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Abstract
In this paper, we focus on one particular instance of the shape reconstruction problem, in which the
shape we wish to reconstruct is an orientable smooth submanifold of the Euclidean space. Assuming
we have as input a simplicial complex K that approximates the submanifold (such as the �ech
complex or the Rips complex), we recast the reconstruction problem as a ¸1-norm minimization
problem in which the optimization variable is a chain of K. Providing that K satisfies certain
reasonable conditions, we prove that the considered minimization problem has a unique solution
which triangulates the submanifold and coincides with the flat Delaunay complex introduced and
studied in a companion paper [3]. Since the objective is a weighted ¸1-norm and the contraints are
linear, the triangulation process can thus be implemented by linear programming.
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1 Introduction

In many practical situations, the shape of interest is only known through a finite set of data
points. Given these data points as input, it is then natural to try to construct a triangulation

of the shape, that is, a set of simplices whose union is homeomorphic to the shape. This
paper focuses on one particular instance of this problem, in which the shape we wish to
reconstruct is a smooth d-dimensional submanifold of the Euclidean space. We show that,
when the submanifold is orientable and under appropriate conditions, a triangulation of that
submanifold can be expressed as the solution of a weighted ¸1-norm minimization problem
under linear constraints. This formulation gives rise to new algorithms for the triangulation
of manifolds, in particular when the manifolds have large codimensions.

Variational formulation of Delaunay triangulation and generalizations. Our work is based
on the observation that when we consider a point cloud P in Rd, its Delaunay complex can
be expressed as the solution of a particular ¸p-norm minimization problem. This fact is best
explained by lifting the point set P vertically onto the paraboloid P ™ Rd+1 whose equation
is xd+1 =

q
d

i=1 x
2
i
. It is well-known that the Delaunay complex of P is isomorphic to the

boundary complex of the lower convex hull of the lifted points P̂ .
Starting from this equivalence, Chen has observed in [16] that the Delaunay complex of P

minimizes the ¸p-norm of the di�erence between two functions over all triangulations T of P .
The graph of the first function is the lifted triangulation T̂ and the graph of the second one is

© Dominique Attali and André Lieutier;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Dominique.Attali@grenoble-inp.fr
mailto:andre.lieutier@3ds.com
https://doi.org/10.4230/LIPIcs.SoCG.2022.8
https://arxiv.org/abs/2203.06008
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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the paraboloid P. This variational formulation has been successfully exploited in [1, 14, 17]
for the generation of Optimal Delaunay Triangulations. When p = 1, the ¸p-norm associated
to T is what we call in this paper the Delaunay energy of T and, can be interpreted as the
volume enclosed between the lifted triangulation T̂ and the paraboloid P.

Our contribution. While it seems di�cult to extend the lifting construction when points of
P sample a d-dimensional submanifold of RN , our main result is to show that nonetheless,
the induced variational formulation can still be transposed.

Consider a set of points P that sample a d-dimensional submanifold M. When searching
for a triangulation of M from P , it seems reasonable to restrict the search within a simplicial
complex K built from P . A first crucial ingredient in our work is to embed the triangulations
that one can build using simplices of K inside the vector space formed by simplicial d-cycles1

of K over the field R. In spirit, this is similar to what is done in the theory of minimal
surfaces, when oriented surfaces are considered as particular elements of a much larger set,
namely the space of currents [25], that enjoys the nice property of being a vector space.
Going back to the case of points in the Euclidean space, if one minimizes the Delaunay energy
in the larger set of simplicial chains with real coe�cients and under adequate boundary
constraints, one obtains a particular chain with coe�cients in {0, 1} whose simplices, roughly
speaking, do not “overlap”. The support of that chain, that is the set of simplices with
coe�cient 1, coincides with the Delaunay triangulation. The proof is quite direct and relies
on the geometric interpretation provided by the lifting construction [18, 31].

We show that when transposing this to the case of points P that sample a d-dimensional
submanifold M, minimizing the Delaunay energy provides indeed a triangulation of M. The
proof requires us to introduce a more elaborate construction, the Delloc complex of P , as a
tool to describe the solution. The d-simplices of that complex possess exactly the property
that we need for our analysis. In a companion paper [3] we show that the Delloc complex
indeed provides a triangulation of the manifold, assuming the set of sample points P to be
su�ciently dense, safe, and not too noisy. Incidently, the Delloc complex coincides with the
flat Delaunay complex introduced in our companion paper [3] and is akin to the tangential

Delaunay complex introduced and studied in [5, 6]. When the manifold is su�ciently densely
sampled by the data points, all three constructions are locally isomorphic to a (weighted)
Delaunay triangulation computed in a local tangent space to the manifold. Intuitively, this
indicates that the Delaunay energy should locally reach a minimum for all three constructions
and, therefore ought to be also a global minimum. Actually, turning this intuitive reasoning
into a correct proof turns out to be more tricky than it appears and is the main purpose of
the present paper. In particular, we need to globally compare the Delaunay energy of the
cycle carrying the Delloc complex with that of alternate d-cycles, and this requires us to
carefully distribute the Delaunay energy along barycentric coordinates (see Section 6).

Algorithms. Several authors, with computational topology or topological data analysis
motivations, have considered the computation of ¸1-minimum homology representative cycles,
[13, 9, 19, 10, 20], generally for integers or integers modulo p coe�cients. The celebrated
sparsity of ¸1-minima manifests itself in this context by the fact that the support of such
minima is sparse, in other words it is non-zero only on a small subset of simplices of K.

Note that an alternative algorithm to the one proposed in this paper could be to compute a
triangulation of M by returning such a minimal sparse representative. Indeed, when the data
points sample su�ciently densely and accurately the manifold compared to the reach of the

1 Or relative d-cycles when the considered domain has a boundary.
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manifold, one could – in theory – take either the �ech complex or the Vietoris-Rips complex
as the complex K, since it is known that by choosing the scale parameter of these complexes
carefully, they are guaranteed to have the same homotopy type as M [12, 11, 4, 29, 24].
Recall that, when M is orientable and connected, its d-homology group with real coe�cients
is one-dimensional, and a normalized generator of it is called the manifold fundamental

class. Hence, when K and M are homotopy equivalent, the d-homology group of K is also
one-dimensional. It follows that extracting any non-boundary cycle of K (using standard
linear algebra operations on the boundary operators ˆd and ˆd+1 of K) provides a d-cycle “0
which is, up to a multiplicative constant, a representative of a generator of the fundamental
class of M. An alternate algorithm could then search, among chains homologous to “0,
for the one with the minimal Delaunay energy. The solution of the corresponding linear
optimization problem would then be a chain which carries the Delloc complex. While elegant
in theory, the size required for the (d + 1)-skeleton of the �ech or Vietoris-Rips complex may
be prohibitive in practice.

Instead, we describe a procedure that only requires the milder condition on K to be
a simplicial complex large enough to contain the Delloc complex, at the cost of adding a
certain form of normalization constraint. For the purpose of the proof, it is convenient to first
consider a rather artificial problem, where, besides the sample P , the manifold M is known.
In the full version [2], we show how to turn this problem into a more realistic one that takes
as input only the sample of the unknown manifold, and is correct assuming that reasonable
sampling conditions hold. While we do not yet explore practical e�cient algorithms in this
paper, the minimization of a ¸1-norm under linear constraints in Rn, where n is the number of
d-simplices in the considered simplicial complex K, can be turned into a linear optimization
problem in the standard form through slack variables, and can be addressed by standard
linear programming techniques such as the simplex algorithm.

The missing proofs may be found in the full version [2].

2 Preliminaries

In this section, we review the necessary background and explain some of our terms.

2.1 Subsets and submanifolds
Given a subset A ™ RN , the a�ne space spanned by A is denoted by a� A and the convex
hull of A by conv A. The medial axis of A, denoted as axis(A), is the set of points in RN that
have at least two closest points in A. By definition, the projection map fiA : RN

\axis(A) æ A

associates to each point x its unique closest point in A. The reach of A is the infimum
of distances between A and its medial axis, and is denoted as reach A. By definition, the
projection map fiA is well-defined on every subset of RN that does not intersect the medial
axis of A. In particular, recalling that the r-tubular neighborhood of A is the set of points
A

ür = {x œ RN
| d(x, A) Æ r}, the projection map fiA is well-defined on every r-tubular

neighborhood of A with r < reach A. We denote the ball centered at x œ RN and with radius
fl œ R by B(x, fl). For short, we say that a subset ‡ ™ RN is fl-small if it can be enclosed in
a ball of radius fl.

Throughout the paper, M designates a compact connected orientable C
2

d-dimensional
submanifold of RN for d < N . For any point m œ M, the tangent plane to m at M is
denoted as TmM. Because M is C

2 and therefore C
1,1, the reach of M is positive [23]. We

let R be a fixed finite constant such that 0 < R Æ reach M.

SoCG 2022



8:4 Delaunay-Like Triangulation of Submanifolds by Minimization

2.2 Simplicial complexes
In this section, we review some background notation on simplicial complexes [27]. We also
introduce the concept of faithful reconstruction which encapsulates what we mean by a
“desirable” approximation of a manifold.

All simplices and simplicial complexes that we consider in the paper are abstract. Each
abstract simplex ‡ ™ RN is naturally associated to a geometric simplex defined as conv ‡.
The dimension of conv ‡ is the dimension of the a�ne space a� ‡, and cannot be larger than
the dimension of the abstract simplex ‡. When the dimension of the geometric simplex conv ‡

coincides with that of the abstract simplex ‡, we say that ‡ is non-degenerate. Equivalently,
the vertices of ‡ form an a�nely independent set of points. The star of x œ RN in a simplicial
complex K is St(x, K) = {‡ œ K | x œ conv ‡}.

Given a set of simplices � with vertices in RN (not necessarily forming a simplicial
complex), we let �[d] designate the d-simplices of �. We define the shadow of � as the subset
of RN covered by the relative interior of the geometric simplices associated to the abstract
simplices in �, |�| =

t
‡œ� relint(conv ‡). We shall say that � is geometrically realized (or

embedded) if (1) dim(‡) = dim(a� ‡) for all ‡ œ �, and (2) conv(– fl —) = conv – fl conv —

for all –, — œ �.

I Definition 1 (Faithful reconstruction). Consider a subset A ™ RN
whose reach is positive,

and a simplicial complex K with a vertex set in RN
. We say that K reconstructs A faithfully

(or is a faithful reconstruction of A) if the following three conditions hold:

Embedding: K is geometrically realized;

Closeness: |K| is contained in the r-tubular neighborhood of A for some 0 Æ r < reach A;

Homeomorphism: The restriction of fiA : RN
\ axis(A) æ A to |K| is a homeomorphism.

2.3 Height, circumsphere and smallest enclosing ball
The height of a simplex ‡ is height(‡) = minvœ‡ d(v, a�(‡ \{v})). The height of ‡ vanishes if
and only if ‡ is degenerate. If ‡ is non-degenerate, then, letting d = dim ‡ = dim a� ‡, there
exists a unique (d ≠ 1)-sphere that circumscribes ‡ and therefore at least one (N ≠ 1)-sphere
that circumscribes ‡. Hence, if ‡ is non-degenerate, it makes sense to define S(‡) as the
smallest (N ≠ 1)-sphere that circumscribes ‡. Let Z(‡) and R(‡) denote the center and
radius of S(‡), respectively. Let c‡ and r‡ denote the center and radius of the smallest N -ball
enclosing ‡, respectively. Clearly, r‡ Æ R(‡) and both c‡ and Z(‡) belong to a� ‡. The
intersection S(‡) fl a� ‡ is a (d ≠ 1)-sphere which is the unique (d ≠ 1)-sphere circumscribing
‡ in a� ‡.

2.4 Delaunay complexes
Consider a finite point set Q ™ RN . We say that ‡ ™ Q is a Delaunay simplex of Q if there
exists an (N ≠ 1)-sphere S that circumscribes ‡ and such that no points of Q belong to the
open ball whose boundary is S. The set of Delaunay simplices form a simplicial complex
called the Delaunay complex of Q and denoted as Del(Q).

I Definition 2 (General position). Let d = dim(a� Q). We say that Q ™ RN
is in general

position if no d + 2 points of Q lie on a common (d ≠ 1)-dimensional sphere.

I Lemma 3. When Q is in general position, Del(Q) is geometrically realized.

Let us recall a famous result which says that building a Delaunay complex in RN is
topologically equivalent to building a lower convex hull in RN+1. For simplicity, we shall
identify each point x œ RN with a point (x, 0) in RN+1. Consider the paraboloid P ™ RN+1
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defined as the graph of the function Î · Î
2 : RN

æ R, x ‘æ ÎxÎ
2, where Î · Î designates

the Euclidean norm. For each point x œ RN , its vertical projection onto P is the point
x̂ = (x, ÎxÎ

2) œ RN+1, which we call the lifted image of x. Similarly, the lifted image of
Q ™ RN is Q̂ = {q̂ | q œ Q}. Recall that the lower convex hull of Q̂ is the portion of conv Q̂

visible to a viewer standing at xd+1 = ≠Œ. A classical result says that ‡ is a Delaunay
simplex of Q if and only if conv ‡̂ is contained in the lower convex hull of Q̂ [22].

2.5 Delaunay energy for triangulations
We recall that a triangulation T of Q designates a simplicial complex with vertex set Q

which is geometrically realized and whose shadow covers conv Q. It is well-known that
the Delaunay complex of Q optimizes many functionals over the set of triangulations of
Q [8, 30, 28], one of them being the Delaunay energy that we shall now define [15]. Let
d = dim(a� Q). Given a triangulation T of Q, the Delaunay energy Edel(T ) of T is defined as
the (d + 1)-volume between the d-manifold |T̂ | =

t
‡œT

conv ‡̂ and the paraboloid P. Let us
derive an expression for this (d+1)-volume. Consider a point x œ conv Q. By construction, x

belongs to at least one geometric d-simplex conv ‡ for some ‡ œ T . Erect an infinite vertical
half-line going up from x. This half-line intersects the paraboloid P at point x̂ and the lifted
geometric d-simplex conv ‡̂ at point x

ú

‡
. We have

Edel(T ) =
ÿ

‡

⁄

xœconv ‡

Îx̂ ≠ x
ú

‡
Î dx.

I Theorem 4 (Delaunay complex by a variational approach). When Q is in general position,

the triangulation of Q that minimizes the Delaunay energy is unique and equals Del(Q).

Theorem 4 is a direct consequence of the lifting construction [28, 16].

2.6 Delaunay weight
To each non-degenerate d-dimensional abstract simplex – œ RN we assign a non-negative real
number that we call the Delaunay weight of –. The reasons for this will become clear shortly.
Let – ™ RN be a non-degenerate abstract simplex. We recall that the power distance of
point x œ RN from S(–) is Power–(x) = Îx ≠ Z(–)Î2

≠ R(–)2.

I Definition 5 (Delaunay weight). The Delaunay weight of a non-degenerate simplex – is:

Ê(–) = ≠

⁄

xœconv –

Power–(x) dx.

Easy computations show that Power–(x) = ≠Îx̂ ≠ x
ı

–
Î; see for instance [21]. Hence, if

d = dim(–), we see that Ê(–) represents the (d + 1)-volume between the lifted geometric
simplex conv ‡̂ and the paraboloid P. Therefore the Delaunay energy can be expressed
as Edel(T ) =

q
–

Ê(–), where – ranges over all d-simplices of T . Below, we give a closed
expression for the Delaunay weight due to Chen and Holst in [14]. Writing vol(–) for the
d-dimensional volume of conv –, we have:

I Lemma 6 ([14]). The weight of the non-degenerate d-simplex – = {a0, . . . , ad} is

Ê(–) = 1
(d + 1)(d + 2) vol(–)

S

U
ÿ

0Æi<jÆd

Îai ≠ ajÎ
2

T

V .

SoCG 2022
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The expression of the Delaunay weight given in Lemma 6 shows that two simplices that are
isometric have the same Delaunay weight. Hence, a Delaunay energy can be straightforwardly
associated to any “soup” � of d-simplices living in RN by setting E(�) =

q
‡œ� Ê(‡). It is

then tempting to ask what would happen if one minimizes this energy when the vertices of �
sample a d-manifold.

2.7 Chains and weighted norms
In this section, we recall some standard notation concerning chains. Chains play an important
role in this work as they provide a tool to embed the discrete set of candidate solutions
(faithful reconstructions of M) into a larger continuous space. Consider an abstract simplicial
complex K and assume that each simplex ‡ in K is given an arbitrary orientation. A d-chain

of K with coe�cients in R is a formal sum “ =
q

‡
“(‡)‡, where ‡ ranges over all d-simplices

of K and “(‡) œ R is the value (or the coordinate) assigned to the oriented d-simplex ‡. The
set of such d-chains is a vector space denoted by Cd(K,R). Recall that the ¸1-norm of “

is defined by Î“Î1 =
q

‡
|“(‡)|. Let W be a weight function which assigns a non-negative

weight W (‡) to each d-simplex ‡ of K. The W -weighted ¸1-norm of “ is expressed as
Î“Î1,W =

q
‡

W (‡)|“(‡)|. We shall say that a chain “ is carried by a subcomplex D of K if
“ has value 0 on every simplex that is not in D. The support of “ is the set of simplices on
which “ has a non-zero value. It is denoted by Supp “.

3 Delloc complex

Given a finite set of points P in RN , a dimension d, and a scale parameter fl, we introduce
a construction which we call the d-dimensional Delloc complex of P at scale fl. First, we
define the property for a simplex to be delloc.

I Definition 7 (Delloc complex). We say that a simplex ‡ is delloc in P at scale fl if

‡ œ Del(fia� ‡(P fl B(c‡, fl))). The d-dimensional Delloc complex of P at scale fl is the set

of d-simplices that are delloc in P at scale fl together with all their faces, and is denoted by

Dellocd(P, fl).

We now state a theorem which establishes conditions under which the Delloc complex is
a faithful reconstruction of M. The theorem can be seen as a corollary of the main theorem
that we establish in the companion paper [3]. We need some notations and definitions.

I Definition 8 (Dense, accurate, and separated). We say that P is an Á-dense sample of M if

for every point m œ M, there is a point p œ P with Îp≠mÎ Æ Á or, equivalently, if M ™ P
üÁ

.

We say that P is a ”-accurate sample of M if for every point p œ P , there is a point m œ M

with Îp ≠ mÎ Æ ” or, equivalently, if P ™ M
ü”

. Let separation(P ) = minp”=qœP Îp ≠ qÎ.

We stress that our definition of a protected simplex di�ers slightly from the one in [7, 6].

I Definition 9 (Protection). We say that a non-degenerate simplex ‡ ™ RN
is ’-protected

with respect to Q ™ RN
if for all q œ Q \ ‡, we have d(q, S(‡)) > ’.

Let H(‡) = {TmM | m œ fiM(conv ‡)} fi {a� ‡}, and �(‡) = maxH0,H1œH(‡) \(H0, H1).
To the pair (P, fl) we now associate three quantities that describe the quality of P at scale fl:

height(P, fl) = min‡ height(‡), where the minimum is over all fl-small d-simplices ‡ ™ P ;
�(P, fl) = max‡ �(‡), where ‡ ranges over all fl-small d-simplices of P ;
protection(P, fl) = min‡ minq d(q, S(‡)), where the minima are over all fl-small d-simplices
‡ ™ P and all points q œ fia� ‡(P fl B(c‡, fl)) \ ‡.



D. Attali and A. Lieutier 8:7

I Theorem 10 (Faithful reconstruction by a geometric aproach). Let Á, ”, fl, ◊ Ø 0 and set

A = 4”◊ + 4fl◊
2
. Assume that ◊ Æ

fi

6 , ” Æ Á and 16Á Æ fl <
R

4 . Suppose that P is a ”-accurate

Á-dense sample of M that satisfies the following safety conditions:

1. �(P, fl) Æ ◊ ≠ 2 arcsin
1

fl+”

R

2
;

2. separation(P ) > 2A + 6” + 2fl
2

R
;

3. height(P, fl) > 0 and protection(P, 3fl) > 2A

1
1 + 4dÁ

height(P,fl)

2
.

Then D = Dellocd(P, fl) enjoys the following properties:

Faithful reconstruction: D is a faithful reconstruction of M;

Circumradii: For all d-simplices ‡ œ D, we have that R(‡) Æ Á;

Local behaviour: For all x œ |D|, fiTxM(St(x, D)) is geometrically realized.

Incidentally, under the assumption of Theorem 10, Dellocd(P, fl) coincides FlatDelM(P, fl),
the complex introduced and studied in the companion paper [3]. Since all the results in this
paper are based on the delloc property, we find it more enlightening to formulate the results
of this paper using the Delloc complex. We recall that the safety conditions can be met in
practice by assuming P to be a sample of M su�ciently dense and su�ciently accurate, and
then perturbing the point set P as explained in the companion paper [3].

I Remark 11. It is easy to see that if 2R(‡) Æ fl, then a delloc simplex ‡ in P at scale fl is
also a Gabriel simplex of P , by which we mean that its smallest circumsphere S(‡) does not
enclose any point of P in its interior. In particular, if 2R(‡) Æ fl, the delloc simplex ‡ is a
Delaunay simplex of P . Hence, under the assumptions of Theorem 10, we have the inclusion
Dellocd(P, fl) ™ Del(P ).

4 Statement of main result

In this section, we state our main result. Hereafter, we suppose that K is a simplicial complex
whose vertices are the points of P .

Orienting and signing. We also assume that M together with all d-simplices of K have
received an (arbitrary) orientation. For each d-simplex – œ K such that �(–) <

fi

2 , we define
the sign of – with respect to M as follows:

sign
M

(–) =
I

1 if the orientation of – is consistent with that of M,
≠1 otherwise.

We refer the reader to the full version [2] for a formal definition of consistency and more
details. We associate to any subcomplex D ™ K the d-chain “D of K whose coordinates are:

“D(–) =
I

sign
M

(–) if – œ D
[d],

0 otherwise.

I Lemma 12. If D is a faithful reconstruction of M and, for all x œ |D|, fiTxM(St(x, D)) is

geometrically realized, then “D is a cycle. In particular, this is true when D = Dellocd(P, fl)
under the assumptions of Theorem 10.

SoCG 2022



8:8 Delaunay-Like Triangulation of Submanifolds by Minimization

Least ¸1-norm problem. We define the Delaunay energy of the chain “ œ Cd(K,R) to be
its Ê-weighted ¸1-norm:

Edel(“) = Î“Î1,Ê =
ÿ

–

Ê(–) · |“(–)| =
ÿ

–

3⁄

xœconv –

≠ Power–(x) dx

4
· |“(–)|, (1)

where Ê is the Delaunay weight function defined in Section 2 and – ranges over all d-simplices
of K. Given a d-manifold A, a point a œ A, a set of simplices � ™ K and a d-chain “ of K,
we also introduce the real number:

loada,A,�(“) =
ÿ

‡œ�[d]

“(‡) sign
A

(‡)1fiA(conv ‡)(a)

and call it the load of “ on A at a restricted to �. Letting m0 be a generic2 point on M, we
are interested in the following optimization problem over the set of chains in Cd(K,R):

minimize
“

Edel(“)

subject to ˆ“ = 0, (ı)
loadm0,M,K(“) = 1

Problem (ı) is a convex optimization problem and as such is solvable by linear pro-
gramming. More precisely, it is a least-norm problem whose constraint functions ˆ and
loadm0,M,K are clearly linear. The first constraint ˆ“ = 0 expresses the fact that we are
searching for d-cycles. The second constraint loadm0,M,K(“) = 1 can be thought of as a kind
of normalization of “. It forbids the zero chain to belong to the feasible set and we shall see
that, under the assumptions of our main theorem, it forces the solution to take its coordinate
values in {0, +1, ≠1}.

In Problem (ı), besides the simplicial complex K that one can build from P , the knowledge
of the manifold M seems to be required as well for expressing the normalization constraint.
What we call a realistic algorithm is an algorithm that takes only the point set P as input. In
the full version [2], we explain how to transform Problem (ı) into an equivalent problem that
does not refer to M anymore, thus providing a realistic algorithm. Roughly, we replace the
constraint loadm0,M,K(“) = 1 by a constraint of the form loadp0,�,�(“) = 1, where p0 œ P ,
� is a d-flat that “approximates” M near p0 and � are simplices of K “close” to p0.

Main theorem. In our main theorem (see below), there is a constant �(�d) that depends
only upon the dimension d and whose definition is given in the proof of Lemma 20.

I Theorem 13 (Faithful reconstruction by a variational approach). Let Á, ”, fl and ◊ be

non-negative real-numbers such that ◊ Æ
fi

6 , ” Æ Á and 16Á Æ fl <
R

4 . Set

J = (R + fl)d

(R ≠ fl)d (cos ◊)min{d,N≠d}
≠ 1 and A = 4”◊ + 4fl◊

2
.

Let ’ = protection(P, 3fl) and suppose that P is a ”-accurate Á-dense sample of M that

satisfies the following safety conditions:

2 Generic in the sense that it is not in the projection on M of the convex hull of any (d ≠ 1)-simplex of K.
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1. �(P, fl) Æ ◊ ≠ 2 arcsin
1

fl+”

R

2
.

2. separation(P ) > 2A + 6” + 3fl
2

R
;

3. height(P, fl) > 0 and ’ > 2A

1
1 + 4dÁ

height(P,fl)

2
;

4. ’
2 + ’ separation(P ) > 10fl sin ◊(Á + fl sin ◊);

5. Jfl
2

< (1 + J)≠1 (d+2)(d≠1)!
4

!
’

2 + ’ separation(P )
"

�(�d).

Suppose that Dellocd(P, fl) ™ K and that the d-simplices of K are fl-small. Then Problem (ı)

has a unique solution which is “Dellocd(P,fl). The support of that solution together with all its

faces coincides with Dellocd(P, fl) and is a faithful reconstruction of M.

One may ask about the feasability of realizing the assumptions of Theorem 13. While
assuming the sample to be Á-dense and ”-accurate seems realistic enough (perhaps after
filtering outliers), the safety conditions seem less likely to be satisfied by natural data. In the
full version [2], we show how to apply Moser Tardos Algorithm ([26] and [6, Section 5.3.4])
as a perturbation scheme to enforce the safety conditions of Theorem 13.

Choosing the simplicial complex K. Recall that the �ech complex of P at scale fl, denoted
as C(P, fl), is the set of simplices of P that are fl-small. The Rips complex of P at scale
fl, denoted as R(P, fl), is a more easily-computed version which consists of all simplices of
P with diameter at most 2fl. We stress that our main theorem applies to any simplicial
complex K such that Dellocd(P, fl) ™ K ™ C(P, fl). Since C(P, r) ™ R(P, r) ™ C(P,

Ô
2r)

and Dellocd(P, fl) ™ C(P, Á), it applies to any K = R(P, r) with Á Æ r Æ
fl

Ô
2 . This choice

of K is well-suited for applications in high dimensional spaces. Observe that under the
assumptions of Theorem 13, Dellocd(P, fl) ™ Del(P ) fl C(P, Á) (see Remark 11) and choosing
K = Del(P ) fl C(P, r) for any Á Æ r Æ fl may then be more suited for applications in low
dimensional spaces.

5 Technical lemma

The proof of our main theorem relies on a technical lemma which we now state and prove.

I Lemma 14. Let D ™ RN
be a d-manifold (with or without boundary) and K a simplicial

complex with vertices in RN
. Assume that there is a map Ï : |K| æ D. Suppose that for each

d-simplex – œ K, we have two positive weights W (–) Ø Wmin(–) and that there exists a map

f : D æ R such that Wmin(–) =
s

Ï(conv –) f . Consider the d-chain “min on K defined by

“min(–) =
I

1 if Wmin(–) = W (–),
0 otherwise.

Suppose that
q

–œK[d] “min(–)1Ï(conv –)(x) = 1, for almost all x œ D. Then the ¸1-like norm

Î“Î1,W attains its minimum over all d-chains “ such that

ÿ

–œK[d]

“(–)1Ï(conv –)(x) = 1, for almost all x œ D (2)

if and only if “ = “min.

SoCG 2022
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Proof. We write –̃ = Ï(conv –) throughout the proof for a shorter notation. We prove the
lemma by showing that for all d-chains “ on K that satisfy constraint (2), we have:

Î“Î1,W Ø Î“Î1,Wmin Ø

⁄

D

f = Î“minÎ1,Wmin = Î“minÎ1,W , (3)

with the first inequality being an equality if and only if “ = “min. Clearly, Î“Î1,W Ø Î“Î1,Wmin

because W (–) Ø Wmin(–). To obtain the second inequality, recall that we have assumedq
–

“(–)1–̃(x) = 1 almost everywhere in D. We use this to write that:

Î“Î1,Wmin Ø

ÿ

–

“(–)
⁄

–̃

f =
ÿ

–

“(–)
⁄

D

f1–̃ =
⁄

D

f

ÿ

–

“(–)1–̃ =
⁄

D

f, (4)

where sums are over all d-simplices – in K. Setting “ = “min in (4), we observe that the
inequality in (4) becomes an equality because none of the coe�cients of “min are negative
by construction. It follows that

s
D

f = Î“minÎ1,Wmin . Finally, Î“minÎ1,Wmin = Î“minÎ1,W

because “min has been defined so that for all simplices – in its support, Wmin(–) = W (–).
We have thus established (3). Suppose now that “ ”= “min and let us prove that Î“Î1,W >

Î“Î1,Wmin , or equivalently that
ÿ

–œSupp “

|“(–)| (W (–) ≠ Wmin(–)) > 0.

Since none of the terms in the above sum are negative, it su�ces to show that there
exists at least one simplex – œ Supp “ for which W (–) > Wmin(–). By contradiction,
assume that for all – œ Supp “, W (–) = Wmin(–). By construction, we thus have the
implication: “(–) ”= 0 =∆ “min(–) = 1, and therefore Supp “ ™ Supp “min. But, sinceq

–
“min(–)1–̃(x) = 1 for almost all x œ D and coe�cients of “min are either 0 or 1, it follows

that for almost all x œ D, point x is covered by a unique d-simplex in the support of “min.
Hence, the simplices in Supp “min have pairwise disjoint interiors while their union covers
D. Since

q
–

“(–)1–̃(x) = 1 for almost all x œ D, the simplices in Supp “ must also cover D

while using only a subset of simplices in Supp “min. The only possibility is that “ = “min,
yielding a contradiction. J

6 Comparing power distances

The goal of this section is to relate the two maps Power–(x) and Power—(y) for two d-simplices
– œ Dellocd(P, fl) and — ™ P , and for two points x œ conv – and y œ conv —, such that
fiM(x) = fiM(y). The main result of the section is stated in the following lemma:

I Lemma 15. Let Á, ”, fl Ø 0 such that 0 Æ 2Á Æ fl, and 16” Æ fl Æ
R

3 . Suppose that P ™ M
ü”

.

Let ’ = protection(P, 3fl) and assume that �(P, fl) Æ
fi

6 , separation(P ) >
3fl

2

R
+ 3” and

10fl �(P, fl) · (Á + fl �(P, fl)) < ’
2 + ’ separation(P ).

Then, for every Á-small d-simplex – œ Dellocd(P, fl), every fl-small d-simplex — ™ P , every

x œ conv –, and every y œ conv — such that fiM(x) = fiM(y):

Power—(y) Æ Power–(x) ≠
1
2

!
’

2 + ’ separation(P )
" ÿ

bœ—\–

µb,

where µb Ø 0 are real numbers such that y =
q

bœ—
µbb and

q
bœ—

µb = 1.
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To prove the lemma, we need a few auxiliary results. We start by recalling a useful
expression of the power distance of a point x from the circumsphere S(–) of – when x is an
a�ne combination of the vertices of –.

I Lemma 16. Let – ™ RN
. If x =

q
aœ–

⁄aa with
q

aœ–
⁄a = 1, then for every z œ RN

Power–(x) = Îx ≠ zÎ
2

≠

ÿ

aœ–

⁄aÎa ≠ zÎ
2
.

Figure 1 Notation for the proof of Lemma 17.

I Lemma 17. Let – and — be two non-degenerate abstract d-simplices in RN
. Suppose that

– œ Del(fia� –(– fi —)) and it is ’-protected with respect to fia� –(– fi —). Suppose furthermore

that the map fia� –

--
–fi—

is injective. Then for every convex combination y =
q

bœ—
µbb with

µb Ø 0 and
q

bœ—
µb = 1, we have

Power—(y) Æ Power–(fia� –(y)) ≠ (’2 + 2’R(–))
ÿ

bœ—\–

µb.

Proof. See Figure 1. Let Z(–) be the radius of the (d ≠ 1)-dimensional circumsphere of –.
Clearly, Îa ≠ Z(–)Î = R(–) for all a œ –. Let Q = fia� –(– fi —). Since – œ Del(Q) and is
’-protected with respect to Q, we get:

(R(–) + ’)2
< Îfia� –(b) ≠ Z(–)Î2

, for all b œ — \ –,

R(–)2 = Îfia� –(b) ≠ Z(–)Î2
, for all b œ — fl –.

Multiplying both sides of each equation above by µb and summing over all b œ —, we obtain:

R(–)2 + (’2 + 2’R(–))
ÿ

bœ—\–

µb Æ

ÿ

bœ—

µbÎfia� –(b) ≠ Z(–)Î2
. (5)

For short, write y
Õ = fia� –(y) and —

Õ = fia� –(—). Noting that y
Õ =

q
bœ—

µbb
Õ and applying

Lemma 16 with z = Z(–), we get that

Power—Õ(yÕ) = Îy
Õ
≠ Z(–)Î2

≠

ÿ

bœ—

µbÎfia� –(b) ≠ Z(–)Î2
.

SoCG 2022
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Substracting Îy
Õ
≠ Z(–)Î2 from both sides of (5) and using the above expression, we obtain

≠ Power–(yÕ) + (’2 + 2’R(–))
ÿ

bœ—\–

µb Æ ≠ Power—Õ(yÕ).

Applying Lemma 16 again, with Z = y
Õ and Z = y respectively, we get that:

≠ Power—Õ(yÕ) =
ÿ

bœ—

µbÎfia� –(b) ≠ fia� –(y)Î2
Æ

ÿ

bœ—

µbÎb ≠ yÎ
2 = ≠ Power—(y),

which concludes the proof. J

I Lemma 18. Let – and — be two non-degenerate abstract d-simplices in RN
. Suppose that

– œ Del(fia� –(– fi —)) and – is ’-protected with respect to fia� –(– fi —). Suppose that the

map fia� –

--
–fi—

is injective and that both conv – and conv — are contained in the fl-tubular

neighborhood of M. Suppose furthermore that — is fl-small. If �(–) <
fi

6 and

5fl sin �(–) · (2R(–) + 2fl sin �(–)) < ’
2 + 2’R(–),

then for every x œ conv – and every y œ conv — with fiM(x) = fiM(y), we have

Power—(y) Æ Power–(x) ≠
1
2(’2 + 2’R(–))

ÿ

bœ—\–

µb,

where µb Ø 0 are real numbers such that y =
q

bœ—
µbb and

q
bœ—

µb = 1.

7 Proving the main result

Suppose that K is a simplicial complex with vertex set P . Write D = Dellocd(P, fl), D = |D|
and K = |K| for short. In this section, we prove our main theorem by applying Lemma 14.
This requires us to define two maps Ï : K æ D and f : D æ R, two weights W (–) and
Wmin(–) for each d-simplex – œ K, and to check that these maps and weights satisfy the
requirements of Lemma 14. For each – œ K, let W (–) = Ê(–) be the Delaunay weight of –.
To be able to define Ï, f , and Wmin, we assume that the following conditions are met:
(1) D is a faithful reconstruction of M;
(2) For every d-simplex ‡ ™ K, the map fiM

--
conv ‡

is well-defined and injective.
These conditions are easily derived from the assumptions of the main theorem. We are
now ready to introduce additional notation. Consider a subset X ™ RN and suppose that
the map fiM

--
X

is well-defined and injective. Then it is possible to define a bijective map
fiXæM : X æ fiM(X). Because D is a faithful reconstruction of M, the map fiDæM is
well-defined and bijective. Similarly, for every d-simplex ‡ œ K, the map ficonv ‡æM is well-
defined and bijective. We now introduce the map Ï : K æ D defined by Ï = [fiDæM]≠1

¶ fiM

and let f : D æ R be the map defined by:

f(x) = min
‡

!
≠ Power‡([ficonv ‡æM]≠1

¶ fiM(x))
"

, (6)

where the minimum is taken over all d-simplices ‡ œ K such that x œ Ï(conv ‡). Note that
f(x) can be defined equivalently as the minimum of ≠ Power—(y) over all d-simplices — œ K

and all points y œ conv — such that fiM(x) = fiM(y). Given a d-simplex ‡ œ K, we associate
to ‡ the weight:

Wmin(‡) =
⁄

xœÏ(conv ‡)
f(x) dx. (7)
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I Lemma 19. Under the assumptions of Theorem 13:

For every d-simplex – œ D and every point x œ conv –, we have f(x) = ≠ Power–(x).
For every d-simplex – œ D, we have Wmin(–) = W (–).

Proof. Consider a d-simplex – œ D, a d-simplex — œ K, x œ conv – and y œ conv —

such that fiM(x) = fiM(y). Applying Lemma 15, we obtain that Power—(y) Æ Power–(x) or
equivalently Power—([ficonv —æM]≠1

¶fiM(x)) Æ Power–(x) and therefore f(x) = ≠ Power–(x).
To establish the second item of the lemma, notice that for all – œ D, the restriction of Ï

to conv – is the identity function, Ï| conv – = Id and therefore Ï(conv –) = conv –. Since we
have just established that f(x) = ≠ Power–(x), we get that

Wmin(–) =
⁄

xœÏ(conv –)
f(x) dx =

⁄

xœconv –

≠ Power–(x) dx = Ê(–) = W (–),

which concludes the proof. J

I Lemma 20. Under the assumptions of Theorem 13, for every d-simplex — œ K \ D, we

have Wmin(—) < W (—).

Proof. We need some notation. Given – and — in K, we write conv|– — for the set of
points y œ conv — for which there exists a point x œ conv – such that fiM(x) = fiM(y). We
define the map Ï—æ– : conv|– — æ conv|— – as Ï—æ–(y) = [ficonv –æM]≠1

¶ ficonv —æM(y).
Note that Ï—æ– is invertible and its inverse is Ï–æ— . Also, note that J in Theorem 13
has been chosen precisely so that one can apply Lemma 38 in [2] and guarantee that
| det(JÏ—æ–)(y)| œ [ 1

1+J
, 1 + J ] for all –, — œ K and all y œ conv|– —. Consider a d-simplex

— œ K \ D. By Lemma 19, f(x) = ≠ Power–(x) and therefore:

Wmin(—) =
ÿ

–œD[d]

⁄

xœconv|— –

≠ Power–(x) dx.

For any convex combination y of points in —, let {µ
—

b
(y)}bœ— designate the family of non-

negative real numbers summing up to 1 such that y =
q

bœ—
µ

—

b
(y)b. Plugging in the upper

bound on ≠ Power–(x) provided by Lemma 15, letting

c = 1
2

!
’

2 + ’ separation(P )
"

,

and making the change of variable x = Ï—æ–(y), we upper bound Wmin(—) as follows:

Wmin(—) Æ

ÿ

–œD[d]

⁄

xœconv|— –

S

U≠ Power—(Ï–æ—(x)) ≠ c

ÿ

bœ—\–

µ
b

—
(Ï–æ—(x))

T

V dx

=
ÿ

–œD[d]

⁄

yœconv|– —

S

U≠ Power—(y) ≠ c

ÿ

bœ—\–

µ
b

—
(y)

T

V | det(JÏ—æ–)(y)| dy

Æ (1 + J)W (—) ≠ (1 + J)≠1
c

ÿ

–œD[d]

⁄

yœconv|– —

ÿ

bœ—\–

µ
b

—
(y) dy.

A key observation is that, because — ”= –, then — \ – ”= ÿ. Therefore the sum
q

bœ—\–
µ

b

—
(y)

is always lower bounded by infbœ— µ
b

—
(y). Associating the quantity

�(—) =
⁄

yœconv —

inf
bœ—

µ
b

—
(y) dy,
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to — we thus obtain that Wmin(—) Æ (1+J)W (—)≠(1 + J)≠1
c �(—). Hence, Wmin(—) < W (—)

as long as

JW (—) < (1 + J)≠1
c �(—). (8)

Using a change of variable, it is not too di�cult to show that �(—) = d! vol(—)�(�d), where
�d = {⁄ œ Rd

|
q

d

i=1 ⁄i Æ 1; ⁄i Ø 0, i = 1, 2, . . . , d} represents the standard d-simplex.
Remark that �(�d) is a constant that depends only upon the dimension d and is thus
universal. Plugging in �(—) = d! vol(—)�(�d) on the right side of (8), and the expression of
W (—) = Ê(—) given by Lemma 6 on the left side of (8), and recalling that — is fl-small, we
find that condition (8) is implied by the following condition:

Jfl
2

< (1 + J)≠1 (d + 2)(d ≠ 1)!
4

!
’

2 + ’ separation(P )
"

�(�d),

which we have assumed to hold. J

Proof of Theorem 13. We start with pointing out that Problem (ı) is invariant under
change of orientation of d-simplices in K and thus we may assume that every d-simplex –

in K has an orientation that is consistant with that of M, that is, sign
M

(–) = 1 for all
– œ K

[d]. Let D = Dellocd(P, fl), D = |D| and K = |K|. Theorem 10 ensures that D is a
d-manifold and fiM : D æ M is a homeomorphism. Define Ï : K æ D, f : D æ R, W , and
Wmin as explained at the beginning of the section. Consider the d-chain “min on K:

“min(–) =
I

1 if Wmin(–) = W (–),
0 otherwise.

By Lemma 19 and Lemma 20, the following property holds: for all – œ K, Wmin(–) = W (–)
if and only if – is a d-simplex of D. It follows that “min = “D. Furthermore, we haveq

–œK[d] “min(–)1Ï(conv –)(x) =
q

–œD[d] 1conv –(x) = 1 for almost all x œ D. Recalling that
W = Ê and therefore Î“Î1,W = Edel(“), and applying Lemma 14, we deduce that “min = “D

is the unique solution to the following optimization problem over the set of chains in Cd(K,R):

minimize
“

Edel(“)

subject to
ÿ

–œK[d]

“(–) sign
M

(–)1Ï(conv –)(x) = 1, for almost all x œ D (ıı)

One can see that Problem (ıı) remains unchanged if one replaces the constraint with
ÿ

–œK[d]

“(–) sign
M

(–)1fiM(conv –)(m) = 1, for almost all m œ M. (9)

Let m0 be the arbitrary generic point of M, as in Problem (ı). By Lemma 48 in [2], the
above constraint is equivalent to the following set of constraints:

I
ˆ“ = 0,
q

–œK[d] “(–) sign
M

(–)1fiM(conv –)(m0) = 1.

We deduce that Problem (ı) and Problem (ıı) are equivalent, and we get the result. J
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