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Using previously developed potential energy surfaces and their couplings, non-Born–
Oppenheimer trajectory methods are used to study the state-selected photodissociation of 
ammonia, prepared with up to 6 quanta of vibrational excitation in the symmetric (ν1) or 
antisymmetric (ν3) stretching modes of NH3(Ã). The predicted dynamics is mainly 
electronically nonadiabatic (that is, it produces ground-electronic-state amino radicals). 
The small probability of forming the excited-state amino radical is found, for low 
excitations, to increase with total energy and to be independent of whether the symmetric 
or antisymmetric stretch is excited; however some selectivity with respect to exciting the 
antisymmetric stretch is found when more than one quantum of excitation is added to the 
stretches, and more than 50% of the amino radical are found to be electronically excited 
when six quanta are placed in the antisymmetric stretch. These results are in contrast to 
the mechanism inferred in recent experimental work, where excitation of the 
antisymmetric stretch by a single quantum was found to produce significant amounts of 
excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both 
theory and experiment predict a broad range of translational energies for the departing H 
atoms when the symmetric stretch is excited, but the present simulations do not reproduce 
the experimental translational energy profiles when the antisymmetric stretch is excited. 
The sensitivity of the predicted results to several aspects of the calculation is considered 
in detail, and the analysis leads to insight into the nature of the dynamics that is 
responsible for mode selectivity. 
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I. INTRODUCTION  

 The photodissociation of ammonia to produce amino radical and a hydrogen atom 

has been studied by various experimental methods,1-14 culminating in two sets of very 

detailed experiments (by Doppler profile spectroscopy11,13 and by velocity map 

imaging14) in the Crim lab. These experiments11,13,14 give detailed information about the 

product translational energy distribution when the symmetric stretch (ν1), umbrella mode 

(ν2), and antisymmetric stretch (ν3) of the Ã first-excited-singlet electronic state (S1) of 

ammonia (which has a planar geometry) is initially excited, complementing earlier 

experiments from the Dixon lab2 on the role of excitation of ν2. The product translational 

energy distribution has been interpreted in terms of the propensity to produce 

electronically excited amino radicals as a function of the initial vibrational state, and 

hence these experiments provide insight into the mechanism of state-selected 

photochemistry.  

 Bach et al.11,13 and Hause et al.14 found that the fragmentation of NH3(Ã) molecules 

excited in one of their antisymmetric stretching modes mainly produced slow H atoms, 

whereas NH3(Ã) molecules excited in their symmetric stretching mode produced a faster 

distribution of H atoms. They have interpreted the surprising production of slow H atoms 

as a signature of an electronically adiabatic dissociation process producing electronically 

excited amino radical. They concluded that dissociation is preferentially adiabatic when 

the antisymmetric stretching mode is excited and nonadiabatic when the symmetric 

stretching mode is excited.  

 Although systems with only a few atoms, like ammonia, are amenable to quantum 

mechanical simulations based on scattering theory15 or wave packets,16 there is 

considerable interest in less computationally demanding approaches that can be applied 

to large systems without dimensionality-reduction approximations. The quasiclassical 

trajectory method17,18 provides such an approach for Born-Oppenheimer (i.e., 

electronically adiabatic) processes, and coupled-surface trajectory methods19,20 provide 

such an approach for non-Born-Oppenheimer processes. A second advantage of 

trajectory-based approaches is that, if successful, they provide opportunities for 

mechanistic interpretation in terms of phase space paths and classical concepts.  

 We have developed coupled-surface trajectory methods of two types,20,21-28 namely 
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Ehrenfest-like29,30 methods and trajectory surface hopping31-34 methods. The most 

accurate, in general, is CSDM21-24 (Coherent Switching with Decay of Mixing), which is 

an Ehrenfest-like method, but another approach that provides useful accuracy in many 

cases is FSTU25-27 (Fewest Switches with Time Uncertainty), which is a trajectory-

surface hopping method. The FSTU method has recently been further refined, yielding 

FSTU/SD28 (FSTU with Stochastic Decoherence).  

 These methods have previously been used to study the photodissociation of NH3(Ã) 

as a function of n2 (the number of quanta of vibrational excitation in ν2).35 The objective 

of the present study is the photodissociation of NH3(Ã) as a function of vibrational 

excitation of the symmetric and antisymmetric stretches. 

 Two previous theoretical studies of the photodissociation dynamics of ammonia are 

noteworthy here. Seideman36 has published a detailed, reduced-dimensionalilty, quantum 

mechanical study of the predissociation of the ammonia Ã state in the ground vibrational 

state and several rotational-vibrational states involving bend excitation. In the energy 

range of interest to her, photofragments form exclusively in ground electronic state.2 

More recently, Guo and coworkers37 reported a full-dimensional wave packet study of the 

NH3 photodissociation dynamics by using the same potential energy surfaces as in the 

present study. Although the latter study did not report any product branching that might 

be compared with experiment or with the present study, Guo and coworkers did find that 

the their calculations correctly reproduced some experimental observables such as the 

dependence of lifetime on excitation energy for low-lying resonances in which the 

umbrella mode is excited and the overall shape of the spectra when stretching modes are 

excited. They concluded that their results “confirmed the general accuracy of the newly 

developed PESs [potential energy surfaces] of Truhlar and coworkers.” 

 Since the state preparation in the experiments of Crim and coworkers11,13,14 is by a 

novel double resonance technique,38 it is important to keep in mind the initial state 

preparation used in the present study and how it relates to the experimental initial 

conditions.  The experiments involve two-photon state preparation, beginning in the 

ground electronic state.  The first photon prepares a specific vibrationally excited state of 

the ground electronic state, and the second photon excites the system to the excited Ã 

electronic state. Although the second photon does not place the system in a single well 
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resolved eigenstate (such eigenstates do not exist for ammonia at the energies of most 

interest in the present study because the spectrum is diffuse at energies above 5.7 eV39), 

the Franck-Condon principle implies that electronic excitation of a vibrationally excited 

state will preferentially produce excited states composed of zero-order states that have the 

same character of vibrational motion as the intermediate state produced after one photon 

is absorbed.38 Thus a difference in outcomes between exciting the symmetric and 

antisymmetric vibrations before electronic excitation was interpreted11,13,14 as resulting 

from “preparation of otherwise inaccessible vibrations in the electronically excited 

molecules by bringing different Franck-Condon factors into play.38,40 ”14 A semiclassical 

trajectory calculation cannot completely mimic the quantum state preparation of a real 

experiment, but we have adopted state preparation schemes that we believe allow us test 

the conclusions drawn from the experiments, or alternatively to test the ability of our 

semiclassical methods and PESs to yield the state specificity observed experimentally. In 

particular, our initial state for the symmetric-stretch-mediated case is a quasiclassical 

analog of a zero-order approximation to a vibrationally excited state with that same 

vibrational character on the excited PES.  The zero-order state is bound because it is 

based on the harmonic approximation using the upper surface, but when the trajectory 

begins to evolve, it is propagated using the accurate PESs, and thus it can dissociate.  

Similarly, our initial trajectory state for the antisymmetric-stretch-mediated case is a 

quasiclassical or analog of a zero-order approximation to a vibrationally excited state 

with  antisymmetric-stretch character on the upper PES. In principle these states might be 

more pure than the actual states excited in the experiment, and could, under that same 

principle, lead to more state-specific behavior than is observed experimentally, but this 

hypothetical possibility is not a major concern. 

 The methodology adopted in this work is presented in section II. Results obtained 

with four different coupled-surface trajectory methods are presented and discussed in 

section III. Section IV gives concluding remarks.  

 

II. METHODS  

 Subsection II.A provides an overview of the essential features of the methodology, 

including all features that differ from or extend our previous publication.35 The algorithm 
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for simulation of initial vibrational distributions of photo-excited molecules is presented 

in subsection II.B. Subsection II.C discusses the main features of the potential energy 

surfaces employed and the vibrational states studied in the present work, and subsection 

II.D details the method used to study intermode couplings.  

 

II.A. Dynamics  

 In trajectory surface-hopping calculations, the classical motion of the nuclei is 

governed at any one time by a single potential energy surface, and this single-surface 

propagation is interrupted by transitions between surfaces, also called hops or switches. 

For a two-state case, the normalized electronic wave function is written as  

 Φ = c1(t)φ1(R(t)) + c2(t)φ2(R(t)) (1) 

where t is time, R denotes the collection of nuclear coordinates, and φj is the normalized 

electronic wave function corresponding to surface j (note that the {φj} are orthogonal). 

The local rate of change of cj along the classical trajectory is computed using well-known 

semiclassical equations,19 and hops are allowed stochastically according to the fewest-

switches prescription34 such that if all attempted hops occurred, the probability of 

propagating on each surface j would be equal to |cj|2. For an ensemble of trajectories, this 

self-consistency implies that the fraction of trajectories propagating in each state is equal 

to the ensemble-averaged quantum mechanical populations <|cj|2>, although this self-

consistency is not always maintained (as discussed in the next paragraph). When a hop 

occurs, the nuclear momentum is adjusted in the direction of the nonadiabatic coupling 

direction ˆ d  such that the total energy is conserved. 

 Frequently in multidimensional systems, a hopping attempt to an excited electronic 

state may be requested by the fewest-switches algorithm at a geometry where the 

potential energy gap is greater than the kinetic energy associated with nonadiabatic 

coupling direction ˆ d . When this is the case, the kinetic energy along ˆ d  cannot be 

adjusted such that total energy is conserved, and these events are called frustrated hops. 

In some implementations of the fewest-switches algorithm, frustrated hops are ignored, 

and this is one reason that the self consistency discussed above is not preserved. The 

FSTU method is a modification of the fewest-switches method designed to improve the 

self consistency; the FSTU method differs from the fewest-switches method in that it 
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allows25,26 hops to occur at some time th along the classical trajectory if a hop is frustrated 

at t0 but allowed at th and if  

 
  
t0 − th ≤

=
2∆E

 (2) 

where = is Planck’s constant (h) divided by 2π, and ∆E is the energy that would need to 

be borrowed at t0 to allow a hop. A second improvement is the use of the gradV 

criterion27 for determining whether a momentum adjustment is made for frustrated 

trajectories.  

 We also consider the stochastic decoherence28 (SD) modification to the FSTU 

method. In the SD method, decoherence events occur stochastically according to 

characteristic decoherence time τ defined as the time for phenomenological decay of the 

off-diagonal elements of the electronic density matrix due to imagined nuclear wave 

packets propagating in the different electronic states at different velocities.41 When a 

decoherence event is called for, the electronic coefficients cj are reinitialized to the 

currently occupied electronic state. The prescription for SD was given incorrectly in Ref. 

28; the correct probability of electronic reinitialization is given by  

 P(∆t) = exp(−∆t /τ)  (3) 

where ∆t is the time since the previous reinitialization check. Reinitialization checks are 

made at every time step in the current work. 

 In quantum mechanical dynamics, vibrational energy is strictly quantized only in 

stationary states, and therefore zero-point energy (ZPE) is not strictly maintained during 

collisions or in metastable dissociative states. However, experience has shown that 

maintaining ZPE in motions with positive local force constants leads to more accurate 

reaction thresholds,42 and maintaining ZPE throughout a trajectory is the most convenient 

way to ensure that all product states have their required ZPE. Algorithmically though, 

maintaining ZPE in classical trajectory simulations has been an unmet challenge for 

decades.17,35,43-53 Due to severe shortcomings of earlier ZPE maintenance methods,44,45,48 

a new scheme, called TRAPZ (TRAjectory Projection onto ZPE orbit), was proposed by 

Lim et al.47 and McCormack et al.49,51 It was assumed to remove spurious features from 

the dynamics, but it was recently found35 that it leads to unphysical results when used to 

model the photodissociation dynamics of NH3(Ã). Furthermore, we obtained unphysical 
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results when we did not maintain ZPE. The TRAPZ algorithm was then modified35 to 

give birth to the mTRAPZ (minimal TRAPZ) method. This new algorithm, combined 

with the FSTU/SD surface hopping technique, was successfully applied to 

photodissociation of NH3(Ã) to maintain ZPE. 

 The application conditions of the mTRAPZ method are slightly changed here as 

compared to our earlier publication. We have previously noticed35 that performing an 

instantaneous normal mode analysis in Cartesian coordinates may result in inaccuracies 

when estimating the instantaneous projected Hessian. This difficulty was overcome by 

not applying the mTRAPZ algorithm when a geometry corresponding to an inaccurate 

instantaneous projected Hessian was identified. However, identifying these inaccuracies 

is difficult in practice because of the six degrees of freedom of ammonia. In the present 

study, the mTRAPZ algorithm is thus only applied when there are at most six nonzero 

frequencies, a frequency (either real or imaginary) being assumed to be zero when its 

modulus is below 1 cm−1. This criterion was found (i) to shield trajectories from artifacts 

like the nonconservation of total angular momentum (a discrepancy that occurred for 

about 1−2% of trajectories in our previous study35), and (ii) to maintain ZPE.  

 We also briefly report some results obtained using the CSDM method,21,22,24 which 

is a modified mean-field method that incorporates phenomenological de-mixing to 

produce quantized final electronic states. Although the CSDM method is believed to be 

more accurate than FSTU or FSTU/SD in general,21,22,24 we used the FSTU and 

FSTU/SD methods for most of the calculations presented here because these algorithms 

are easier than CSDM to combine with mTRAPZ and because these algorithms allow us 

to analyze the trajectories more easily, which is important in the present exploratory 

study. 

 The FSTU, FSTU/SD, FSTU+mTRAPZ, FSTU/SD+mTRAPZ, and CSDM 

methods are part of the ANT 0854 package. The photodissociation results reported in this 

paper correspond to averages over 3000 or 5000 trajectories, except when otherwise 

noted. The analytic potential energy surfaces and couplings used here were described 

previously.55 Trajectories are propagated in the adiabatic representation, and whenever 

we refer to the potential energy surfaces in the rest of this article, we are referring to the 

electronically adiabatic ones. A trajectory is considered dissociated when either one of 



 
 

8

the three N–H bond distances is of at least 10.0 Å during 50 consecutive time steps, or 

when the total time exceeds 100 ps. 

 

II.B. Trajectory harmonic initial conditions  

 Initial conditions are similar than those employed in our previous work.35 In all the 

photodissociation calculations reported here, the initial conditions for the vibrational 

modes are determined in the harmonic approximation.  

 Vibrational modes that are initially in their ground state (vibrational quantum 

number nm of mode m is zero) are in some cases initialized by using a Wigner 

distribution56 and in some cases are initialized quasiclassically. We used both methods 

for two reasons: (1) We wanted to check whether our main conclusions depend on this 

choice (we will see that they do not). (2) We believe that the Wigner distribution is more 

reasonable for modes in their ground vibrational state whereas the quasiclassical method 

is more appropriate for modes that are excited. Normal modes that are excited (nm > 0) 

are always initialized quasiclassically. In section III we will indicate which calculations 

use the quasiclassical prescription for ground-state modes and which ones use the Wigner 

prescription for ground-state modes. For completeness this subsection summarizes the 

harmonic quasiclassical method for initializing a vibrational mode m.  

 Note that when we label the vibrational modes m = 1, 2, ..., 3N − 6, we order the 

frequencies ωm in order of decreasing real value (if there is an imaginary frequency, it is 

ordered last, i.e., as mode M where M = 3N − 6 = 6) value. This convention is used for 

discussing vibrational coordinates and momenta. However, at the equilibrium geometry 

of ammonia in either the ground or excited electronic state, two modes are degenerate. 

When we need to take account of this, especially to compare to experiment, we label the 

modes k = 1, 2, 3, 4; and we label the frequencies νk and order them in the usual way by 

symmetry. Thus, at the equilibrium geometries, ω1 = ω2 = ν3 , ω3 = ν1, ω4 = ω5 = ν4, and 

ω6 = ν2.  

 It is convenient to use isoinertial mass-scaled Cartesian coordinates defined by  

 αγ
α

αγ µ
= qmq~  (4) 

where mα is the mass of atom α, µ is a constant mass (taken as 1 amu but no results 
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depend on this choice), α =1, 2, ..., N, and γ = x, y, or z. The conjugate momenta ˜ p αγ  have 

a reduced mass of µ. All frequencies are given in wave numbers. We will consider two 

kinds of trajectories, those initiated at the photo-excited reactant and those initiated at the 

transition state on the electronically excited surface. 

 The initial conditions for reactant-initiated trajectories in this study correspond to 

definite vibrational quantum numbers in the planar excited Ã state and are based on a 

normal mode analysis for that equilibrium structure. The normal mode analysis is 

performed at the equilibrium geometry to determine the frequencies ωm and normal mode 

eigenvectors Lm. Then the vibrational energy to be assigned to a given mode is calculated 

hamonically as  

 mmm hcn ω+=ε )( 2
1

,vib  (5) 

where c is the speed of light. The mass-scaled harmonic classical turning point is 

calculated as  

 
µ

ε
ωπ

= m

m
m c

t ,vib2
2

1  (6) 

and the initial mass-scaled coordinates are calculated as  

 ∑ ∆+=∆+=
−

=
αγαγαγαγαγαγ

63

1
,,,,,

~~~~ N

m
mmeme Lqqqq  (7) 

where αγ,mL  is the component of the normal vector of mode m corresponding to the γ  

coordinate of atom α , 

 ∆m,αγ = tm cos(2πξm ) (8) 

and ξm is a quasirandom number in the interval (0,1]. Next the harmonic kinetic energy in 

mode m is calculated by 

 2
,

2
,vib )~()2(

2
1

αγ∆ωπµ−ε= mmmm qcT  (9) 

and the components of the conjugate momenta are  

 ˜ p m,αγ = ± Lm,αγ 2µTm
m=1

3N−6

∑  (10) 

where the sign is determined by another quasirandom number.  

 For the doubly degenerate antisymmetric stretch, an excitation of one or more 
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quanta of vibration is modeled by half of the quanta in each degenerate mode. We have 

however checked that exciting the molecule with all the quanta of vibration in one 

degenerate mode and only ZPE in the other does not change the results in any significant 

way over a batch of trajectories.  

 The initial coordinates and momenta for the trajectories are obtained by unscaling 

the coordinates and momenta obtained in Eqs. (7) and (10), respectively, to obtain two 

new sets, αγq and αγp . The set of αγq  coordinates is then used to calculate the actual 

potential energy in the Ã state, )( αγqV , which is added to the sum of the kinetic energies 

of the 3N − 6 modes calculated by Eq. (9) and to the potential energy, minV , of the planar 

minimum of the Ã state to obtain the total energy relative to the equilibrium geometry of 

the ground electronic state ammonia, 

 min
63

1
tot )( VqVTE

N

m
m +∑ +=

−

=
αγ  (11)  

In some calculations, the coordinates and momenta obtained by the method just described 

are employed without further considerations as the initial conditions for the trajectory, 

which leads to a rather broad distribution of total energies due to the anharmonicity of the 

potential. This scheme is labeled energetically unrestrained (EU). In a second scheme, the 

total energy obtained in Eq. (11) is compared with the requested total energy for the 

trajectory, given by 

  

E tot (harmonic) = εvib,m
m=1

3N−6
∑ +Vmin

= (nk + dk /2)hcνk +Vmin
k=1

4
∑

 (12) 

 

where nk is the number of quanta in mode k, dk is the degeneracy of mode k (d1 = d2 = 1, 

d3 = d4 = 2), and νk is the harmonic frequency (in cm–1) in the Ã state. If the total energy 

calculated in Eq. (11) differs from that in Eq. (12) by more than ∆E = 0.1 eV, this set of 

initial conditions is discarded, and a new set quasirandom initial conditions is generated; 

the process is repeated until the ∆E ≤  0.1 eV condition is fulfilled. This scheme is labeled 

the ∆E = 0.1 eV scheme. The two schemes have different advantages and disadvantages. 
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Scheme 1 generates a more complete sampling of initial vibrational phases but a larger 

distribution of energies; scheme 2 generates a narrow (0.2 eV) distribution of energies, 

but at the cost of limiting the phase average. To ascertain whether the results are sensitive 

to the way that initial conditions are generated we employed both schemes. 

 For the potential surface used here, ν1 = 2777 cm−1 (symmetric stretch), ν2 = 978 

cm−1 (out-of-plane bend, i.e., umbrella mode), ν3 = 3041 cm−1 (antisymmetric stretch), 

and ν4 = 1330 cm−1 (in-plane bend). The umbrella frequency is scaled to a value of 892 

cm–1 in some of the calculations to better match the total energies used in the 

experiments. Note that all calculations in our previous study35 used the scaled frequency. 

In the following we will always indicate whether we used the frequency of the umbrella 

mode predicted by the potential surface (ν2 = 978 cm−1) or we used the scaled frequency 

(892 cm–1). 

 We also consider trajectories initiated at the transition state, which is a hypersurface 

passing through the saddle point for electronically adiabatic dissociation in the Ã state. 

The 3N – 7 bound modes of the transition state with the frequencies 3078, 3057, 1418, 

1108, and 570 cm–1 are sampled quasiclassically as discussed above, and the total energy 

is obtained as in Eq. (11). The energy along the reaction coordinate is then taken as 

 Erc = Evib(harmonic,reactant)− Evib(harmonic,saddle) − Eb (13) 

where Evib is the sum of the vibrational energies of all the bound modes (3N – 6 modes 

for the first term and 3N – 7 modes for the second term), and Eb  is the forward barrier 

height (0.22 eV). If Erc  is greater than zero, this energy is added along the reaction 

coordinate (with the momentum in the direction of the bimolecular products), otherwise 

no energy is added along the reaction coordinate. This procedure, involving the initiation 

of trajectories at the quantized transition state, may be considered to be a surface-hopping 

analog of the single-surface unified dynamical model57-59 presented previously. The 

unscaled reactant umbrella frequency of 978 cm−1 was employed in these calculations, 

and the EU scheme was employed. 

 

II.C. Potential energy surfaces and vibrational states 

 All dynamics calculations in the present article are carried out in the electronically 

adiabatic representation in which the adiabatic surfaces are coupled in the usual way60 by 
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the scalar product of the nonadiabatic coupling vector d and the velocity vector. The 

potential energies surfaces and couplings used here are the came as those used previously 

in the semiclassical dynamics study of Ref. 35. In particular, the potential energy surfaces 

used in the present study for the ground ( X~ ) and the first excited ( A~ ) electronic state are 

computed from an analytical fit to the diabatic potentials and scalar coupling that are 

described in Ref. 55. (An earlier version of the surfaces and couplings has also been 

published.61) The adiabatic surfaces are computed by diagonalizing the diabatic potential 

energy matrix, and vector nonadiabatic coupling vector d is computed analytically from 

the eigenvectors by a procedure explained elsewhere.62   

 A schematic diagram that includes the location of the stationary points and the 

reaction paths on the adiabatic electronic states and the lowest-energy conical intersection 

is shown in Figure 1. The zero-point energies of the global minima of the X~  and A~  

potential surfaces and of the NH2 product in its ground and first excited state are also 

indicated. 

 Vibrationally adiabatic curves were calculated for some of the vibrational states 

used in the present study and they are also depicted in Figure 1. The POLYRATE63 

program package was used for this purpose. In these calculations, a minimum-energy 

path (MEP) in isoinertial coordinates was constructed starting at the transition state and 

proceeding down to the reactant, i.e., to the minimum of the A~  potential. The progress 

variable along this path is denoted s with s = 0 at the saddle point, and s negative at the 

reactant. Then, 3N – 7 generalized normal mode vibrational frequencies were calculated 

from the projected Hessian58 (i.e. removing the reaction coordinate mode) at intervals of 

0.0025 Å along the reaction path. The frequencies were calculated in curvilinear 

coordinates. Four examples of the vibrationally adiabatic potential curves58 are shown in 

Figs. 1 and 2. (Figure 2 is a blow-up of the most significant region of configuration space 

of Fig. 1.) The vibrationally adiabatic curves shown indicate that if the system evolves 

vibrationally adiabatically from the minimum geometry, vibrationally adiabatic barriers 

will be encountered in all the vibrational states except the (1 0 0 0) state. The energies of 

other initial vibrational states studied here are also indicated in these two figures, and Fig. 

2 indicates the quanta of excitation in each mode for all the states. 
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II.D. Mode populations  

 If a quantum mechanical system in an uncoupled electronic state were initialized in 

a stationary state at an energy below the dissociation threshold, the energy would remain 

indefinitely in the modes in which it was placed. However, in a classical system, in the 

absence of using good action-angle variables (which are usually unavailable), 

anharmonicity transfers energy among the modes. Thus, one possible difficulty with the 

present quasiclassical calculations is that the energy initialized in ν1 or ν3 can dissipate to 

other modes in an unphysical way before dissociation occurs. It is hard to test this at the 

dissociation energy because at such an energy intermode coupling also occurs in the 

quantum mechanical world. Therefore, to gain as much insight as possible into how 

severe this problem is, we made tests at an energy just below the dissociation threshold. 

In addition to coupled-surface calculations (i.e., photodissociation calculations) we have 

thus performed single-surface simulations to follow the time evolution of vibrational 

quantum numbers for ammonia molecules trapped in their Ã excited electronic state. 

These simulations were performed for 1000 fs each. This is sufficiently long because the 

photodissociation dynamics of vibrationally excited ammonia lasts only about 250−300 fs 

for FSTU/SD simulations, or 350−400 fs for FSTU/SD+mTRAPZ simulations when the 

symmetric or antisymmetric stretches are excited with a single quantum. The mTRAPZ 

method was not used for the mode-coupling simulations described in this subsection.  

 The harmonic ZPE in the Ã state is about 0.5 eV above the electronic energy barrier 

for adiabatic dissociation. To prepare states that are classically bound, the total energy of 

the n1 = 1 and n3 = 1 states were scaled by a factor C, where C = 10−4, 0.01, 0.1, or 1/6. 

As the system evolves in time on a single surface, we can analyze for the time-dependent 

potential energy Vvib,k and kinetic energy Tk of each mode k at time t ≥ 0 that are given by  

 
2

0
,,

2
,vib )~)(~()2(

2
1

⎥
⎦

⎤
⎢
⎣

⎡
∑ −

µ
νπµ=

αγ
αγαγαγ

α
ekkk qtqLmcV  (14) 

where k =1, 2, ..., 4 and 

 
2

,2
1

⎥
⎦

⎤
⎢
⎣

⎡
∑

µ
µ=

αγ
αγαγ

α vLmT kk  (15) 

where vαγ is an unscaled velocity component. The effective vibrational quantum number 
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of mode k is then  

 
2
1)( ,vib −

ν
+

=
k

kk
k hc

VTC
n . (16) 

The meaning of the other symbols and subscripts used in Eqs. 14−16 is the same as in 

Eqs. 4−12, except that here the notation νk, k =1, 2, ..., 4, has been employed. We have 

adopted this k notation in the rest of the paper. 

 Note that Eqs. (14) and (15) involve the reactant normal modes, that is, normal 

modes computed at the Ã state equilibrium structure, not the generalized normal modes 

of subsection II.C. 

 

III. RESULTS  

III.A. Hydrogen-atom kinetic energy distributions  

 In the experiment by Hause et al.,14 the photodissociation of NH3(Ã) was found to 

be mainly electronically adiabatic when singly exciting the antisymmetric stretch (n3 = 1) 

and electronically nonadiabatic when singly exciting the symmetric stretch (n1 = 1). 

Figure 3 presents the results of FSTU/SD and FSTU/SD+mTRAPZ simulations as well 

as the experimental spectrum extracted from Ref. 14 for n1 = 1. The two theoretical 

models give the same low-energy tail and qualitative shape but the high-energy tail is 

larger when ZPE is not maintained. This result was expected since departing H atoms 

may take away more energy when ZPE is not maintained. Moreover, the broad energy 

range of the theoretical distributions is similar to experimental one. The FSTU/SD and 

FSTU/SD+mTRAPZ methods predict the near exclusive formation of the electronic 

ground state of the amino radical. 

 Figure 4 presents the experimental spectrum extracted from Ref. 14 as well as the 

FSTU/SD and FSTU/SD+mTRAPZ distributions obtained for n3 = 1. Again, the two 

theoretical methods are in agreement with each other and predict a broad range of 

translational energies. The theoretical models fail to reproduce the experimental 

spectrum, however, as the predicted photodissociation is again found to be electronically 

nonadiabatic, that is, to produce the electronic ground state of the amino radical. The rest 

of this article is primarily devoted to trying to understand this disagreement. 
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III.B. Choice of coupled-surface trajectory and initial conditions algorithms  

 Results for the CSDM and FSTU methods, along with the FSTU/SD and 

FSTU/SD+mTRAPZ results discussed above, are shown in Table 1. In these calculations, 

one or six quanta of excitation are added independently to the symmetric (n1 = 1, 6) or the 

antisymmetric stretch (n3 = 1, 6). Table 1 presents results obtained with both schemes for 

generating initial conditions, that is, the EU scheme and the eV1.0=∆E  scheme. In this 

table and following tables, P2 is the probability of the trajectories finishing on the excited 

potential energy surface. In surface hopping calculations, this is ordinarily taken as the 

prediction for the probability of the products being produced in the excited electronic 

state, and we will follow that convention, supported by the CSDM results in Table 1, 

which show that the probability of excitation in this more accurate method correlates 

more with P2, as usually assumed, than with the ensemble-averaged value of the final 

excited electronic state population, <|c2|2>. However, as an interpretive aid, the table also 

shows <|c2|2> for the FSTU simulations. This subsection discusses the results of Table 1 

for the case of one quantum of excitation. The results with multiple quanta of excitation 

are discussed in subsection III.C, and the last two columns of the table are also discussed 

in subsection III.C. 

 First consider P2 for calculations with one quantum of excitation. Table 1 shows 

that the FSTU method gives somewhat higher values of P2 than the FSTU/SD method. 

The CSDM method predicts slightly more formation of excited-state products, but the 

probability is still low. Next consider <|c2|2> , again for calculations with one quantum of 

excitation. These values are also reported in Table 1. The values of <|c2|2> for the various 

initial states for FSTU are 28–42%, which is significantly larger than P2. This 

inconsistency may arise for a variety of reasons, and it indicates a general failure of the 

FSTU method. Under some conditions, <|c2|2> may be regarded as a rough estimate of an 

upper limit on P2. Despite this breakdown of the semiclassical methods, for the (1 0 0 0) 

and (0 0 1 0) states there is no evidence of the experimental trend since the values of 

<|c2|2> upon excitation of the symmetric and antisymmetric stretches are still similar.  

 

III.C. Effect of large initial excitations  

 The self-consistency breakdown discussed above may be due to the fact that the 
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total energies of interest are near the energetic threshold for dissociation in the excited 

state. Although the relevant experiments are for one quantum of vibrational excitation in 

the symmetric stretch or one quantum of excitation in the antisymmetric stretch, we 

examined not only these levels of excitation but also higher levels in order to better 

understand the difference between exciting the symmetric and antisymmetric stretches.  

In particular, we performed calculations with a variety of initial conditions corresponding 

to more than one quantum of excitation. In the first set of additional calculations, we put 

three or six quanta (rather than one) in ν1 or ν3, or we put up to 16 quanta in the umbrella 

mode ν2. In the second set, we consider some of the combinations obtained by exciting 

the symmetric or antisymmetric stretch by one, two, four, or six quanta, and the umbrella 

mode by three, six, or twelve quanta. The first set of calculations is an average over 3000 

trajectories for each vibrational state, whereas 1000 trajectories were run for each of the 

states in the second set. The results are summarized in Table 2 for the FSTU method and 

some of the eV1.0=∆E  results are plotted in Figure 5. In addition we present a limited 

set of results for the FSTU/SD and FSTU/SD+mTRAPZ method in Table 1.  

 Consider first the results in Table 1 with six quanta in the symmetric or the 

antisymmetric stretch. One can see that for the eV1.0=∆E  scheme, the results show a 

consistent enhancement in the production of excited amino product (adiabatic 

dissociation) for the (0 0 6 0) state as compared with the (6 0 0 0) state. For the EU 

procedure, no such enhancement is observed. For a photodissociation problem such as 

NH3(Ã) → NH2 + H, it seems more appropriate to generate the initial conditions with the 

eV1.0=∆E  procedure, as the energy of the lasers is fixed in the experiments. Therefore, 

in the following we will emphasize these results and only present the EU results for 

comparison. The antisymmetric stretch enhancement for the states with six quanta in the 

stretches can be generalized by studying the initial states presented in Table 2. These 

results show that for the calculations with no more than one quantum in the stretches, the 

excited-state populations correlate with the total energy, and no significant state 

specificity is observed. However, for the calculations with two or more quanta in the 

stretches, a significant enhancement in excited-state products is observed when exciting 

the antisymmetric stretch as compared to exciting the symmetric stretch. In those cases, 

the state with the antisymmetric stretch excited has between a factor of 1.4 (i.e. compare 
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the (2 1 0 0) and (0 1 2 0) states) and a factor of 2.3 (i.e. compare the (4 3 0 0) and (0 3 4 

0) states) larger P2 than that with the symmetric stretch excited. 

 We have also studied the effect of generating the initial conditions for unexcited 

modes either with a quasiclassical (QC) sampling or a Wigner (W) sampling, for the (1 6 

0 0) and (0 6 1 0) vibrational states. The results are shown in Table 2. For both states, we 

observe that the production of electronically excited amino radical using the W sampling 

is larger if the eV1.0=∆E  scheme is employed, and it is smaller if the EU scheme is 

employed. The quantitative differences between the QC and the W sampling are 

moderate, about 15% with the EU scheme and about 35% with the eV1.0=∆E  scheme, 

and they should not affect the conclusions drawn on the photodissociation dynamics of 

NH3(Ã). 

 The last two columns of Tables 1 and 2 break P2 down into direct and indirect 

contributions. Direct contributions are defined as trajectories that dissociate into 

electronically excited amino radical without ever quenching to the ground electronic 

state, and indirect trajectories are those that de-excite at least once, but that eventually re-

excite and finalize in the excited state. This analysis shows that the direct and indirect 

contributions to electronically adiabatic dissociation are similar in magnitude. But when 

P2 is high, it is dominated by direct processes. This signals a change in the reaction 

mechanism when large excitations are considered. Although these initial states and total 

energies are far above those considered in the experiments, it is of interest to consider the 

origin of this selectivity and the change in the reaction mechanism with respect to the 

other quantized initial states. We will discuss this in detail in subsection III.F. 

 

III.D. Effect of the diabatic coupling  

 Since none of the coupled-surface trajectory methods predicts a high population of 

excited amino radicals for the excited states used in the experiments, one can wonder 

whether this might be due to a systematic error in the potential energy surfaces and their 

couplings. To study the effect of the coupling on our dynamical results we have 

compared FSTU/SD+mTRAPZ simulations to simulations where U12 is divided or 

multiplied by 5. The percentages of trajectories that dissociate after H hops (i.e., after 1 

hop, after 2 hops, etc...) are reported in Table 3. Table 4 presents information about the 
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average time <t↓> of the first hop (which is necessarily a downward hop), the percentage 

P↓ of trajectories that dissociate nonadiabatically without attempting any upward hop, and 

the average fraction F of attempted upward hops that are allowed. We note that the 

average time <t↓> at the first downward hop is of the order of 15 to 20 fs, which is much 

smaller than the average final time of the dynamics, which is ~370 fs for 

FSTU/SD+mTRAPZ simulations with the original U12.  

 Table 3 first reveals that increasing the diabatic coupling increases the propensity of 

the trajectories to perform several hops before dissociation. However the dissociation 

process remains completely nonadiabatic; no trajectory has an even number of hops when 

n1 = 1 or n3 = 1 if we maintain ZPE. For instance, when using the original U12, and n3 = 1, 

89.8% of trajectories only hop once, 7.0% three times, and 3.2% more than three times, 

but always an odd number of times. In this case, the average time <t↓> to the first 

downward hop is 18 fs, then the average time between the first downward hop and the 

first upward hop is <t↓↑> = 214 fs, whereas the average time between the first upward hop 

and the second downward hop is only <t↑↓> = 13 fs. This large difference between <t↓↑> 

and <t↑↓> is partly due to the fact that, in this case, the algorithm typically rejects 2.7 

upward frustrated hops before accepting one upward hop, whereas downward hops 

cannot be frustrated. Nevertheless, a pattern emerges, namely that although upward hops 

are infrequent, they do occur, but they are almost always followed closely in time by a 

downward hop.  

 Interestingly, when we maintain ZPE, if n1 or n3 equals 1, then all trajectories hop 

down at least once. Thus the only way to dissociate adiabatically would be to hop back 

up and stay up. Table 4 provides more information about upward hops. In particular, we 

see that the percentage of FSTU/SD+mTRAPZ trajectories with n3 = 1 that dissociate 

nonadiabatically without even attempting one upward hop is 71%, which clearly 

demonstrates that no algorithm for accepting upward hop attempts can yield more than 

29% of adiabatic dissociation under these conditions. This is in contrast to experimental 

results that show that most of the ammonia molecules dissociate adiabatically when n3 = 

1. When the diabatic coupling is increased, upward hops become more frequent, and only 

10% of trajectories that dissociate nonadiabatically never experience any upward hop. 

However, the fraction F of the allowed upward hops to the number of attempted upward 
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hops also decreases when the coupling increases, as shown in the third row of Table 4. 

More upward hops are thus attempted, but most of them are frustrated, and the 

dissociation remains nonadiabatic.  

 Statistics were also calculated for the last downward hop, in particular, the average 

time <tlast>, the average adiabatic energy gap <∆V>, the average maximum N–H distance 

<Rmax>, and the average nonplanarity angle <αnp>. Note that the last downward hop is 

often the first hop since a number of trajectories hop only once. The statistics for the last 

downward hop are collected in Table 5. The nonplanarity angle is defined in degrees as 

      ∑θ−=α
=

3

1
360

i
inp     (17) 

where iθ  are the three H–N–H angles. Note that for planar NH3 the sum of the three 

angles is 360 deg. Table 5 shows that most of the key aspects of the dynamics upon 

excitation of ν1 are similar to those upon excitation of ν3. For U12 unscaled we find <tlast> 

= 51 fs and <∆V> = 0.34 eV in both cases, and <Rmax> = 2.1 Å, which is close to the 

conical intersection that is located at an N–H distance of about 2 Å in C2v geometry.  

 When the diabatic coupling is decreased most of the last downward hops still occur 

close to the conical intersection but the average energy gap and the nonplanarity angle are 

much smaller; one expects then that the probability of nonadiabatic dissociation to the 

ground electronic state should be increased. In contrast, increasing the diabatic coupling 

increases the nonplanarity angle and the average energy gap; the adiabatic dissociation 

pathway should therefore be more favored. These trends are in agreement with 

information in Table 4 where a smaller diabatic coupling corresponds to a higher 

percentage P↓ of trajectories that dissociate nonadiabatically without attempting any hop 

back up, whereas a larger diabatic coupling corresponds to a much smaller percentage P↓. 

However, as previously pointed out, although the adiabatic pathway is more likely to be 

used for part of the trajectory when U12 increases, no molecule dissociates adiabatically 

in FSTU/SD+mTRAPZ calculations with n1 = 1 and n3 = 1. Also, note that <tlast> 

increases significantly when the diabatic coupling is increased; this might be related to 

the increase in the number of allowed hops (see Table 3).  
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III.E. Intermode couplings  

 One possible reason for the discrepancy between the mixed quantum/classical 

simulations and the experimental findings is the possibility of strong classical intermode 

couplings. Therefore, as mentioned in subsection II.D, we wanted to check whether 

energy placed in ν1 or ν3 is actually available for mode-specific dissociation or whether it 

dissipates before dissociation due to the fact that the vibrational mode energies are not 

conserved in a classical anharmonic system.  

 The symmetric and antisymmetric stretches are indeed close in energy (ν1 = 2777 

cm−1 and ν3 = 3041 cm−1) and classical modes close in energy may be more strongly 

coupled to each other during the dynamics than quantum modes would be. Then energy 

placed in ν3 could dissipate to other modes before the hopping region is reached. To 

clarify this issue we performed the single-surface test runs described in subsection II.D. If 

the energy stayed in the modes where it was initially placed (as it would in quantum 

mechanics because these test runs are below the dissociation threshold or as it would 

even in classical mechanics if the system were harmonic because we only consider 

systems with no initial rotational energy in this article), then the effective quantum 

numbers defined in Eq. (16) would be constant. Figures 6 and 7 present these effective 

quantum numbers for single-surface simulations in which the symmetric and 

antisymmetric stretches are excited with one quantum of vibration respectively, and when 

the initial vibrational energies are scaled by C as described in subsection II.D. (In these 

figures, as in all of section III, we use the spectroscopic quantum numbers nk with k = 

1−4, rather than the normal mode quantum numbers nm with m = 1−6. Thus, when a 

mode is doubly degenerate we have plotted the sum of the contributions of each 

degenerate mode. We therefore obtain four curves for each value of C instead of six.) 

 Figure 6 shows that, on average, the effective quantum numbers of the out-of-plane 

bend (umbrella mode) and of the antisymmetric stretches are maintained close to zero 

throughout the dynamics whereas some energy seems to flow from the symmetric mode 

to the in-plane bends. For these two modes, not only the average effective quantum 

number is somewhat different from the initial value but also the magnitude of oscillations 

is large (≈ 1). The same behavior is shown in Figure 7 where the antisymmetric stretch is 

excited. Although the intermode coupling is stronger when C = 1 (not shown because 
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dissociation would occur), the findings that (i) n3 oscillates around approximately the 

same value for the entire length of a 1000 fs simulation and (ii) there is little dissipation 

of ν3 energy into ν1 or vice versa shows that intermode couplings are not strong enough 

to eliminate the possibility of simulating state-specific behavior on the time scale of the 

photodissociation process. We therefore continue to search for the reason why theory 

disagrees with experiment for n3 = 1. 

 

III.F. Reaction mechanism 

 The 3N – 7 generalized normal mode vibrational frequencies derived from the 

projected Hessian along the electronically adiabatic minimum energy path for 

dissociation in the Ã state were computed using the POLYRATE63 program package, as 

explained in subsection II.C, and the results are shown in Figure 8. This figure shows the 

adiabatic correlations with changing characters of the normal mode vibrations along the 

reaction coordinate. The correlations between the normal modes are clearer if we 

compute 3N – 6 frequencies from the unprojected Hessian along the reaction path, even if 

this procedure is only strictly valid at stationary points. The mode frequencies calculated 

this way are presented in Figure 9. In this figure, the modes have been correlated 

diabatically, that is, by their character (i.e., symmetric stretch, antisymmetric bend, etc.). 

At the NH3(Ã) well (s = –0.3 Å), the four unique frequencies correspond to a doubly 

degenerate antisymmetric stretch, a symmetric stretch, a doubly degenerate 

antisymmetric (in-plane) bend, and a symmetric (out-of-plane) umbrella motion. As the 

system proceeds to the saddle point, the degeneracy of the antisymmetric stretch is 

broken; one antisymmetric stretch becomes the reaction coordinate (its frequency drops 

and moves out the imaginary axis, represented by negative numbers in Figure 9), and the 

other is largely conserved. The frequency associated with the symmetric stretch is also 

largely conserved, although the avoided crossing between the symmetric and 

antisymmetric stretches at s = –0.25 Å suggests these motions may be coupled as the 

system leaves the well. The antisymmetric stretch is also coupled with an antisymmetric 

bend around s = –0.2 Å. The second antisymmetric bend and the umbrella motion are 

uncoupled from the other vibrations.  

 Although the vibrational state energies in Figures 8 and 9 are for the adiabatic 
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electronically excited state, very similar results would be obtained for the diabatic 

electronically excited state because the adiabatic and diabatic representations are very 

similar for the regions of coordinate space shown in these figures. 

 Figures 8 and 9 suggest differences in the dissociation dynamics when exciting the 

symmetric or antisymmetric stretches. Excitation of the symmetric stretch does not 

release vibrational energy into reaction-coordinate motion for proceeding over the saddle 

point in the Ã state, whereas excitation of the antisymmetric stretch puts half the energy 

associated with the antisymmetric vibration into the reaction coordinate. As discussed 

above, we find no significant trends with respect to excitation of the symmetric and 

antisymmetric stretches in our multistate trajectory simulations at low energies. However, 

we find some selectivity with respect to exciting several quanta of antisymmetric stretch 

(i.e., at higher energies). Interestingly, the selectivity seems to increase with total energy 

for this type of vibrational state. There are several possibilities that could explain this 

behavior. First, the coupling between the symmetric and antisymmetric stretches near s = 

–0.25 Å might provide enough mixing to destroy the state-specific mechanism proposed 

above at low energies. In contrast, for higher vibrational excitation, the trajectories 

should be more vibrationally diabatic, thus conserving the character of the modes to a 

larger extent as they overcome the saddle point and reach the region of the conical 

intersection. Second, the classical trajectory simulations may not preserve the quantized 

motions as the system dissociates, although the results of subsection III.E suggest that 

these motions are largely quantized over the time scales of interest here. This non-

conservation should have a larger effect the smaller the number of quanta put into the 

stretches, as it is well known that the shape of probability distribution of the vibrational 

coordinate computed from vibrational wave functions tends to resemble that computed 

from classical vibrations at large vibrational excitation.64 

 To further explore the effect of the quantized vibrations along the Ã state minimum 

energy path, we initiated trajectories at the saddle point using quasiclassical initial 

conditions, as discussed in subsection II.B. We assume vibrationally diabatic motion, 

where trajectories with symmetric stretch excitation are given n1 quanta in the 3078 cm–1 

frequency motion at the saddle point, which has the character of a symmetric stretch. For 

ν2, the 1108 cm–1 frequency motion at the saddle point was excited with n2 quanta. For 
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the antisymmetric stretch, the results of the following two sets of runs were averaged: (a) 

n3 quanta were added to the 3057 cm–1 frequency motion at the saddle point, and (b) no 

excitations were made in the bound modes at the saddle point, and the excess energy 

defined by Eq. (13) was added along the reaction coordinate. We consider some of the 

initial states presented in Table 2. The results are summarized in Table 6. 

 For the vibrational states in Table 6, the probabilities for forming excited-state 

products are not very sensitive to whether the trajectories are initiated at the saddle point 

or the NH3(Ã) well, and no state specificity is observed in either case. This finding is in 

agreement to the general tendency observed for the calculations initiated in the minimum 

of the Ã electronic state when the EU scheme of generating initial conditions is used, as 

already noted for the states in Table 2. The mechanism implied above suggests that 

antisymmetric stretch excitation using schemes (a) and (b) leads to different dynamics, 

but we find that schemes (a) and (b) lead to similar excited-state populations. When the 

EU scheme is used, the probability for forming excited-state products is dependent on the 

total energy and is not dependent on the details of the preparation of the excited-state 

complex, irrespective of the region where the trajectories are initiated. One possible 

explanation of the energy-dependent increase in the production of excited amino for low 

vibrational excitations (for both the EU and ∆E = 0.1 eV schemes) could be offered by 

noting that, for these conditions, as discussed in more detail in subsection III.D, nearly 

every trajectory seems to pass near to a conical intersection after passing the saddle point. 

Especially at lower total energies, once the system is quenched by the conical 

intersection, an NH3( ˜ X ) complex that is often formed, and this complex can be fairly 

long lived. For this type of trajectories, it would be likely that the details of the initial 

state are lost as the system spends time as NH3( ˜ X ). Eventually NH3( ˜ X ) dissociates, and 

while it dissociates there is some probability that the system will attempt a transition to 

the excited electronic state. Because the energy of the excited-state products are close to 

the total energies considered here, the probability of successfully transitioning to the 

excited state would depend sensitively on total energy. 

 The reaction mechanism changes significantly when higher initial vibrational 

excitations are considered. Under those conditions, there are many trajectories that 

dissociate in the excited state with no hops between the potential surfaces. The most 
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interesting new aspect found at these higher total energies, when the eV1.0=∆E  scheme 

is used to generate the initial conditions, is selectivity for antisymmetric stretch 

excitations with respect to symmetric stretch excitations. As shown in Tables 1 and 2, 

initial states with 2 or more quanta in one of the stretching modes lead to an increased 

production of excited amino radicals when the antisymmetric stretch is excited. The 

enhancement factor varies between a factor of 1.4 for the (0 1 2 0) vs. the (2 1 0 0) state 

and a factor of 2.3 for the (0 3 4 0) vs. the (4 3 0 0) state (very close to the 2.2 factor 

found for the (0 0 6 0) vs. the (6 0 0 0) state). Comparing (0 3 4 0) vs. (4 3 0 0) and (0 0 6 

0) vs.  (6 0 0 0), which have comparable total energies, one can see that the effect of the 

umbrella excitation is to increase the total yield of excited amino radicals, but that the 

selectivity with respect to the antisymmetric stretch excitation remains essentially 

constant. Interestingly, essentially all of the observed increase in excited-state yield is 

associated with trajectories that do not hop at all, as evidenced by a comparison of dir
2P  

and indir
2P  in Table 2 for the pairs of states (2 1 0 0)−(0 1 2 0), (3 0 0 0)−(0 0 3 0), (4 3 0 

0)−(0 3 4 0), (6 0 0 0)−(0 0 6 0), and (6 12 0 0)−(0 12 6 0). Indeed, for the case of the (6 0 

0 0) and (0 0 6 0) states, there are almost 8 times more trajectories of the direct type in 

the (0 0 6 0) case than in the (6 0 0 0) case. The total energies of these initial states are 

8.96 and 8.76 eV, respectively. As observed in Table 2, for the state with the 

antisymmetric stretch excited, 14% of trajectories dissociate in the excited state, 

compared with 7% for the state with the symmetric stretch excited.  

 To take a better look at the reaction mechanism, we have performed an analysis of 

the turning points in the motion of the dissociating hydrogen atom during the trajectories. 

The trajectories that have no outer turning points of this motion are classified as non-

complex (they dissociate without a ‘rebound’ at longer N−H bond distances), and the rest 

are classified as complex. All trajectories are classified by the potential surface (ground 

or excited) to which they dissociate, and complex trajectories are further classified by the 

number of outer turning points. Trajectories that experience outer turning points only 

when in the ground state are said to form GS complexes; those that experience outer 

turning points only when in the excited state are said to form ES complexes; and those 

that experience outer turning points on both surfaces are said to form MS complexes. We 
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have chosen three representative pairs of initial vibrational states that have excited 

stretches: the pair of states (0 0 1 0)−(1 0 0 0) with only stretch excitation, and the pairs 

(0 1 2 0)−(2 1 0 0) and (0 3 4 0)−(4 3 0 0) that have simultaneous excitation in the 

stretches and in the umbrella mode. The results are presented in Table 7. Taking for 

instance the (1 0 0 0) initial state as representative for low-energy initial states, around 

20% of trajectories proceed through formation of a NH3( ˜ X ) complex, with lifetimes 

ranging between 200 fs and more than 1 ps, and then dissociate in the ground electronic 

state. Most of the remaining trajectories dissociate directly on the ground state after 

hopping at the conical intersection with lifetimes of 150–200 fs, with only a few 

dissociating in the excited state. If we analyze specifically the adiabatic trajectories, we 

see that more than half of them are complex, which is a significantly larger fraction than 

for the global average. This illustrates the role of complex trajectories in producing 

excited amino radicals for trajectories initiated in low-energy vibrational states. 

 Focusing now on the differences between the results for initial vibrational states 

with the antisymmetric stretch vs. symmetric stretch excited, Table 7 reveals important 

differences in the percentage of trajectories of each type. A large percentage of 

trajectories dissociating in the ground state are non-complex, but their number is always 

larger for excited antisymmetric stretch and it decreases by a large factor when the 

vibrational excitation increases. Trajectories that are complex are mostly short-lived (i.e., 

they have a relatively small number of outer turning points), and their number is always 

smaller for excited antisymmetric stretch. The tendency of the antisymmetric stretch to 

produce non-complex trajectories is much more marked for the trajectories that dissociate 

in the excited state. Thus, the (0 3 4 0) state originates about four times more non-

complex trajectories in the excited state than the (4 3 0 0) state. Note that non-complex 

trajectories in the excited state are direct trajectories, as one can check comparing the 

number of non-complex trajectories in Table 7 with the number of direct trajectories in 

Table 2. This means that if a complex (even a short-lived one) is formed in the excited 

state, trajectories will most likely hop down and dissociate in the ground state. This is 

borne out by comparing the numbers of excited-state complex trajectories that ultimately 

dissociate in the ground state with those that dissociate in the excited state. 

 We have also analyzed the trajectories for the (6 0 0 0) and (0 0 6 0) initial 
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vibrational states by taking the average of several quantities relevant to the dynamics. 

First, we have defined a region in configuration space where trajectories are most likely 

to experience a downward hop as that where about 2/3 of the downward hops occur, with 

about 1/6 at smaller N–H distances and 1/6 at larger N–H distances; we found that this 

region is characterized by N−H distances between about 1.9 Å and 2.2 Å. Then, for each 

trajectory, the nonplanarity angle is computed for the configuration within this region that 

has the minimum adiabatic energy gap. We also compute the instantaneous relative 

translational energy of the departing H atom (relative to the center of mass of the amino 

group) at this configuration. The nonplanarity angle and relative translational energy are 

also computed at the first downward hop of each trajectory. For the state with six quanta 

of excitation in the symmetric stretch (i.e. the (6 0 0 0) state), for direct adiabatic 

trajectories the average minimum energy gap is about 0.9 eV, the average nonplanarity 

angle at the minimum-gap geometries is about 3 deg, and the average instantaneous 

relative translational energy of the departing H atom at this configuration is about 1.5 eV. 

These values may be compared to their analogs at the first downward hop for indirect 

trajectories, which are about 0.3 eV, typically less than 1 deg (with much more dispersion 

than for the direct trajectories), and 1.5 eV, respectively. The results for six quanta of 

excitation in the antisymmetric stretch (i.e. the (0 0 6 0) state) are comparable for indirect 

trajectories but they are quite different for direct trajectories. For direct trajectories, the  

values of the average minimum energy gap, nonplanarity angle, and average H relative 

translational energy are about 0.7 eV, about 3 deg, and about 2.0 eV, respectively. For 

indirect trajectories, at the first downward hop these values are about 0.3 eV, typically 

less than 1 deg (again with much more dispersion than for the direct trajectories), and 1.5 

eV, respectively.  

 A comparison of the data obtained from the trajectories reveals that the minimum 

energy gaps are much larger for direct than for indirect trajectories, as expected, and also 

that direct trajectories manage to avoid hopping even though they have small 

nonplanarity angles of only 3 deg. The main difference between the dynamics of the       

(6 0 0 0) and (0 0 6 0) states is the much larger number of direct (and non-complex) 

trajectories for the second state, which has the antisymmetric stretch excited. For this 

state, direct trajectories have an average relative kinetic energy of the departing H atom 
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about 0.5 eV larger than at the downward hops for the indirect trajectories. For the state 

with the symmetric stretch excited, there is no significant difference between direct and 

indirect trajectories regarding this quantity. Therefore, we conclude that the reason for the 

enhanced production of excited amino radicals when the antisymmetric stretch is excited 

with several quanta is the high speed of the dissociating hydrogen atom as it crosses the 

region of conical intersection, due to the release of energy along the reaction coordinate 

that does not take place when the symmetric stretch is excited, as revealed by the 

vibrational energy level curves as a function of the reaction coordinate. 

 

IV. CONCLUDING REMARKS  

 We have performed a mixed quantum-classical study of the photodissociation 

dynamics of NH3(Ã) vibrationally excited in its symmetric and antisymmetric stretching 

modes. According to recent experiments, the symmetric stretch, the umbrella mode, and 

the two bends mainly lead to electronically nonadiabatic dissociation whereas the 

antisymmetric stretch mainly leads to electronically adiabatic dissociation. We find a 

mechanism for the antisymmetric stretch to promote electronically adiabatic 

photodissociation, namely that, in contrast to the symmetric stretch, the antisymmetric 

stretch correlates with a lower frequency at the saddle point and releasing energy into the 

reaction coordinate speeds up the system enough to fly past the funnel centered on the 

conical intersection fast enough for dissociation to occur in the electronically excited 

state. However, despite the use of an improved mean-field approach (the CSDM method) 

and three improved surface-hopping methods (the FSTU+mTRAPZ, FSTU/SD, and 

FSTU/SD+mTRAPZ methods), some of which maintain ZPE throughout the dynamics, 

the full dynamical calculations only succeed in reproducing the experimental results 

qualitatively for n1 = 1. The experimental mode specificity of the two types of stretches is 

not found in our simulations that employ the experimental quantized states and energies. 

We find selectivity only after significantly increasing the level of excitation in the stretch 

modes. Increasing or decreasing the diabatic coupling U12 does not improve the 

agreement with experiment. The effect of intermode couplings has also been investigated 

on single-surface simulations in the excited electronic state at energies below the 

dissociation threshold, and −to the extent that these tests are indicative of the higher-
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energy dynamics− this study indicates that these couplings may play a minor role in our 

difference from experiment.  

 It is disappointing that the present calculations do not reproduce the experimental 

mode specificity at the experimental energies. Further work is required to determine the 

origin of the discrepancy.  
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Table 1. Excited-state populations as a function of initial vibrational state.a For each method, 

results are ordered by increasing total energy.  

 Initial    Etot, EU  eV1.0=∆E  

Method conditionsa  n1 n2 n3 eV <|c2|2> 2P   <|c2|2> 2P  dir
2P  indir

2P  

FSTU/SD b 1 0 0 7.04 − 1.4  − 0.5 0.1 0.4 

 b 0 0 1 7.07 − 0.9  − 0.7 0.2 0.5 

 b 6 0 0 8.76 − 12.7  − 6.9 2.2 4.7 

 b 0 0 6 8.95 − 12.7  − 12.0 8.8 3.8 

FSTU/SD+mTRAPZ b 1 0 0 7.04 − 0.6  − 0.0 0.0 0.0 

 b 0 0 1 7.07 − 0.3  − 0.0 0.0 0.0 

 b 6 0 0 8.76 − 11.7  − 4.9 1.1 3.8 

 b 0 0 6 8.95 − 11.2  − 10.7 7.8 2.9 

FSTU c 1 0 0 7.04 28  0.6  25  0.5 0.0 0.5 

 c 0 0 1 7.07 29  1.0  26  0.5 0.0 0.5 

 c 6 0 0 8.76 40  16.9  35  6.6 0.6 6.0 

 c 0 0 6 8.95 42  17.0  40  14.4 9.2 5.2 

CSDM c 1 0 0 7.04 − 2.5  − 1.6 − − 

 c 0 0 1 7.07 − 2.7  − 1.4 − − 

aThis column indicates whether the initial conditions for the modes with nk = 0 were generated according to a 
quasiclassical (QC) or a Wigner (W) distribution and whether the umbrella mode frequency is taken as scaled or 
unscaled when computing initial conditions. 
bW; ν2 = 892 cm-1. 

cQC; ν2 = 978 cm-1. 
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Table 2. Excited-state populations obtained with the FSTU method as a function of initial 

vibrational state. Results are ordered by increasing total energy. 

Initial    Etot, EU  eV1.0=∆E  

conditionsa  n1 n2 n3 eV <|c2|2> 2P   <|c2|2> 2P  dir
2P  indir

2P  

b 0 0 0 6.70 28 0.0  28 0.1 0.0 0.1 
b 1 0 0 7.04 28 0.6  25 0.6 0.1 0.5 
b 0 0 1 7.07 29 1.0  26 0.7 0.2 0.5 
b 0 6 0 7.42 35 3.9  36 4.1 0.6 3.5 
c 2 1 0 7.50 36 4.4  33 2.8 0.3 2.5 
c 0 1 2 7.56 37 5.4  36 4.5 1.5 3.0 
d 1 6 0 7.71 40 6.8  40 9.8 3.4 6.4 
c 1 6 0 7.71 39 7.7  40 7.3 2.3 5.0 
b 3 0 0 7.73 32 5.9  29 2.3 0.3 2.0 
d 0 6 1 7.74 43 6.9  42 10.6 4.7 5.9 
c 0 6 1 7.74 41 8.6  40 7.9 2.7 5.2 
b 0 0 3 7.83 34 5.6  32 4.4 1.7 2.7 
b 0 11 0 8.03 39 11.0  44 19.5 10.0 9.5 
d 1 12 0 8.37 43 15.5  38 21   10.8 9.9 
d 0 12 1 8.40 42 14.0  43 22   10.6 11.4 
d 4 3 0 8.44 40 12.5  44 10.6 4.2 6.4 
d 0 3 4 8.54 45 18.0  48 24   17.2 6.8 
b 0 16 0 8.64 42 18.7  44 23   9.9 13.1 
b 6 0 0 8.76 40 16.9  35 6.6 1.2 5.4 
b 0 0 6 8.96 42 17.0  40 14.4 9.2 5.2 
d 6 12 0 10.09 45 27    47 31   18.9 12.1 
d 0 12 6 10.29 55 41    62 51   40   10.6 

aThis column indicates whether the initial conditions for the modes with nk = 0 were generated according to a 
quasiclassical (QC) or a Wigner (W) distribution and whether the umbrella mode frequency is taken as scaled 
or unscaled when computing initial conditions. 
bQC; ν2 = 978 cm-1. 

cQC; ν2 = 892 cm-1. 

dW; ν2 = 892 cm-1. 
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Table 3. Percentage of trajectories that dissociate after H hops for n1 = 1, n3 = 1, and for 

different values of the diabatic coupling.a  

    FSTU/SD+mTRAPZ   FSTU+mTRAPZ 

 U12/5  U12 5U12 U12  

H n1=1 n3=1 n1=1 n3=1 n1=1 n3=1    n1=1 n3=1 

1 98.1 97.7 90.2 89.8 80.2 80.4    88.8 89.1 

3 1.2 1.5 6.9 7.0 14.8 14.8    7.8 7.3 

5 0.2 0.3 2.2 2.0 3.3 3.3    2.2 2.5 

0,2,4,6 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 

≥ 7 0.4 0.5 0.7 1.2 1.6 1.5    1.2 1.1 
aAll calculations in this table employ a Wigner distribution for the modes with nk = 0. The umbrella mode 

frequency (ν2) is 892 cm-1; eV1.0=∆E . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

35

 
Table 4. Average time <t↓> of the first downward hop, percentage P↓ of trajectories that 

dissociate on the ground electronic state without attempting any upward hop, average 

fraction F of attempted upward hops that are allowed, and average final <|ci|2> 

probabilities for the two adiabatic electronic states, when n1 =1 or n3 = 1 for different 

values of the diabatic coupling.a  

    FSTU/SD+mTRAPZ     FSTU+mTRAPZ 

 U12/5  U12 5U12  U12  

 n1=1 n3=1 n1=1 n3=1 n1=1 n3=1     n1=1 n3=1 

<t↓> (fs) 14 14 19 18 24 21     19 18 

P↓ (%) 97.4 96.7 70.7 71.2 9.7 9.9     62.8 62.4 

F 0.40 0.38 0.15 0.16 0.04 0.04     0.006 0.008 

<|c2|2>           0.28 0.27 
aAll calculations in this table employ a Wigner distribution for the modes with nk = 0. The umbrella mode 

frequency (ν2) is 892 cm-1; eV1.0=∆E . 
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Table 5. Average time <tlast>, average adiabatic energy gap <∆V>, average maximum  

N–H distance <Rmax>, and average nonplanarity angle <αnp> at the last downward hop.a  

    FSTU/SD+mTRAPZ   FSTU+mTRAPZ 

 U12/5 U12 5U12       U12  

 n1=1 n3=1 n1=1 n3=1 n1=1 n3=1   n1=1 n3=1 

<tlast> (fs) 22 23 51 51 669 604   68 66 

<∆V> (eV) 0.12 0.14 0.34 0.34 0.62 0.62   0.34 0.34 

<Rmax> (Å) 2.00 1.99 2.10 2.11 2.09 2.09   2.11 2.11 

<αnp> (deg) 2.3 2.5 7.5 9.0 11.7 12.0   2.4 2.2 

aAll calculations in this table employ a Wigner distribution for the modes with nk = 0. The umbrella mode 

frequency (ν2) is 892 cm-1; eV1.0=∆E . 
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Table 6. Excited-state FSTU populations as a function of initial vibrational state for 

trajectories initiated at the Ã state saddle point. Results are ordered by increasing total 

energy.a  

n1 n2 n3 Etot, eV P2 

0 0 0 6.71 0.1 

0 0 1 7.08 0.3 

1 0 0 7.09 0.5 

0 6 0 7.54 5.0 

0 0 3 7.84 4.0 

3 0 0 7.85 4.4 

0 11 0 8.22 14.0 

0 16 0 8.91 19.5 

0 0 6 8.98 13.7 

6 0 0 8.99 16.5 

aAll calculations in this table employ a quasiclassical distribution for the modes with nk = 0. The umbrella 

mode frequency (ν2) is 978 cm-1, and the initial conditions are energetically unrestrained (EU, i.e., E∆  is 

unrestricted). 
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Table 7. Classification of trajectories by their number of outer turning points and the potential 

surface to which they dissociate, for three pairs of initial vibrational states. a  

 

Type of trajectory b  Notp (0010) (1000) (0120) (2100) (0340) (4300) 
 Trajectories that dissociate to the ground state 

Non-complex 0 64.6 58.9 39.7 32.0 25.5 21.7 
GS complexes 1-20 19.2 22.0 36.1 41.0 27.6 40.4 
 20-40 1.8 1.6 1.9 2.1 0.2 0.5 
 40-60 1.0 1.0 0.4 0.6 0.02 0.0 
 60-80 0.7 0.6 0.1 0.2 0.0 0.0 
 > 80 0.5 0.6 0.06 0.0 0.0 0.0 
ES complexes 1-2 2.1 2.8 1.2 1.9 3.4 3.1 
 2-4 0.02 0.06 0.0 0.02 0.2 0.2 
 > 4 0.02 0.02 0.0 0.0 0.08 0.03 
MS complexes 1-20 4.2 5.3 7.2 8.7 16.3 19.3 
 20-40 1.8 2.4 5.0 5.6 2.5 3.0 
 40-60 1.1 1.5 2.3 2.5 0.3 0.5 
 60-80 0.6 0.8 0.7 0.7 0.0 0.1 
 > 80 0.8 1.2 0.4 0.6 0.04 0.0 
        
 Trajectories that dissociate to the excited state 

Non-complex 0 0.2 0.08 1.8 0.6 17.5 4.1 
GS complexes 1-10 0.2 0.1 1.2 1.3 2.5 2.7 
 10-20 0.02 0.0 0.08 0.1 0.1 0.2 
 > 20 0.0 0.04 0.1 0.08 0.0 0.05 
ES complexes 1-2 0.06 0.06 0.2 0.1 0.8 0.8 
 2-4 0.0 0.02 0.2 0.04 0.2 0.3 
 > 4 0.02 0.02 0.02 0.04 0.1 0.1 
MS complexes 1-20 0.1 0.2 0.5 0.3 2.0 2.2 
 20-40 0.04 0.02 0.2 0.1 0.2 0.3 
 > 40 0.06 0.04 0.2 0.1 0.0 0.03 

a The (0010), (1000) calculations in this table are FSTU/SD calculations that employ a Wigner 

distribution for the modes with nk = 0. The (0120) and (2100) calculations employ FSTU and a 

quasiclassical distribution. The (0340) and (4300) calculations employ FSTU and a Wigner distribution. 

The umbrella mode frequency (ν2) is always 892 cm-1, and the initial conditions correspond to 

eV1.0=∆E .   

b  ‘GS’ stands for ground state, ‘ES’ stands for excited state, and ‘MS’ stands for mixed state (i.e. those 

trajectories that have outer turning points both in the ground and in the excited state). 
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FIG. 1: Energy as a function of the longest N–H bond distance for the two lowest adiabatic 

states of NH3 based on fitted adiabatic surfaces from Ref. 55. The three N–H distances 

are denoted as ri (i ∈{1,2,3}). The minimum of the A~  electronic state is planar with r1 = 

r2 = r3 = 1.039 Å (D3h symmetry). The saddle point is planar with r1 = 1.289 Å and r2 = r3 

= 1.040 Å (C2v symmetry), and the lowest-energy conical intersection is also planar. The 

minimum of the X~  state is tetrahedral with r1 = r2 = r3 = 1.016 Å. The zero of energy is 

the minimum of the ground electronic state. Reactant (i.e., NH3) as well as product (i.e., 

NH2) ZPEs are indicated. The vibrationally adiabatic curves for four sets of vibrational 

quantum numbers (see Figure 2 for labeled curves) are represented above the segment of 

the reaction path comprised between the minimum of the A~  electronic state and its 

saddle point. The energies of all the remaining vibrational levels studied in the present 

work are also indicated. Note that the diagram is only schematic (not to scale) between 1 

and 5 eV and beyond 2 Å to make relevant quantities more discernible. 
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FIG. 2: Blowup of a key portion of Figure 1 showing vibrationally adiabatic potential 

curves for the (0000), (1000), (0010), and (0600) states and energy levels for the 

remaining states studied in the present work. Vibrational quanta for ν1 and ν3 are 

indicated in bold to avoid confusion. The zero of energy is the minimum of the ground 

electronic state. 
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FIG. 3: (Color online) H kinetic energy distributions at the end of FSTU/SD and 

FSTU/SD+mTRAPZ simulations compared to experimental results of Hause et al.14 for 

n1 = 1. The maximum of the experimental distribution is normalized to 1, and the maxima 

of the theoretical distributions to 0.75 for ease of comparison. 
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FIG. 4: (Color online) H kinetic energy distributions at the end of FSTU/SD and 

FSTU/SD+mTRAPZ simulations compared to experimental results of Hause et al.14 for 

n3 = 1. The maximum of the experimental distribution is normalized to 1, and the maxima 

of the theoretical distributions to 0.75 for ease of comparison.  
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FIG. 5: (Color online) Probability of producing excited-state products as a function of 

total energy for n1 = n3 = n4 = 0 and n2 = 0, 6, 11, 16 (squares); n2 = n3 = n4 = 0 and n1 = 

0, 1, 3, 6 (rhombi); n1 = n2 = n4 = 0 and n3 = 0, 1, 3, 6 (triangles); n3 = n4 = 0 and n1 = 0, 

n2 = 0; n1 = 1, n2 = 6; n1 = 4, n2 = 3; n1 = 1, n2 = 12; and n1 = 6, n2 = 12 (circles); n1 = n4 = 

0 and n2 = 0, n3 = 0; n2 = 6, n3 = 1; n2 = 12, n3 = 1; n2 = 3, n3 = 4; and n2 = 12, n3 = 6 

(crosses). 
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FIG. 6: (Color online) Effective quantum number nk from single-surface calculations with 

n1 = 1, n2 = n3= n4 = 0, and C = 10−4, 0.01, 0.1, and 1/6.  
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FIG. 7: (Color online) Effective quantum number nk from single-surface calculations with 

n3 = 1, n1 = n2= n4 = 0, and C = 10−4, 0.01, 0.1, and 1/6.  
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FIG. 8: Generalized-normal-mode vibrational frequencies in the adiabatic electronically 

excited state along the reaction path connecting the NH3 well (s = –0.3 Å) to the saddle 

point (s = 0). The frequencies were computed with the reaction coordinate (taken as the 

minimum energy path in isoinertial coordinates downhill from the saddle point to the 

excited-state minimum) projected out. The curves reflect an adiabatic correlation of the 

vibrational modes. 
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FIG. 9: Vibrational frequencies in the adiabatic electronically excited state along the 

reaction path connecting the NH3 well (s = –0.3 Å) to the saddle point (s = 0). These 

frequencies were computed without projecting out the reaction coordinate; when a 

frequency becomes imaginary it is plotted as a negative number. The curves reflect an 

approximate diabatic correlation of the vibrational modes. 


