, suppose that out(C) > 2. Put two outputs of C in
B, then in{C) — out(C) + 2 ordinary paths must leave C and 2 — pr(C) > 1 priority paths must enter C. Thus
deg(C) > in(C) + 2 — ot (C) + 1. This contradicts ().

Suppose now that out(C) = 1. If the output of C is in B then in(C) ordinary paths must leave C and
1 — pr(C) priority paths must enter C. Thus deg(C) > in(C)+ 1 — pr(C). Thus, by (*)), we obtain deg(C) =
in(C)+ 1 - pr(C).

Hence, G has two kind of clusters, I-clusters containing one output with degree in(C) + 1 — pr(C) and
0O-clusters with no output and degree at least in(C) by (x2). Since every input and output is contained in
a cluster, there are Z deg(C) > 2n — 4 edges joining clusters to usual switches. Thus, 4s > 2n — 4, so

C cluster
s > (n—2)/2. Since there are n — 2 ordinary switches, we obtain N(n,2,0) > %(n -2) ()

Strengthening the proof of Theorem 3, we obtain the following lower bounds and some constructions
give us the following upper bounds which improve the one of Corollary 1.

Theorem 4

]
N(n11) = Pz’—’~1
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