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Virtual Path Layouts with Low Congestion

or Low Diameter in ATM Networks*

Jean-Claude Bermond ' Nausica Marlin ' David Peleg *

Stéphane Pérennes '

Abstract
Motivated by Asynchronous Transfer Mode (ATM) in telecommunication networks, we inves-
tigate the problem of designing a directed virtual topology on a directed physical topology, which
consists in finding a set of directed virtual paths (VPs) satisfying some constraints in terms of load
(the number of VPs sharing a physical link) and hop count (the number of VPs used to establish
a connection). For both general and particular networks, such as paths, cycles, meshes, tori and
trees, we derive tight bounds on the virtual diameter (the maximum hop count for a connection)

as a function of the network capacity (the maximum load of a physical link). The dual issue is also

addressed.

1 Introduction

The advent of fiber optic media has changed the classical views on the role and structure of digital
communication networks. Specifically, the sharp distinction between telephone networks, cable televi-
sion networks, and computer networks has been replaced by a unified approach. The most prevalent
solution for this new network challenge is Asynchronous Transfer Mode (ATM), which is thoroughly
described in the literature [5, 12]. The transfer of data in ATM is based on packets of fixed length,
termed cells. Each cell is routed independently, based on two routing fields at the cell headef, called
virtual channel identifier (VCI) and virtual path identifier (VPI). This method effectively creates two
types of predetermined simple routes in the network, namely, routes which are based on VPIs (called
virtual paths or VPs) and routes based on VClIs and VPIs (called virtual channels or VCs). VCs are used
for connecting network users (e.g., a telephone call); VPs are used for simplifying network management
- routing of VCs in particular. Thus the route of a VC may be viewed as a concatenation of complete
VPs. A major problem in this framework consists in defining the set of VPs in such a way that some

good properties are achieved.
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1. A capacity (or bandwidth) is assigned to each VP. The sum of the capacities of the VPs that

share a physical link constitutes the load of this link. Naturally, this load must not exceed the

link capacity, i.e., the amount of data it can carry. The sum of the capacities of all the physical
links is a major component in the cost of the network, and should be kept as low as possible.

2. The maximum number of VPs in a virtual channel, termed hop count in the literature, should

also be kept as low as possible so as to guarantee low set up times for the virtual channels and

high data transfer rates.

[n its most general formulation, the Virtual Path Layout (VPL) problem is an optimization problem in
which, given a certain communication demand between pairs of nodes and constraints on the maximum
load and hop count, it is first required to design a system of VPs satisfying the constraints and then
minimizing some given function of the load and hop count.

We employ a restricted model similar to the one presented by Cidon, Gerstel and Zaks in [10]. In
particular, we assume that all VPs have equal capacities, normalized to 1. Hence the load of a physical
link is simply the number of VPs sharing this link.

Although links based on optical fibers and cables are directed, traditional research uses an undirected
model. Indeed, this model imposes the requirement that if there exists a VP from « to v then there
exists also a VP from v to u. In fact, that is the way ATM networks are implemented at the present
time. However, two symmetric VPs do not need to have the same capacity. Indeed, in many applications
the flows on the VPs are not equal. Therefore, it seems more reasonable to use a directed model like
the one introduced by Chanas and Goldschmidt in [4].

We focus on the all-to-all problem (all pairs of nodes are equally likely to communicate). Thus, the
resulting maximum hop count can be viewed as the diameter of the graph induced by the set of VPs.

More formally, given a communication network, the VPs form a virtual directed graph (digraph) on
the top of the physical one, with the same set of vertices but with a different set of arcs. (Specifically,
a VP from u to v is represented by an arc from u to v in the virtual digraph.) This virtual digraph
provides a Directed Virtual Path Layout (DVPL) for the physical graph. Each VC can be viewed as
a simple dipath in the virtual digraph. Therefore, a central problem is to find a tradeoff between the

maximum load and the virtual diameter.

Related Work The problem has been considered in the undirected case, for example, in [10, 9, 15, 8,
13, 6]. The problem of minimizing the maximum load over all VPL with bounded hop-count is studied
in [7, 1], and minimizing also the average load is considered in [9]. The one-to-many problem is handled
in [7, 9], where the focus is on minimizing the eccentricity of the virtual graph from a special point called
the root (this problem is the rooted virtual path layout problem) rather than minimizing the diameter
of the virtual graph. A duality in the chain network between the problem of minimizing the hop-count
knowing the maximum load, and the one of minimizing the load, knowing the maximum hop-count, is
established in [7]. The reader can find an excellent survey of the results in the undirected model in [16].

The techniques involved in our constructions bear a certain resemblance to various embedding

techniques used previously in the context of parallel computing, in order to implement a useful virtual
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architecture on a given practical machine topology (cf. [14, 11]). The parameters of interest in such
embeddings are the number of virtual processors mapped onto any physical processor, the load on the
physical links, and the dilation of the embedding, namely, the maximum length of the physical path
corresponding to a given virtual link. The relevant concerns in our context are somewhat different,
as dilation is of no consequence, and on the other hand, we have the freedom of designing the virtual

topology as desired, in order to optimize its diameter.

2 Model

A physical network is represented by a capacitated digraph G = (V, E,c), that is a directed graph with
vertex set V and arc set F, together with a positive integral capacity function ¢ on the set of arcs.
We always denote by n the number of vertices and in this paper we consider only constant capacity
functions.

The network formed by a set of VPs is represented by a digraph H = (V, E’) together with a layout P
assigning to each arc ¢’ = (z,y) € E’ a simple directed path (dipath) P(e’) connecting = to y in G. In
our terminology, the pair (H, P) is a virtual digraph on G, an arc of H is a virtual arc, and the dipath
P(e') in G associated with a virtual arc €’ is a virtual dipath (V P).

The load of an arc e of G is the number of virtual dipaths containing the arc e, that is, I(e) = |{¢' €
E', e € P(e')}|. A virtual digraph (H, P) satisfying the requirement Ve € E, I(e) < c(e) is referred
to as a c-admissible Directed Virtual Paths Layout of G, shortly denoted ¢-DVPL of G. The aim is to
design ¢-DVPL of G with minimum hop-count, i.e, to find a virtual digraph with minimum diameter.

For any digraph F, dr(x,y) denotes the distance from « to y in F, and D denotes diameter of F.
The virtual diameter, D(G, ¢), of the digraph G with respect to the capacity ¢, is the minimum of Dy

over all the e-DVPL H of G.

-

Figure 1: Example of VPL: the cycle, capacity 1

In Figure 1, G consists of the symmetric directed cycle C,. The virtual graph H consists of arcs
(i,7 + 1) in the clockwise direction and arcs (ip, (¢ — 1)p) in the opposite direction (assuming that p
divides n). The load of every arc of C,, is one. Choosing p = \/-'5‘— gives good DVPL with diameter at

most 2v2n + 1.
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In the dual problem, given a physical graph G = (V, E) and an integer h, we seek for a virtual
graph H = (V, E') and a layout P with minimum load, such that Dy < h. More formally, if Ve € E,
n(G,H, Pe) = |{¢' € E', e € P(¢')}|, we give bounds on 7(G, h) = minp, <, (max.cg (G, H, P,e)).
Note that 7(G, 1) is called the arc forwarding index of G. More generally, one can define the minimum
load 7 (G, R,h) for any subset of requests R C V x V. Given G, R and h, we seek for a virtual
graph H = (V, E’) and a layout P, such that V(z,y) € R,dy(z,y) < h and max.cp{n(G, H, P,e)} is
minimum. This minimum is denoted by #(G, R, h). Note that 7(G, AA, h) = 7(G, h), where AA denotes

the all-to-all set of requests V' x V.

3 Results

The following table summarizes our results on the first problem, giving lower and upper bounds on the
virtual diameter (the minimum diameter of an admissible virtual digraph) as a function of the number
of vertices n in the physical graph, its diameter D¢, its maximum in- and out-degree d, and the constant

capacity c. The results mentioned for the path in the special case ¢ = 1 are due to [2, 3].

Graph G [ Capacity Lower Bound L Upper Bound
| | De
General Graph ¢ =o(n) l;%%!) ~1 O(c-n%-T)
O(Dg/(zc_l) -logn)
Path P, c=1 % +logn — O(1) 5 +logn
¢ =o(n) nﬁ/2 O(c-nz-T1)
L - S N — I |
Cycle C,, {oe=1 2v/2n + O(1) 2v2n + 1
i c = o(n) nz /2 4c(%)51€+1
Torus TM(a,b),a < b ¢ = o(n) Q((a - b)1/2ec) O(a - b'/?2)
" Mesh M(a,b), logb<a<b| c=o(n) Qlogn) ' O(logn)
10c - nl/(?c—-l)
Arbitrary Tree T ¢ =o(n) Drt/(=V /g
O(c- DY) logn)
I B i + E—
‘ ‘ , h (h even)
' Complete k-ary Tree T c=2, k=2 h+1
h—1 (hodd)
— des _ " | A l ' )
h= depth_(T) c= o(n) | 2 WHEIJ? + 1 | 2 mz}cm I +2 J

The following theorems concern the dual problem. They give relations between (G, R,2) and
m(G,R,1), for R =V x V (AA all-to-all) and R = {s} x V' (0A one-to-all). B
Theorem 1 VG, Va > 14, if #(G, 44,1) > %\/nln n then 7(G, 44,2) < an(G, A4, 1)\@,



Corollary 2 VG, if n(G, 44,1) > Y2 then (G, 44,2) < 15 7(G, 44,1),/'%5" and
if 7(G, 44,1) < Y2RE® then 1(G, 44,2) < 15logn.

More generally, we have
Theorem 3 VG, if n(G, 44,1) > n% logn then n(G,44,h) = O (7r(G, A4, l)ﬂ_°r_,,—5_,—").

Theorem 4 VT tree , w(T, 44,2) < /n(T, 44,1)
Theorem 5 VG, 7(G, 04,2) <2 /7(G, 04,1)

More generally, we have
Theorem 6 VG, 7(G, 04,h) = O (W(G, 04, 1)k)
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