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INTRODUCTION

In this paper, we study the composition operators C ϕ pf q " f ˝ϕ acting on a de Branges-Rovnyak space H pbq, associated to a function b belonging to the closed unit ball of H 8 and satisfying logp1´|b|q P L 1 pTq. The de Branges-Rovnyak spaces H pbq (see the precise definition in Section 2) have been introduced by L. de Branges and J. Rovnyak in the context of model theory. A whole class of Hilbert space contractions is unitarily equivalent to the restriction of the backward shift operator to H pbq for an appropriate b belonging to the closed unit ball of H 8 .

The study of composition operators has quite a recent history, but the literature on this subject has grown very quickly and many efforts have been dedicated to characterizing the standard spectral properties in various reproducing kernel Hilbert spaces [START_REF] Cowen | Composition operators on spaces of analytic functions[END_REF][START_REF] Shapiro | Composition operators and classical function theory[END_REF]. It finds its roots in the pioneering works of E. Nordgren [START_REF] Nordgren | Composition operators[END_REF] and H.J. Schwartz [START_REF] Howard | Composition operators on H p[END_REF] in the sixties. The idea is to connect the properties of the operator C ϕ (boundedness, compactness, Hilbert-Schmidt property,...) with the properties of its symbol ϕ. It is well-known that for every analytic self-map ϕ of the open unit disk D, the operator C ϕ maps boundedly the Hardy space H 2 of the unit disk into itself. This is known as the Littlewood subordination principle. The compactness is more subtle and has been characterized by J. Shapiro [START_REF] Shapiro | The essential norm of a composition operator[END_REF] in terms of the behavior of the Nevanlinna counting function N ϕ associated to the symbol ϕ. Recall that the Nevanlinna counting function N ϕ is a tool from value distribution theory and is defined by

N ϕ pwq "
´ÿ ϕpzq"w log |z|, if w P ϕpDqztϕp0qu and N ϕ pwq " 0, if w P DzϕpDq.

In [START_REF] Yurii | Composition operators on model spaces[END_REF], Y. Lyubarskii and E. Malinnikova extended Shapiro's compactness criterion for composition operators C ϕ acting from H pΘq " K Θ into H 2 , where K Θ " pΘH 2 q K is the so-called model space associated to an inner function Θ. In [START_REF] Fricain | Composition operators on de Branges-Rovnyak spaces[END_REF], the second author with M. Karaki and J. Mashreghi generalized some of the results of Y. Lyubarskii and E. Malinnikova for C ϕ viewed as an operator from H pbq into H 2 , when b is a function belonging to the closed unit ball of H 8 . Note that, since H pbq is contractively contained into H 2 (and even is closed in H 2 if b " Θ is inner), then, according to the Littlewood subordination principle, the composition operator C ϕ always maps boundedly H pbq into H 2 .

If we require that the operator C ϕ maps H pbq into itself, the situation becomes dramatically more difficult and it imposes severe restrictions on the symbol ϕ. It has been studied by J. Mashreghi and M. Shabankhah in [START_REF] Mashreghi | Composition of inner functions[END_REF][START_REF] Mashreghi | Composition operators on finite rank model subspaces[END_REF] for model spaces K Θ , mainly when the inner function Θ is a finite Blaschke product, which implies that the space K Θ is of finite dimension. In this case of course, the question of boundedness and compactness reduces to the question of knowing whether f ˝ϕ P K Θ , for every f P K Θ .

Let us recall that when bpzq " p1 `zq{2, z P D, the associated de Branges-Rovnyak space H pbq coincides with the local Dirichlet space Dpδ 1 q (with equivalence of the norms). More generally, if b P ballpH 8 q is a rational function (and not a finite Blaschke product) such that its pythagorean mate a (see Section 2 for the definition) has only simple zeros on T, then it is known that H pbq " Dpµq (with equivalence of the norms), where µ is a positive discrete measure supported on the set of the zeros of a on T. See [START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF]. Here Dpµq is the space of holomorphic functions on D whose derivatives are square-integrable when weighted against the Poisson integral of the measure µ. In [START_REF] Sarason | Composition operators on a local Dirichlet space[END_REF], D. Sarason and J.N. Silva studied the composition operators on Dpµq. They gave a criterion for the boundedness, the compactness and the Hilbert-Schmidt property of C ϕ on Dpδ 1 q in terms of the behavior of a counting function appropriate for the space Dpδ 1 q. Of course, their results can be translated immediately in the context of H pbq space where bpzq " p1 `zq{2.

One of the main difficulties when we deal with H pbq spaces is to check if a given function f belongs or not to H pbq. Contrary to most of the classical spaces (Hardy space, Bergman space, Dirichlet space,...), the membership to H pbq cannot be characterized directly by an integral condition (at least it is not known). That causes some difficulties to check if a composition operator C ϕ maps H pbq into itself. In this paper, we will restrict ourselves to the case when b is a rational function in the closed unit ball of H 8 , which is not a finite Blaschke product. In this case, we have a concrete description of the H pbq space which makes the situation more tractable. In particular, the key point in our method is a link we establish between the properties of a composition operator C ϕ : H pbq ÝÑ H pbq and the properties of some related weighted composition operator W u,ϕ pf q " upf ˝ϕq, acting on H 2 . Here u will be some appropriate function depending on the values of ϕ at the zeros of the pythagorean mate a of b. Then, using known results on W u,ϕ , we characterize the boundedness, the compactness and the Hilbert-Schmidt property of C ϕ on H pbq.

Let us mention that all the results we obtain in this paper can be translated in the context of Dpµq spaces where µ is a finite sum of Dirac measures, and we then extend or recover many results obtained by D. Sarason and J.N. Silva in the context of local Dirichlet space Dpδ 1 q. However, our two approaches are different. Indeed, D. Sarason and J.N. Silva used an approach based on an appropriate counting function, whereas we use an approach based on an interesting link with some weighted composition operators.

In Section 2, we present a quick overview of some known properties of de Branges-Rovnyak spaces, useful for our study of composition operators. We also prove a new result on multipliers which is interesting in its own right. In Section 3, we give some necessary/sufficient conditions for boundedness. In particular, we prove that the boundedness of C ϕ imposes some restrictive conditions on the values of ϕ at the zeros of a on T. Section 4 contains a characterization for the boundedness, whereas, in the last section, we give a characterization for the compactness and the Hilbert-Schmidt property. As we will see, major differences between the H 2 case and the H pbq case emerge, and in particular, we exhibit some examples of symbols ϕ for which C ϕ is Hilbert-Schimdt on H pbq but not compact on H 2 . We also discuss interesting connections with angular derivatives in the sense of Carathéodory. We refer the reader to the book [START_REF] Sarason | Sub-Hardy Hilbert spaces in the unit disk[END_REF] by D. Sarason and to the recent monograph [START_REF] Fricain | The theory of Hpbq spaces[END_REF][START_REF] Fricain | The theory of H(b) spaces[END_REF] by the second author and J. Mashreghi for an in-depth study of de Branges-Rovnyak spaces and their connections to numerous other topics in operator theory and complex analysis. It is known that H pbq is contractively contained in the Hardy space H 2 of analytic functions f on D for which

PRELIMINARIES

}f } H 2 :" ´sup 0ără1 ż T |f prξq| 2 dmpξq ¯1 2 ă 8,
where m is the normalized Lebesgue measure on the unit circle T " tξ P C : |ξ| " 1u. For f P H 2 , the non-tangential limit f pξq :" lim zÑξ f pzq exists for m-almost every ξ P T and

}f } H 2 " ´żT |f pξq| 2 dmpξq ¯1 2 .
See [START_REF] Peter | Theory of H p spaces[END_REF][START_REF] Garnett | Bounded analytic functions[END_REF]. Though H pbq is contractively contained in H 2 , it is generally not closed in the H 2 norm. Indeed, H pbq is closed in H 2 if and only if b " I is an inner function, meaning that |Ipξq| " 1 for a.e. ξ P T. In this case, H pbq " K I " pIH 2 q K is the so-called model space associated to I. In the particular case when I " B is a finite Blaschke product associated to the sequence λ 1 , . . . , λ n (with multiplicities m 1 , . . . , m n ), meaning that

Bpzq " γ n ź j"1 ˆz ´λj 1 ´λj z ˙mj , z P D,
where, for 1 j n, λ j P D, m j P N and γ P T, then we have an explicit description of K B given by

(2.2) K B " # p ś n j"1 p1 ´λj zq m j : p P P N ´1+ ,
where N " ř n j"1 m j and P N ´1 denotes the set of polynomials of degree less or equal to N ´1. See [START_REF] Garcia | Introduction to model spaces and their operators[END_REF]Corollary 5.18].

Another particular case is when }b} 8 ă 1. In this case, the space H pbq coincides with the Hardy space H 2 as sets (with an equivalent norm). As already mentioned in the introduction, the problem of boundedness and compactness for C ϕ on H 2 has been completely solved. Therefore, we will assume in the rest of the paper that }b} 8 " 1.

2.2.

A description of H pbq when b is a rational function. Although the contents of the space H pbq may seem mysterious for a general b P ballpH 8 q, it turns out that when b P ballpH 8 q is a rational function (and not a finite Blaschke product) the description of H pbq is quite explicit. Such a b is a non-extreme point of ballpH 8 q, which is equivalent to logp1 ´|b|q P L 1 pTq, and so there is a unique outer function a, called the pythagorean mate for b, such that ap0q ą 0 and |a| 2 `|b| 2 " 1 a.e. on T. When b is rational, a is also a rational function and can be obtained from the Fejér-Riesz theorem. See [START_REF] Fricain | Concrete examples of Hpbq spaces. Comput[END_REF].

Let ξ 1 , . . . , ξ n denote the distinct roots of a on T, with corresponding multiplicities m 1 , . . . , m n , and define the polynomial a 1 by

(2.3) a 1 pzq :" n ź j"1
pz ´ξj q m j .

Observe that since we assume that }b} 8 " 1, the function a has necessarily some zeros on T (corresponding to the points where b achieves its maximum on the closed unit disk).

Results from [START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF][START_REF] Fricain | Concrete examples of Hpbq spaces. Comput[END_REF] show that H pbq has an explicit description as

(2.4) H pbq " a 1 H 2 ' P N ´1,
where N " m 1 `¨¨¨`m n and ' above denotes a topological direct sum in H pbq. Moreover, if f P H pbq is decomposed with respect to (2.4) as (2.5) f " a 1 r f `pf , where r f P H 2 and p f P P N ´1, an equivalent norm on H pbq (to the natural one } ¨}b induced by the positive definite kernel k b λ , λ P D, above) is

(2.6) ~a1 r f `pf ~2 b :" } r f } 2 H 2 `}p f } 2 H 2 .
Also we use the scalar product x¨, ¨yb associated to ~¨~b defined as

(2.7) xf 1 f 2 y b " x r f 1 , r f 2 y 2 `xp f 1 , p f 2 y 2 , for every f 1 " a 1 r f 1 `pf 1 , f 2 " a 1 r f 2 `pf 2 in H pbq.
In particular, with the scalar product given by (2.7), the direct sum in (2.4) becomes an orthogonal sum. It is important to note that ~¨~b is only equivalent to the original norm } ¨}b associated to the kernel in (2.1), and its scalar product as well as the reproducing kernels and the adjoints of operators defined on H pbq will be different. However, the boundedness and compactness properties for the operator C ϕ on H pbq do not depend on the equivalent norm we consider. So in the rational case, there is no problem to work with the norm given by (2.6) and the scalar product given by (2.7), which we will do in the rest of the paper.

Notice that we exclude the case when b is a finite Blaschke product because, as already mentioned, this case has already been studied in [START_REF] Mashreghi | Composition of inner functions[END_REF][START_REF] Mashreghi | Composition operators on finite rank model subspaces[END_REF] for the boundedness, and since the associated H pbq space is of finite dimension (when b is a finite Blaschke product), the problem of the compactness for the operator C ϕ on H pbq reduces to the problem of its boundedness.

An important property of functions f in H pbq, when b P ballpH 8 q is rational (but not a finite Blaschke product), is the existence of non-tangential limits for f and some of its derivatives at certain points on T. More precisely, for every 1 j n, for every 0 k m j ´1 and every f P H pbq, we have (2.8)

f pkq pξ j q :" lim

zÑξ j f pkq pzq " p pkq f pξ j q,
where f " a 1 r f `pf with r f P H 2 and p f P P N ´1. See [START_REF] Fricain | The theory of Hpbq spaces[END_REF]Corollary 27.22].

2.3. The multipliers of H pbq spaces when b is rational. A tool which will turn out to be useful when studying the boundedness and compactness of composition operators on H pbq is the notion of multipliers. Recall that the set MpH pbqq of multipliers of H pbq is defined as MpH pbqq " tϕ P HolpDq : ϕf P H pbq, @f P H pbqu.

Using standard arguments, we see that MpH pbqq Ď H 8 XH pbq. In general, this inclusion is strict. However, when b P ballpH 8 q is rational (but not a finite Blaschke product), it is proved in [START_REF] Fricain | Multipliers between range spaces of coanalytic Toeplitz operators[END_REF] that we have equality, meaning that (2.9) MpH pbqq " H 8 X H pbq.

The following result will be useful in our study of boundedness of composition operators and is interesting in its own right. Lemma 2.1. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product). Let ϕ P H pbq and assume that 1{ϕ P H 8 . Then 1{ϕ P MpH pbqq.

Proof. Let a be the pythagorean mate of b, to which we associate the polynomial a 1 pzq " ś n j"1 pz ´ξj q m j as in (2.3). Using (2.4), we can decompose ϕ P H pbq as (2.10)

ϕ " a 1 φ `pϕ , where φ P H 2 and p ϕ P P N ´1. We also know from (2.8) that for every 1 j n and every 0 k m j ´1, the function ϕ pkq has a non-tangential limit at point ξ j and ϕ pkq pξ j q " p pkq ϕ pξ j q. The assumption 1{ϕ P H 8 implies the existence of a constant δ ą 0 such that for every z P D, |ϕpzq| ě δ. In particular, letting z tend non-tangentially to ξ j gives ϕpξ j q ‰ 0 for every 1 j n. Now set h " 1{ϕ. According to (2.9) and our assumption, we need to prove that h P H pbq. Notice that for every 0 k m j ´1, we have

h pkq " ψ k pϕ, ϕ 1 , . . . , ϕ pkq q ϕ k`1 ,
where ψ k is a polynomial of k `1 variables. In particular, we deduce that for every 1 j n and every 0 k m j ´1, the function h pkq has a non-tangential limit at ξ j . Consider now the (unique) polynomial p h P P N ´1 such that p pkq h pξ j q " h pkq pξ j q, 1 j n, 0 k m j ´1. P H 2 . To this purpose, observe that for 1 j n, we have pp ϕ p h ´1qpξ j q " ϕpξ j qhpξ j q ´1 " 0. Thus every point ξ j , 1 j n, is a zero of the poynomial p ϕ p h ´1. Moreover, for 1 j n and 1 k m j ´1, we have pp ϕ p h ´1q pkq pξ j q " pp ϕ p h q pkq pξ j q " k ÿ "0 ˆk ˙pp q ϕ pξ j qp pk´ q h pξ j q " k ÿ "0 ˆk ˙ϕp q pξ j qh pk´ q pξ j q " pϕhq pkq pξ j q " pϕh ´1q pkq pξ j q " 0, because ϕh´1 " 0. Hence, for every 1 j n, ξ j is a zero of the polyomial p ϕ p h ´1 with a multiplicity at least m j ´1. In particular, the polynomial a 1 pzq " ś n i"1 pz ´ζi q m i divides the polynomial p ϕ p h ´1, meaning that the function pp ϕ p h ´1q{a 1 is also a polynomial and thus belongs to H 2 . Finally ψ P H 2 and then 1{ϕ P H pbq. Corollary 2.2. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product). Let ϕ P H pbq X H 8 . Then, for every λ P C, |λ| ă }ϕ} ´1 8 , the function 1{p1 ´λϕq P MpH pbqq.

Proof. This result follows immediately from Lemma 2.1, because first 1 ´λϕ P H pbq and second |1 ´λϕpzq| ě 1 ´|λ||ϕpzq| ě 1 ´|λ|}ϕ} 8 ą 0, which implies that 1{p1 ´λϕq P H 8 . 2.4. Two technical results in H pbq when b is a rational function. The next result introduces a function ψ, related to the symbol ϕ, which will be useful in our characterization for the boundedness of the operator C ϕ on H pbq. In order to prove the result, we need to recall a formula on boundary Taylor expansion. Let h be an analytic function on the open unit disk D. Assume that h, h 1 , . . . h p q have non-tangential limits at a point ξ P T. Then we can write (2.11) hpzq "

ÿ k"0 h pkq pξq k! pz ´ξq k `pz ´ξq εpzq, z P D,
where ε is an analytic function on D with a zero non-tangential limit at ξ. A version of this formula appears in [START_REF] Fricain | The theory of Hpbq spaces[END_REF]Lemma 22.5] in the context of the upper half-plane but the proof can be easily adapted to the context of the open unit disk.

Lemma 2.3. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product), let a be its pythagorean mate to which we associate the polynomial a 1 pzq " ś n j"1 pz ´ξj q m j as in (2.3). To each ϕ P H pbq X H 8 , we associate the function ψ defined as

ψpzq " n ź j"1 ˆϕpzq ´ϕpξ j q z ´ξj ˙mj , z P D.
Then ψ belongs to H 2 .

Proof. Let h " ś n j"1 pϕ ´ϕpξ j qq m j , so that ψ " h{a 1 . By our assumption and (2.9), the function h belongs to H pbq. In particular, there exists h P H 2 and p h P P N ´1 such that h " a 1 h `ph . It follows from [START_REF] Fricain | The theory of Hpbq spaces[END_REF]Corollary 27.22] that (2.12)

p h " n ÿ i"1 m i ´1 ÿ k"0 h pkq pξ i qr i,k ,
where pr i,k q 1 i n, 0 k m i ´1 are the Hermite polynomials of degree less or equal to N ´1 such that r p q i,k pξ j q " " 1 if i " j and k " 0 otherwise .

Observe that it is sufficient to prove that (2.13) h pkq pξ i q " 0, for every 1 i n and 0 k m i ´1.

Indeed, it follows from (2.12) and (2.13) that p h " 0, which implies that

ψ " h a 1 " h, whence ψ P H 2 .
In order to prove (2.13), fix 1 i n. On one hand, observe that

(2.14) h " pϕ ´ϕpξ i qq m i ψ i ,
where ψ i is an analytic function which has a non-tangential limit at ξ i . Moreover, according to (2.11), we can write ϕpzq " ϕpξ i q `pz ´ξi qϕ 1 pξ i q `pz ´ξi qεpzq, where ε is an analytic function on D which has a zero non-tangential limit at point ξ i . Thus, we get hpzq " `pz ´ξi qϕ 1 pξ i q `pz ´ξi qεpzq ˘mi ψ i pzq " pz ´ξi q m i `ϕ1 pξ i q `εpzq ˘mi ψ i pzq.

On the other hand, since h P H pbq, using (2.8) and one more time (2.11), we also have hpzq "

m i ´1 ÿ k"0 h pkq pξ i q k! pz ´ξi q k `pz ´ξi q m i ´1ε 1 pzq,
where ε 1 is an analytic function on D which has a zero non-tangential limit at point ξ i . Therefore, we deduce that pz ´ξi q m i `ϕ1 pξ i q `εpzq ˘mi ψ i pzq "

m i ´1 ÿ k"0 h pkq pξ i q k! pz ´ξi q k `pz ´ξi q m i ´1ε 1 pzq.
It is now easy to see that this identity implies that h pkq pξ i q " 0 for 0 k m i ´1, which concludes the proof of (2.13).

We end this section with a result on some particular subspaces of H pbq which will be of use to us in our study of compactness. It will enable us to restrict our composition operators on some subspaces of finite codimension.

Lemma 2.4. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product), let a be its pythagorean mate to which we associate the polynomial a 1 as in (2.3). For every inner function I, the subspaces a 1 IH 2 and a 1 K I are closed in H pbq. Moreover, we have

(2.15) H pbq a b a 1 IH 2 " a 1 K I ' K b P N ´1.
In particular, when I is a finite Blaschke product, the subspace a 1 IH 2 has a finite codimension in H pbq.

Here the notation a b denotes the orthogonal complement in H pbq with respect to the scalar product defined in (2.7).

Proof. Let us introduce the operator

V : H 2 Ñ H pbq defined by V pf q " a 1 f , f P H 2 .
According to (2.6), the operator V is an isometry from H 2 into H pbq. Since the subspaces K I and IH 2 are closed subspaces of H 2 , their ranges under V , respectively a 1 K I and a 1 IH 2 , are closed in H pbq.

Let us now check (2.15). To this purpose, let f P H pbq. According to (2.5), write f as f " a 1 f `pf where f P H 2 and p f P P N ´1. Using (2.7), the function f P H pbq a b a 1 IH 2 , if and only if for every h P H 2 , we have

0 " xf, a 1 Ihy b " xa 1 f `pf , a 1 Ihy b " x f , Ihy 2 ,
which is equivalent to f P H 2 a IH 2 " K I . In other words, f P a 1 K I ' P N ´1, which proves (2.15). Now if I is a finite Blaschke product, then dimpK I q ă 8 (see [START_REF] Fricain | The theory of H(b) spaces[END_REF]Section 14.2]). Hence dimpa 1 K I ' K b P N ´1q ă 8, and the conclusion now follows from (2.15).

SOME BASIC NECESSARY/SUFFICIENT CONDITIONS FOR BOUNDEDNESS

The aim of this section and the following is to study the boundedness of composition operators C ϕ : H pbq ÝÑ H pbq, where C ϕ pf q " f ˝ϕ, f P H pbq. Since H pbq is a space of analytic functions on D, it is necessary to require that ϕ : D ÝÑ D is an analytic self-map on D, which is equivalent to require that ϕ P ballpH 8 q.

3.1. The general case. We start with a very standard result in the theory of composition operators on reproducing kernel Hilbert spaces but for completeness, we give a proof in our context. Lemma 3.1. Let b and ϕ belong to ballpH 8 q. Assume that C ϕ pH pbqq Ď H pbq. Then the followings hold:

(a) C ϕ is a bounded operator on H pbq.

(b) If furthermore b is a non-extreme point of ballpH 8 q, then ϕ belongs to H pbq.

Proof. (a) We apply the closed graph theorem. Let pf k q k be a sequence in H pbq, and assume that f k ÝÑ f as k Ñ 8, in H pbq and f k ˝ϕ ÝÑ g as k Ñ 8, in H pbq. We need to show that f ˝ϕ " g. Since the convergence in H pbq implies the pointwise convergence, for every λ P D, we have pf k ˝ϕqpλq ÝÑ gpλq, as k Ñ 8. But pf k ˝ϕqpλq " f k pϕpλqq and ϕpλq P D. Therefore, we also have f k pϕpλqq ÝÑ f pϕpλqq as k Ñ 8. By unicity of the limit, we then deduce that for every λ P D, f pϕpλqq " gpλq. In other words, f ˝ϕ " g, which by the closed graph theorem implies that C ϕ is bounded from H pbq into itself.

(b) Observe that when b is a non-extreme point of the closed unit ball of H 8 , the polynomials belong to H pbq (see [START_REF] Fricain | The theory of Hpbq spaces[END_REF]Theorem 23.13]). In particular, the identity function e 1 , defined by e 1 pzq " z, z P D, is in H pbq, which immediately implies that ϕ " C ϕ pe 1 q P H pbq.

It is not surprising that the problem for the boundedness of C ϕ may occur when the symbol ϕ touches the boundary. In the opposite case, if we assume furthermore that ϕ extends analytically trough the closed unit disc, we prove that the operator C ϕ is always bounded on H pbq, when b is a non-extreme point of ballpH 8 q.

First, let us recall that when b is a non-extreme point of ballpH 8 q, then HolpDq, the space of functions which are analytic in a neighborhood of the closed unit disk D, is contained in H pbq (see [START_REF] Fricain | The theory of Hpbq spaces[END_REF]Theorem 24.6]). Lemma 3.2. Let b be a non-extreme point of ballpH 8 q and let ϕ P HolpDq such that ϕpDq Ď D. Then C ϕ is bounded on H pbq.

Proof. Note that, for every f P H pbq, we have f ˝ϕ P HolpDq Ď H pbq. Then, according to Lemma 3.1, the operator C ϕ is bounded from H pbq into itself. When b P ballpH 8 q is rational (but not a finite Blaschke product), we will see, in Section 5, that the assumptions of Lemma 3.2 not only imply that the operator C ϕ is bounded but even Hilbert-Schmidt on H pbq. We do not know if this is true for a general nonextreme point b of ballpH 8 q. In particular, the following question remains open. Question 3.3. Let b be a non-extreme point of ballpH 8 q and let ϕ P HolpDq such that ϕpDq Ď D. Does it follows that C ϕ is compact on H pbq? 3.2. The case when b is a rational function in ballpH 8 q. Throughout the rest of this paper, we now assume that b P ballpH 8 q is a rational function (but not a finite Blaschke product) and }b} 8 " 1. Let a be its pythagorean mate to which we associate the polynomial a 1 pzq " ś n j"1 pz ´ξj q m j as in (2.3). We also denote by Z T paq the set of the zeros of a on T, that is Z T paq " tξ j : 1 j nu. In order to exhibit some crucial necessary conditions on the symbol ϕ for the boundedness of the composition operator C ϕ on H pbq, we need the concept of interpolating sequence for H 8 , which we briefly recall now. We say that a sequence pz k q k in D is an interpolating sequence for H 8 if, for every bounded sequence pw k q k , we can find a function f P H 8 such that f pz k q " w k , for every k ě 1. The interpolating sequences for H 8 have been characterized by L. Carleson [START_REF] Carleson | An interpolation problem for bounded analytic functions[END_REF]. We simply mention a sufficient condition: if there exists 0 ă q ă 1 such that pz k q k satisfies |z k´1 | |z k | for every k ě 2, and

lim sup kÑ8 1 ´|z k | 1 ´|z k´1 | q,
then pz k q k is an interpolating sequence for H 8 . See [21, page 159]. The following technical and simple result will be useful for our study of composition operators on H pbq.

Lemma 3.4. Let ϕ : D Ñ D be a map which has a radial limit at ξ P T satisfying ϕpξq P T. Then there exists a sequence pr k q k Ď p0, 1q satisfying r k Ñ 1, as k Ñ 8, and the sequence pϕpr k ξqq k is an interpolating sequence for H 8 .

Proof. Let pt q Ď p0, 1q, t ÝÑ 1, as Ñ 8. According to the assumption, we have |ϕpt ξq| ÝÑ 1 as Ñ 8. Hence by induction, we can construct a subsequence pt k q kě1 such that for every k ě 1, we have

1 ´|ϕpt k ξq| 1 2 p1 ´|ϕpt k´1 ξq|q.
Define now r k " t k and z k :" ϕpr k ξq. Since

1 ´|z k | 1 2 p1 ´|z k´1 |q,
we deduce that

lim sup kÑ8 1 ´|z k | 1 ´|z k´1 | 1 2 ă 1,
whence pz k q k is an interpolating sequence for H 8 .

The next result now imposes some restrictions on the symbol ϕ for the boundedness of the composition operator C ϕ on H pbq. According to Lemma 3.1, remind that, if C ϕ is bounded on H pbq, then ϕ P H pbq, and therefore, with (2.8), it follows that ϕ admits a non-tangential limit ϕpξ j q at point ξ j for every 1 j n. Theorem 3.5. Let ϕ : D Ñ D be analytic. If C ϕ is bounded on H pbq, then for every j P t1, . . . , nu, we have ϕpξ j q P D Y Z T paq.

Proof. The idea of the proof is similar to [26, Lemma 4] (in the context of local Dirichlet space). Observe that, for every j P t1, . . . , nu, we have |ϕpξ j q| 1. Assume now that for some j P t1, . . . , nu, we have |ϕpξ j q| " 1, and let us show that ϕpξ j q P Z T paq. According to Lemma 3.4, we can find a sequence pr k q k Ď p0, 1q, r k ÝÑ1, as k Ñ 8, such that if z k :" ϕpr k ξ j q, k ě 1, then pz k q k is an interpolating sequence for H 8 . In particular, there is a function f P H 8 such that

f pz k q " f pϕpr k ξ j qq " " 1 if k is even 0 if k is odd .
According to (2.4), the function a 1 f P H pbq and thus C ϕ pa 1 f q " pa 1 ˝ϕq.pf ˝ϕq also belongs to H pbq. In particular, pa 1 ˝ϕq.pf ˝ϕq has a non-tangential limit at ξ j . Thus pa 1 φqpr k ξ j q pf ˝ϕqpr k ξ j q should have a limit when k Ñ 8. But observe that pf ˝ϕqpr k ξ j q " f pz k q has two different cluster points and

pa 1 ˝ϕqpr k ξ j q " n ź i"1 pϕpr k ξ j q ´ξi q m i ÝÑ n ź i"1 pϕpξ j q ´ξi q m i , as k Ñ 8.
Thus necessarily, we should have n ź i"1 pϕpξ j q ´ξi q m i " 0.

Hence there exists 1 i n such that ϕpξ j q " ξ i P Z T paq.

We recover the following result observed by Sarason-Silva [START_REF] Sarason | Composition operators on a local Dirichlet space[END_REF] in the context of Dpδ 1 q space. Corollary 3.6. Let bpzq " p1 `zq{2 and ϕ : D Ñ D be analytic. Assume that C ϕ is bounded on H pbq. Then either ϕp1q P D or ϕp1q " 1.

Proof. It is sufficient to note that the pythagorean mate for b is given by apzq " p1 ´zq{2 and apply Theorem 3.5.

In the study of boundedness of C ϕ on H pbq, according to Lemma 3.1 and Theorem 3.5, we may assume without loss of generality that ϕ P H pbq X ballpH 8 q and for every j P t1, . . . , nu, we have ϕpξ j q P D Y Z T paq. Up to rearranging the sequence ξ j , 1 j n, we will now assume throughout this paper that (3.1) ϕpξ j q P Z T paq for 1 j p, and (3.2) ϕpξ j q P D for p `1 j n, where 0 p n. When p " 0, the condition (3.1) is void and it corresponds to the case when all the non-tangential limits ϕpξ j q belong to D. When p " n, the condition (3.2) is void and it corresponds to the case when all the non-tangential limits ϕpξ j q belong to T.

We end this section by an important necessary condition for the boundedness of the operator C ϕ on H pbq which will be of use to us when making a connection with the boundedness of some related weighted composition operators on H 2 . Lemma 3.7. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). If C ϕ is bounded on H pbq, then the function

(3.3) u " pa 1 ˝ϕq ś n j"p`1 pϕ ´ϕpξ j qq m j a 1 belongs to H 2 .
Proof. Denote by v " pa 1 ˝ϕq ¨n ź j"p`1 pϕ ´ϕpξ j qq m j , so that u " v{a 1 . The proof is similar to the proof of Lemma 2.3, with some additional difficulties due to the fact that we cannot decompose v as in (2.14) for the indices i such that 1 i p.

Since ϕ P H pbq X H 8 " MpH pbqq, the function v belongs to H pbq. As in the proof of Lemma 2.3, it is sufficient to prove that (3.4) v pkq pξ i q " 0, for every 1 i n and 0 k m i ´1.

We decompose the proof of (3.4) into two cases depending 1 i p or p `1 i n.

First, let 1 i p. According to (3.1), we have a 1 pϕpξ i qq " 0, whence vpξ i q " 0. In order to prove that v p q pξ i q " 0 for every 1 m i ´1, we use a similar argument used in the proof of Theorem 3.5. We construct a function f P H 8 such that the membership of v ¨pf ˝ϕq to H pbq will force the derivatives of v at ξ i to vanish up to order m i ´1. So, first apply Lemma 3.4 to construct a sequence pr k q k Ď p0, 1q, r k Ñ 1 as k Ñ 8, and such that if z k " ϕpr k ξ i q, k ě 1, then the sequence pz k q k is an interpolating sequence for H 8 . Thus, there exists f P H 8 such that

f pz k q " f pϕpr k ξ j qq " " 1 if k is even 0 if k is odd .
Define hpzq :" a 1 pzq ś n j"p`1 pz ´ϕpξ j qq m j f pzq, z P D, and observe that h ˝ϕ " v ¨pf ˝ϕq. Since h P a 1 H 2 Ď H pbq and since C ϕ is bounded on H pbq, the function h ˝ϕ P H pbq. In particular, according to (2.8), for every 0 m i ´1, the function ph ˝ϕq p q has a non-tangential limit at ξ i . It follows from (2.11) that we can write ph ˝ϕqpzq "

m i ´1 ÿ "0 ph ˝ϕq p q pξ i q ! pz ´ξi q `pz ´ξi q m i ´1εpzq,
where ε is an analytic function on D which has a zero non-tangential limit at point ξ i .

Observe that

|ph ˝ϕqprξ i q| |vprξ i q| }f } 8 ÝÑ 0, as r Ñ 1
´.

Hence ph ˝ϕqpξ i q " 0. Then we deduce from Taylor's formula above that ph ˝ϕq 1 pξ i q " lim kÑ8 ph ˝ϕqpr k ξ i q ´ph ˝ϕqpξ i q pr k ´1qξ i " lim kÑ8 ˆvpr k ξ i q ´vpξ i q

pr k ´1qξ i .f pz k q ˙.
Since lim kÑ8 vpr k ξ i q pr k ´1qξ i " v 1 pξ i q, and f pz k q " 1 if k is even and 0 if k is odd, it follows necessarily that we should have v 1 pξ i q " 0 " ph ˝ϕq 1 pξ i q. Now using an induction argument, we easily prove that for every 0 m i ´1, v p q pξ i q " ph ˝ϕq p q pξ i q " 0, which concludes the proof of (3.4) when 1 i p. Second, let p `1 i n. Observe that in this case, we have v " pϕ ´ϕpξ i qq m i ψ i , where ψ i is an analytic function which has a non-tangential limit at ξ i . Then, argue as in Lemma 2.3, to get that v p q pξ i q " 0 for every 0 m i ´1.

Remark 3.8. Compared to Lemma 2.3, the conclusion of Lemma 3.7 is no longer true if we replace the assumption that C ϕ is bounded on H pbq by the weaker assumption that ϕ P H pbq. See Example 4.3 (c) where we exhibit a function ϕ belonging to H pbq X ballpH 8 q but the corresponding u is not in H 2 .

SOME CHARACTERIZATION OF BOUNDEDNESS

Recall that b is assumed to be a rational function (but not a finite Blaschke product) in ballpH 8 q, a is its pythagorean mate to which we associate the polynomial a 1 pzq " ś n j"1 pz ´ξj q m j as in (2.3).

4.1.

The link with weighted composition operators on H 2 . The following result is the key point to characterize the boundedness of composition operators on H pbq, making a connection with the boundedness of some weighted composition operators on H 2 .

Theorem 4.1. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3). Then the following assertions are equivalent:

piq C ϕ : H pbq Ñ H pbq is bounded; piiq W u,ϕ : H 2 Ñ H 2 is bounded, where W u,ϕ pf q " upf ˝ϕq, f P H 2 .
Proof. Denote by λ j " ϕpξ j q for p `1 j n. piq ùñ piiq: assume that C ϕ is bounded on H pbq, and let f P H 2 . Consider the function h defined by hpzq :" a 1 pzq n ź j"p`1 pz ´λj q m j f pzq, z P D.

Since h P a 1 H 2 Ď H pbq, the function h ˝ϕ P H pbq. According to (2.4), decompose h ˝ϕ as h ˝ϕ " a 1 g `p, with g P H 2 and p P P N ´1. Rewrite this as

(4.1) h ˝ϕ a 1 " g `p a 1 ,
and observe that h ˝ϕ a 1 " pa 1 ˝ϕq ś n j"p`1 pϕ ´λj q m j a 1 pf ˝ϕq " upf ˝ϕq.

Since C ϕ is bounded on H pbq, Lemma 3.7 implies that u P H 2 and by the Littlewood subordination principle, f ˝ϕ P H 2 . Thus u.pf ˝ϕq P H 1 and (4.1) implies that p{a 1 P H 1 .

Using the fact that degppq N ´1 ă degpa 1 q, it is not difficult to see that necessarily p " 0. Therefore u.pf ˝ϕq " h˝ϕ a 1 " g P H 2 and W u,ϕ pH 2 q Ď H 2 . It remains to apply the closed graph theorem to get that W u,ϕ is bounded on H 2 .

piiq ùñ piq: assume now that W u,ϕ is bounded on H 2 . According to Lemma 3.1, it is sufficient to prove that for every f P H pbq, we have f ˝ϕ P H pbq. Using (2.4) For the property (4.2), observe that according to (2.9), ϕ P H 8 XH pbq " MpH pbqq, and since 1 P H pbq, it follows that ϕ n P H pbq for every n ě 0. Hence for every polynomial p P P N ´1, the function p ˝ϕ belongs to H pbq.

For the property (4.3), let us consider the finite Blaschke product associated to the sequence λ p`1 , . . . , λ n (with multiplicities m p`1 , . . . , m n ). In other words,

Bpzq " n ź j"p`1 ˆz ´λj 1 ´λ j z ˙mj , z P D.
Recall that we have an explicit description of K B " pBH 2 q K given by (2.2). In order to prove (4.3), using that H 2 " BH 2 ' K B , we will also decompose the proof into two steps: where N 1 " ř n j"p`1 m j . For (4.4), observe that pa 1 ˝ϕq ppBhq ˝ϕq " pa 1 ˝ϕqpB ˝ϕqph ˝ϕq

(4.
" a 1 u 1 ś n j"p`1 p1 ´λ j ϕq m j ph ˝ϕq " a 1 W u,ϕ ph 1 q,
where h 1 " h{ ś n j"p`1 p1 ´λ j zq m j . Since h 1 P H 2 and W u,ϕ is bounded on H 2 , we deduce that the function pa 1 ˝ϕq ppBhq ˝ϕq belongs to a 1 H 2 Ď H pbq, which proves (4.4).

For (4.5), observe that according to Corollary 2.2, for p `1 j n, the function p1 ´λj ϕq ´1 P MpH pbqq. Moreover, since ϕ is also a multiplier of H pbq and the set MpH pbqq is an algebra, it follows that pa 1 ˝ϕq.pp ˝ϕq ś n j"p`1 p1 ´λ j ϕq m j P MpH pbqq Ď H pbq, which proves (4.5). Therefore (4.3) is also satisfied and then C ϕ is bounded on H pbq.

It turns out that the boundedness of weighted composition operators on H 2 has already been characterized by M. Contreras and A. Hernández-Díaz in [START_REF] Manuel | Weighted composition operators on Hardy spaces[END_REF]. Let us introduce the Borel measure µ u,ϕ on D defined by [START_REF] Manuel | Weighted composition operators on Hardy spaces[END_REF] that W u,ϕ is bounded on H 2 if and only if µ u,ϕ is a Carleson measure. Moreover, recall that the Carleson property for a measure µ is equivalent to the embedding H 2 Ď L 2 pµq (as was proved by L. Carleson [START_REF] Carleson | Interpolations by bounded analytic functions and the corona problem[END_REF]) and this embedding satisfies the reproducing kernel thesis, meaning that H 2 Ď L 2 pµq is equivalent to

It is proved in

sup wPD ż D 1 ´|w| 2 |1 ´wξ| 2 dµpξq " sup wPD }k w } 2 L 2 pµq }k w } 2 2 ă 8.
See [START_REF] Nikol'skiȋ | of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Lecture V11] or [START_REF] Fricain | The theory of H(b) spaces[END_REF]Theorem 5.15]. See also [START_REF] Eva | Boundedness, compactness and Schatten-class membership of weighted composition operators[END_REF] for a discussion on the boundedness of weighted composition operators on H 2 .

Using Theorem 4.1, we therefore immediately get from this the following characterization for the boundedness of C ϕ on H pbq, when b is a rational function (but not a finite Blaschke product) in ballpH 8 q. Corollary 4.2. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3) and let µ u,ϕ be the measure defined by (4.6). Then the following assertions are equivalent:

piq C ϕ : H pbq Ñ H pbq is bounded; piiq µ u,ϕ is a Carleson measure; piiiq sup wPD ż T p1 ´|w| 2 q |upξq| 2 |1 ´wϕpξq| 2 dmpξq ă `8.
Proof. The equivalence piq ðñ piiq follows from Theorem 4.1 and the result of M. Contreras and A. Hernández-Díaz mentioned above. The equivalence piiq ðñ piiiq has been already observed in [START_REF] Eva | Boundedness, compactness and Schatten-class membership of weighted composition operators[END_REF]: it follows from the fact that µ u,ϕ is a Carleson measure if and only if

sup wPD ż D 1 ´|w| 2 |1 ´wξ| 2 dµ u,ϕ pξq ă 8,
which, by a change of variable, is equivalent to piiiq.

Example 4.3. Let apzq " cpz ´1qpz `1q 2 , z P D, where c is some suitable constant such that a P ballpH 8 q and let b be its pythagorean mate (remind that b can be constructed using the Fejér-Riesz Theorem). In the following examples, we consider symbols ϕ P ballpH 8 q which are analytic in a neighborhood of D. Thus, they belong to H pbq (because b is a non-extreme point of ballpH 8 q). (a) Let ϕpzq " pz `1q{2, z P D. Then ϕp1q " 1, ϕp´1q " 0, and it can be checked that upzq " pz `3q 2 {32. Hence u P H 8 and by the Littlewood subordination principle, the operator W u,ϕ is bounded on H 2 , which implies by Theorem 4.1 that the operator C ϕ is bounded on H pbq. (b) Let ϕpzq " pz ´rq{p1 ´rzq, r P p0, 1q. Then ϕp1q " 1, ϕp´1q " ´1, and it can be checked that upzq " p1 ´r2 qp1 ´rq{p1 ´rzq 3 . Hence u P H 8 and by the Littlewood subordination principle, the operator W u,ϕ is bounded on H 2 . Therefore, according to Theorem 4.1, the operator C ϕ is bounded on H pbq. (c) Let ϕpzq " z 2 , z P D. Then ϕp1q " ϕp´1q " 1 and it can be checked that upzq " pz 2 `1q 2 {pz `1q. Hence u R H 2 , and it follows from Lemma 3.7 that the operator C ϕ is not bounded on H pbq.

In Examples 4.3 (a) and (b), the associated function u P H 8 and so the boundedness of W u,ϕ on H 2 is a simple consequence of the Littlewood subordination principle. We will exhibit, in Example 4.11 below, a rational function b and a symbol ϕ for which the associated function u P H 2 zH 8 but yet generate a bounded operator C ϕ on H pbq, and thus a bounded operator W u,ϕ on H 2 .

Using results from [START_REF] Eva | Boundedness, compactness and Schatten-class membership of weighted composition operators[END_REF], we can also obtain an interesting sufficient condition for the boundedness.

Corollary 4.4. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3) and assume that u P H 2 . Assume also that for some δ ą 0, we have In the rest of this section, we give some additional necessary and/or sufficient conditions more tractable for the boundedness of the composition operator C ϕ on H pbq.

Angular derivatives and boundedness.

We now explain how the existence of angular derivative in the sense of Carathéodory for the symbol ϕ is involved in the boundedness of C ϕ . In particular, we extend a result of D. Sarason and J.N. Silva in our context. See [START_REF] Sarason | Composition operators on a local Dirichlet space[END_REF]Theorem 2]. Recall first that a function ϕ P ballpH 8 q has an angular derivative in the sense of Carathéodory (briefly an ADC) at a point ξ P T if ϕ and ϕ 1 both have a nontangential limit at ξ and |ϕpξq| " n such that ϕpξ k q " ξ k . Assume that the operator C ϕ is bounded on H pbq. Then for every 1 k p, we have m k m k . Furthermore, if for some 1 k p, we have m k " m k , then the function ϕ has an ADC at ξ k .

Proof. It follows from our assumption and Theorem 4.1 that the operator W u,ϕ is bounded on H 2 , where u is defined by (3.3). Hence, there is a constant C ą 0 such that, for every g P H 2 , we have

}W ů,ϕ g} 2 C}g} 2 .
Apply this inequality with g " k λ , λ P D, where k λ pzq " p1 ´λzq ´1, and use the wellknown fact that W ů,ϕ k λ " upλqk ϕpλq to get (4.9)

|upλq|}k ϕpλq } 2 C}k λ } 2 .
Let's fix 1 k p, and for simplicity, denote by " k , so that ϕpξ k q " ξ . Applying (4.9) with λ " rξ k , for 0 ă r ă 1, gives

1 ´r2 1 ´|ϕprξ k q| 2 |uprξ k q| 2 C 2 .
With the definition of u, we obtain

1 ´r2 1 ´|ϕprξ k q| 2 n ź i"1 ˇˇˇϕ prξ k q ´ξi rξ k ´ξi ˇˇˇ2 m i n ź j"p`1 |ϕprξ k q ´λj | 2m j C 2 ,
where λ j " ϕpξ j q P D, for p `1 j n. The last inequality can be rewritten as

1 ´r2 1 ´|ϕprξ k q| 2 |ϕprξ k q ´ξl | 2m l |rξ k ´ξk | 2m k κ ,r c k,r n ź j"p`1 |ϕprξ k q ´λj | 2m j C 2 ,
where

κ ,r " n ź i"1,i‰ |ϕprξ k q ´ξi | 2m i and c k,r " n ź i"1,i‰k |rξ k ´ξi | 2m i .
But, using that |ϕprξ k q ´ξl | ě 1 ´|ϕprξ k q|, we have

1 ´r2 1 ´|ϕprξ k q| 2 . |ϕprξ k q ´ξl | 2m l |rξ k ´ξk | 2m k ě p1 ´rqp1 ´|ϕprξ k q|q 2m l p1 ´|ϕprξ k q|qp1 `|ϕprξ k q|qp1 ´rq 2m k ě 1 2 p1 ´|ϕprξ k q|q 2m l ´1 p1 ´rq 2m k ´1 , from which it follows that p1 ´|ϕprξ k q|q 2m l ´1 p1 ´rq 2m k ´1 2C 2 c k,r κ ,r
ś n j"p`1 |ϕprξ k q ´λj | 2m j . This can be rewritten as The following result is a partial converse of Lemma 3.7.

(4.10) ˆ1 ´|ϕprξ k q| 1 ´r ˙2m l ´1 2C 2 c k,r p1 ´rq 2m k ´2m κ ,r ś n j"p`1 |ϕprξ k q ´λj | 2m j . Observe now that c k,r κ ,r ś n j"p`1 |ϕprξ k q ´λj | 2m j Ñ C k, , as r Ñ 1, where C k, :" ś n i"1,i‰k |ξ k ´ξi | 2m i ś n i"1,i‰l |ξ l ´ξi | 2m i 1 ś n j"p`1 |ξ l ´λj | 2m j ă 8. If m k ą m ,
Corollary 4.7. Let ϕ P H pbq X ballpH 8 q which satisfies (3.1) and (3.2). Let u be the function defined by (3.3). Assume that u P H pϕq. Then the operator C ϕ is bounded on H pbq.

Proof. Since u P H pϕq, it follows from a result of M. Jury [START_REF] Michael | Reproducing kernels, de Branges-Rovnyak spaces, and norms of weighted composition operators[END_REF] that the operator A " C φT ů is bounded from H 2 into itself, where T ů is viewed here as an unbounded operator, densely defined on reproducing kernels of H 2 by the formula

T ů k λ " upλqk λ , λ P D.
Hence the operator A has an adjoint A ˚: H 2 Ñ H 2 which is bounded and satisfies for every f P H 2 and every λ P D

pA ˚f qpλq "ă A ˚f, k λ ą 2 "ă f, Ak λ ą 2 "ă f, C φT ů k λ ą 2 "ă C ϕ f, upλqk λ ą 2
" upλqf pϕpλqq.

For every f P H 2 and λ P D, we then have pW u,ϕ f qpλq " pA ˚f qpλq.

Finally, W u,ϕ " A ˚is bounded on H 2 , which implies, according to Theorem 4. Nevertheless, the next result gives a particular situation where the converse of Corollary 4.7, as well as the converse of Corollary 4.5 on angular derivatives, hold true. Corollary 4.9. Let bpzq " p1 `zq{2, z P D, and let ϕ P H pbq X ballpH 8 q. Assume that ϕp1q " 1 and let u be the function defined by (3.3). Then the following assertions are equivalent:

piq the operator C ϕ : H pbq Ñ H pbq is bounded; piiq the function ϕ has an ADC at point 1; piiiq the function u belongs to H pϕq.

Proof. Observe that when bpzq " p1 `zq{2, then a 1 pzq " z ´1 and since ϕp1q " 1, we have upzq " pϕpzq ´1q{pz ´1q, z P D. The implication piq ùñ piiq follows directly from Corollary 4.5. The implication piiq ùñ piiiq follows from (4.8), whereas the implication piiiq ùñ piq follows from Corollary 4.7.

Remark 4.10. As we already mentioned, in the case when bpzq " p1 `zq{2, then H pbq coincides with the local Dirichlet space Dpδ 1 q associated to the Dirac measure δ 1 at point 1. In particular, we may translate Corollary 4.9 in the context of Dpδ 1 q and recover a result of D. Sarason and J.N. Silva [START_REF] Sarason | Composition operators on a local Dirichlet space[END_REF]Theorem 2]. However, our proof is different from Sarason and Silva's proof. More precisely, they use a characterization of boundedness which is based on some counting function adapted to the situation of Dpδ 1 q space, whereas we use a characterization based on the boundedness of some related weighted composition operator on H 2 .

Example 4.11. Let bpzq " pz `1q{2 and let pλ n q ně1 be a sequence in D tending to 1 and satisfying (4.11)

ÿ ně1 1 ´|λ n | |λ n ´1| 2 ă 8.
(For example, we can take λ n " p1 ´2´n q expp i n q, n ě 1). Let us now consider the Blaschke product B associated to pλ n q n . A result of O. Frostman [START_REF] Frostman | Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar[END_REF] says that, under the condition (4.11), the function B has an ADC at point 1. Multiplying B by a unimodular constant if necessary, we can assume that Bp1q " 1. The property (4.8) now implies that the function

upzq " Bpzq ´1 z ´1 , z P D,
belongs to K B and then, in particular to H 2 . Since Bpzq " pz ´1qupzq`1 and u P H 2 , then B P H pbq. According to Corollary 4.9, the operator C B is bounded on H pbq. Observe that in that case u R H 8 because

|upλ n q| " ˇˇˇ´1 λ n ´1 ˇˇˇÝ Ñ 8, n Ñ 8.
4.3. The case when ϕpξ j q P D, 1 j n. We have given a necessary condition on the behavior of ϕ at a point ξ k P Z T paq when ϕpξ k q P T. In the other direction, when ϕpξ j q P D, 1 j n, we now give a sufficient condition. Corollary 4.12. Let ϕ P H pbq X ballpH 8 q and assume that for every 1 j n, we have (4.12) lim sup

zÑξ j |ϕpzq| ă 1.
Then the operator C ϕ is bounded on H pbq.

Proof. In order to show that C ϕ is bounded on H pbq, we will use Corollary 4.2 and prove that (4.13)

sup wPD ż T p1 ´|w| 2 q |upξq| 2 |1 ´wϕpξq| 2 dmpξq ă 8,
where u is defined by u " pa 1 ˝ϕq ś n j"1 pϕ ´λj q m j a 1 " v a 1 with v " pa 1 ˝ϕq ś n j"1 pϕ ´λj q m j . (According to (4.12), observe that λ j " ϕpξ j q P D for every 1 j n, whence p " 0 in the notation of (3.1)). It follows from our assumption that there exists 0 ă L ă 1 and δ ą 0 such that for every 1 j n and for every z P D, we have |z ´ξj | ă δ ùñ |ϕpzq| L.

Let V ξ j " tξ P T : |ξ ´ξj | ă δu and V " Ť n j"1 V ξ j . Then, for almost all ξ P V , we have |ϕpξq| L.

On one hand, observe now that on TzV , the function a 1 is bounded below, and then u " v{a 1 is bounded by some constant C. Thus, for every w P D, we get

ż TzV p1 ´|w| 2 q |upξq| 2 |1 ´wϕpξq| 2 dmpξq C 2 p1 ´|w| 2 q ż T 1 |1 ´wϕpξq| 2 dmpξq " C 2 p1 ´|w| 2 q}C ϕ k w } 2 2
Now, by the Littlewood subordination principle, the operator

C ϕ is bounded on H 2 , whence }C ϕ k w } 2 2 }C ϕ } 2 }k w } 2 2 " }C ϕ } 2 p1 ´|w| 2 q ´1.
Finally, for every w P D, we obtain

ż TzV p1 ´|w| 2 q |upξq| 2 |1 ´wϕpξq| 2 dmpξq C 2 }C ϕ } 2 .
On the other hand, for w P D and for almost all ξ P V , we have

|1 ´wϕpξq| ě 1 ´|w| |ϕpξq| ě 1 ´L|w| ě 1 ´L ą 0.
Moreover, a 1 ˝ϕ is in H 8 and by Lemma 2.3, the function ś n j"1 pϕpzq ´λj q m j {pz ´ξj q m j is in H 2 . Hence u P H 2 , which gives

ż V p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| 2 dmpξq }u} 2 2
p1 ´Lq 2 . Finally (4.13) is satisfied, from which it follows that the operator C ϕ is bounded on H pbq. Example 4.13. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product), and let a 1 pzq " ś n j"1 pz ´ξj q m j be the associated polynomial as in (2.3). Let ψ P H 8 and let

ϕpzq " c n ź j"1 pz ´ξj q α j ψpzq, z P D,
where for 1 j n, α j is a real number satisfying α j ą m j ´1{2, and c is a constant such that }ϕ} 8 " 1. Observe that the function ϕ : D Þ ÝÑ D is analytic and, since α j ą 1{2, for every 1 j n, we have lim sup

zÑξ j |ϕpzq| " 0 ă 1.
Moreover, since ϕpzq a 1 pzq " c ψpzq ś n j"1 pz ´ξj q m j ´αj , z P D, and 2pm j ´αj q ă 1, it is easy to check that ϕ{a 1 belongs to H 2 . In particular, ϕ P a 1 H 2 Ď H pbq. Thus, we can apply Corollary 4.12 which implies that C ϕ is bounded on H pbq.

SOME CHARACTERIZATION OF COMPACTNESS AND THE HILBERT-SCHMIDT

PROPERTY

As for the boundedness, we establish a link between the compactness of the operator C ϕ on H pbq and the compactness of the operator W u,ϕ on H 2 , where u is defined as in (3.3). In this section, we still assume that b P ballpH 8 q is a rational function (but not a finite Blaschke product), and a is its pythagorean mate to which we associate the polynomial a 1 pzq " ś n j"1 pz ´ξj q m j as in (2.3). 5.1. The link with weighted composition operator for compactness. The following general fact will be of use to us. It is probably folklore and we leave the proof to the reader. Here LpH , Kq denotes the space of bounded linear operator from an Hilbert space H into another Hilbert space K.

Lemma 5.1. Let T 1 P LpH 1 , H 2 q, T 2 P LpH 3 , H 4 q, V 1 P LpH 3 , H 1 q and V 2 P LpH 4 , H 2 q. Assume that T 1 V 1 " V 2 T 2 and
assume that V 1 is an isomorphism and V 2 is an isometry. Then T 1 is compact (respectively Hilbert-Schmidt) if and only if T 2 is compact (respectively Hilbert-Schmidt).

The following result will be the key in our characterization of compactness for the composition operators on H pbq. Theorem 5.2. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3). Then the following assertions are equivalent:

(i) C ϕ : H pbq Ñ H pbq is compact (respectively Hilbert-Schmidt).

(ii) W u,ϕ : H 2 Ñ H 2 is compact (respectively Hilbert-Schmidt).

Proof. According to Theorem 4.1, we can assume that both operators C ϕ and W u,ϕ are bounded respectively on H pbq and H 2 . For p `1 j n, denote by λ j :" ϕpξ j q P D and let ψ " u ś n j"p`1 p1 ´λ j ϕq m j .

On one hand, since ś n j"p`1 p1´λ j ϕq m j is in H 8 and invertible in H 8 (because |1´λ j ϕ| ě 1 ´|λ j | ą 0), the operator W u,ϕ is bounded (respectively compact or Hilbert-Schmidt) on H 2 if and only if the operator W ψ,ϕ is bounded (respectively compact or Hilbert-Schmidt) on H 2 .

On the other hand, let us consider the finite Blaschke product B associated to the sequence λ p`1 , . . . , λ n , with multiplicities m p`1 , . . . , m n , and denote by R 1 the restriction of C ϕ to the closed subspace a 1 BH 2 of H pbq,

R 1 : a 1 BH 2 ÝÑ H pbq f Þ ÝÑ R 1 f " C ϕ f " f ˝ϕ.
According to Lemma 2.4, the subspace a 1 BH 2 is of finite codimension in H pbq from which it follows that the operator C ϕ is compact (respectively Hilbert-Schmidt) on H pbq if and only if the operator R 1 is compact (respectively Hilbert-Schmidt) from a 1 BH 2 into H pbq. Therefore it is sufficient to prove that R 1 : a 1 BH 2 Ñ H pbq is compact (respectively Hilbert-Schmidt) if and only if W ψ,ϕ : H 2 Ñ H 2 is compact (respectively Hilbert-Schmidt). To make the link between these two operators, let us introduce now

V 1 : H 2 Ñ a 1 BH 2 f Þ Ñ V 1 f " a 1 Bf, and V 2 : H 2 Ñ H pbq g Þ Ñ V 2 g " a 1 g.
The subspace a 1 BH 2 is viewed here as a closed subspace of H pbq and in particular is equipped with the H pbq norm ~¨~b. Thus, according to (2.6), the operators V 1 and V 2 are isometries. Moreover, the operator V 1 is onto. Let us check that (5.1)

R 1 V 1 " V 2 W ψ,ϕ .
To this purpose, take f P H 2 . We have

pR 1 V 1 qpf q " R 1 pa 1 Bf q " pa 1 ˝ϕqpB ˝ϕqpf ˝ϕq " a 1 pa 1 ˝ϕq a 1 pB ˝ϕqpf ˝ϕq.
But observe that pa 1 ˝ϕq a 1 pB ˝ϕq " pa 1 ˝ϕq a 1 n ź j"p`1 pϕ ´λj q m j p1 ´λ j ϕq m j " u ś n j"p`1 p1 ´λ j ϕq m j " ψ. Thus, for every f P H 2 , we have

pR 1 V 1 qpf q " a 1 ψpf ˝ϕq " a 1 W ψ,ϕ f " pV 2 W ψ,ϕ qpf q,
which proves (5.1). It remains now to apply Lemma 5.1 to get that the operator R 1 : a 1 BH 2 Ñ H pbq is compact (respectively Hilbert-Schmidt) if and only if the operator W ψ,ϕ : H 2 Ñ H 2 is compact (respectively Hilbert-Schmidt). This concludes the proof.

It turns out that the compactness of weighted composition operators on H 2 has also been characterized by M. Contreras and A. Hernández-Díaz in [START_REF] Manuel | Weighted composition operators on Hardy spaces[END_REF] See [START_REF] Stephen | Vanishing carleson measures[END_REF] for a discussion on the vanishing Carleson measures and [START_REF] Eva | Boundedness, compactness and Schatten-class membership of weighted composition operators[END_REF] for a discussion on the compactness of the weighted composition operators on H 2 .

Using Theorem 5.2, we therefore immediately get from the previous discussion the following characterization for the compactness of the composition operators on H pbq. Corollary 5.3. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3) and let µ u,ϕ be the measure defined by (4.6). Then the following assertions are equivalent:

(i) C ϕ : H pbq Ñ H pbq is compact. (ii) µ u,ϕ is a vanishing Carleson measure. piiiq ż T p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| 2 dmpξq ÝÑ 0 as |w| Ñ 1.
We also have a characterization for the Hilbert-Schmidt property.

Corollary 5.4. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3). Then the following assertions are equivalent:

(i) C ϕ : H pbq Ñ H pbq is Hilbert-Schmidt. (ii) ż T |upξq| 2 1 ´|ϕpξq| 2 dmpξq ă 8.
Proof. Since pz n q ně0 is an orthonormal basis of H When we have a compact operator, we can slightly improve the conclusion of Corollary 4.5.

Corollary 5.6. Let ϕ P H pbq X ballpH 8 q satisfying (3.1) and (3.2), and for 1 k p, let 1 k n such that ϕpξ k q " ξ k . Assume that the operator C ϕ is compact on H pbq. Then for every 1 k p, we have m k ă m k . In particular, the ξ k 's cannot be fixed points for ϕ.

Proof. Argue by absurd and assume that C ϕ is compact on H pbq but for some 1 k p, we have m k m k . For simplicity, we denote " k . On one hand, according to Corollary 4.5, we should have m " m k (for this fixed k). On the other hand, it follows from Theorem 5.2 that the operator W u,ϕ is compact on H 2 . Hence its adjoint W ů,ϕ is also compact on H 2 . Recall now that for every λ P D, we have

W ů,ϕ k λ " upλqk ϕpλq ,
where k λ is the reproducing kernel of H 2 at point λ, and it is well-known that

k z }k z } 2 Ñ 0, weakly in H 2 , as |z| Ñ 1.
Thus, by compactness, we get

}W ů,ϕ k rξ k } 2 }k rξ k } 2 Ñ 0, as r Ñ 1,
from which it follows that

(5.3) |uprξ k q| 2 1 ´r2 1 ´|ϕprξ k q| 2 Ñ 0, as r Ñ 1.
Using the same arguments as in the proof of Corollary 4.5, it is easy to check that

ˆ1 ´|ϕprξ k q| 1 ´r ˙2m l ´1 2C r |uprξ k q| 2 1 ´r2 1 ´|ϕprξ k q| 2 p1 ´rq 2m k ´2m " 2C r |uprξ k q| 2 1 ´r2 1 ´|ϕprξ k q| 2 , where C r " ś n i"1,i‰k |rξ k ´ξi | 2m i ś n i"1,i‰l |ϕprξ k q ´ξi | 2m i 1 ś n j"p`1 |ϕprξ k q ´λj | 2m j . We deduce from (5.3) that lim rÑ1 1 ´|ϕprξ k q| 1 ´r " 0.
But this is in contradiction with Carathéodory's theorem.

Corollary 5.7. Let b be a rational function in ballpH 8 q (but not a finite Blaschke product) and assume that the zeros ξ j , 1 j n, on T of its pythagorean mate a all have the same multiplicities.

If C ϕ is compact on H pbq, then for all 1 j n, we have ϕpξ j q P D.

Proof. Argue by absurd and assume on one hand that the operator C ϕ is compact on H pbq and on the other hand that there exists some 1 k p, such that |ϕpξ k q| " 1. Then, by Theorem 3.5, there is some 1 k n such that ϕpξ k q " ξ k . But, by our assumption, we have m k " m k , which gives a contradiction with Corollary 5.6. Remark 5.8. Let bpzq " p1 `zq{2. According to Corollary 5.7, if ϕ P H pbq X ballpH 8 q and ϕp1q " 1, then the operator C ϕ is not compact on H pbq. In particular, we recover a result of D. Sarason and J.N. Silva [START_REF] Sarason | Composition operators on a local Dirichlet space[END_REF]Theorem 3.5] obtained in the context of local Dirichlet space Dpδ 1 q.

Corollary 5.7 might suggest that if a symbol ϕ touches the boundary at some boundary zeros of a, then C ϕ cannot be compact. This is not true as the following example shows. Example 5.9. Let apzq " cpz ´1qpz `1q 2 , z P D, where c is some suitable constant such that a P ballpH 8 q and let b be its pythagorean mate. Let us now consider the symbol ϕpzq " ´p1 `zq{2, z P D. Of course we have ϕp1q " ´1 and ϕp´1q " 0. Since b is non-extreme, ϕ P H pbq X ballpH 8 q. Now straightforward computations show that for every ξ P T, we have |upξq| 2 1 ´|ϕpξq| 2 -1, from which it follows by Corollary 5.4 that the operator C ϕ is Hilbert-Schmidt on H pbq. Corollary 5.10. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product) and let ϕ P H pbq X ballpH 8 q such that }ϕ} 8 ă 1. Then C ϕ is Hilbert-Schmidt on H pbq.

Proof. By our assumption, for every 1 j n, we have ϕpξ j q P D and the corresponding function u is defined by upzq " n ź j"1 pϕpzq ´ξj q m j n ź j"1 ˆϕpzq ´ϕpξ j q z ´ξj ˙mj .

Hence, according to Lemma 2. A reinforcement of the condition of Corollary 4.12 forces C ϕ to be compact on H pbq. Theorem 5.12. Let ϕ P H pbq X ballpH 8 q. Assume that for every 1 j n, we have (5.4) lim sup

zÑξ j |ϕpzq| ă 1,
and ϕpDq X T Ď tξ j : 1 j nu. Then C ϕ is compact on H pbq.

Proof. The assumption (5.4) implies that, for every 1 j n, we have λ j " ϕpξ j q P D. Hence, according to Corollary 5.3, the operator C ϕ is compact on H pbq if and only if

(5.5) lim |w|Ñ1 ˆżT p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| dmpξq ˙" 0,
where u is defined by upzq " a 1 pϕpzqq a 1 pzq ś n i"1 pϕpzq ´ϕpξ i qq m i . In order to prove (5.5), argue as in the proof of Corollary 4.12 to see that there exists 0 ă L ă 1 and δ ą 0 such that if V ξ j " tξ P T : |ξ ´ξj | ă δu, 1 j n and V " Ť n j"1 V ξ j , then for almost all ξ P V , we have |ϕpξq| L. Thus it follows that, for every w P D and for almost all ξ P V , we have dmpξq.

|1 ´wϕpξq| ě 1 ´|w||ϕpξq| ě 1 ´L ą 0.
In particular, in order to prove (5.6), it is sufficient to check that (5.7) lim |w|Ñ1 ˜żT p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq ¸" 0.

Since ϕ P H pbq Ď H 2 , the function ϕ has radial limits at almost all points in T. Denote by E " " ξ P T : ϕpξq " lim rÑ1 ´ϕprξq exists * .

We have mpTzEq " 0 and then ż T p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq " ż E p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq.

Fix now 0 ă ε ă 1 and for 1 j n, introduce the following subsets of E defined by For the integral on EzW , observe that

L ε :" sup ξPEzW |ϕpξq| ă 1.
Indeed argue by absurd and assume that L ε " 1. Then there exists pζ k q k Ď EzW such that |ϕpζ k q| Ñ 1, as k Ñ 8. By compactness, we may assume that ϕpζ k q Ñ e iθ , as k Ñ 8, for some θ P R. Hence, for every η ą 0, there exists N P N such that k ě N ùñ |ϕpζ k q ´eiθ | ă η 2 .

Since ζ k P E, there is 0 ă r k ă 1 such that

|ϕpr k ζ k q ´ϕpζ k q| ă η 2 ,
which gives that k ě N ùñ |ϕpr k ζ k q ´eiθ | η.

In particular, e iθ P ϕpDq X T and then our assumption implies that there exists 1 j n such that e iθ " ξ j . Therefore, ϕpζ k q Ñ ξ j , as k Ñ 8, which contradicts the fact that ζ k P EzW . Thus, L ε ă 1 and for every ξ P EzW , we have p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 4 N p1 ´Lε q 2 p1 ´|w| 2 q.

We then deduce that ż EzW p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq 4 N p1 ´Lε q 2 p1 ´|w| 2 q. Now, one can choose 0 ă r 0 ă 1 such that r 0 ă |w| ă 1 ùñ 4 N p1 ´Lε q 2 p1 ´|w| 2 q ε 2 , which gives ż T p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq ´4N }C ϕ } 2

LpH 2 q `1¯ε 2 .

Finally (5.7) is proved, which concludes the proof.

Example 5.13. Let bpzq " p1 `z2 q{2, z P D. Then, we easily check that its pythagorean mate is apzq " p1 ´z2 q{2, z P D. For γ ą 1{2, consider ϕpzq " ´1´z But ϕp˘iq " 1 and then ϕpDq X T " t1u. Thus, we can apply Theorem 5.12 which implies that the operator C ϕ is compact on H pbq.

5.3.

Hilbert-Schmidt property in some particular cases.

Corollary 5.14. Let bpzq " p1 `zq{2 and let ϕ P H pbq X ballpH 8 q. The following assertions are equivalent: (i) C ϕ is Hilbert-Schimdt on H pbq.

(ii) ϕp1q P D and ż T |ϕpξq ´1| 2 |ϕpξq ´ϕp1q| 2 |ξ ´1| 2 p1 ´|ϕpξq| 2 q dmpξq ă 8.

Proof. On one hand, recall that when bpzq " p1 `zq{2, then a 1 pzq " z ´1. On the other hand, observe that, according to Corollary 5. The previous examples motivate the following question. Question 5.17. Let b P ballpH 8 q be a rational function (but not a finite Blaschke product), and let a be its pythagorean mate. Is C a compact on H pbq?

Observe that according to Corollary 4.12, C a is at least always bounded on H pbq because, for all 1 j n, we have lim sup zÑξ j |apzq| " |apξ j q| " 0.

ON H pbq SPACES 2 . 1 . 1 )

 211 Definition of de Branges-Rovnyak spaces. Let ballpH 8 q :" ! b P H 8 : }b} 8 " sup zPD |bpzq| be the closed unit ball of H 8 , the space of bounded analytic functions on the open unit disk D " tz P C : |z| ă 1u, endowed with the sup norm. For b P ballpH 8 q, the de Branges-Rovnyak space H pbq is the reproducing kernel Hilbert space on D associated with the positive definite kernel k b λ , λ P D,

2

 2 dm for every measurable subset E of the closed unit disk D. Recall that a finite Borel measure µ on D is called a Carleson measure if there exists a constant M ą 0 such that µpSpξ, rqq M r, for any Carleson window Spξ, rq " tz P D : |z ´ζ| ru, where ξ P T and 0 ă r ă 1.

(

  

Corollary 5 .

 5 4 enables us to obtain the following improvement of Lemma 3.2.

W|ϕpξq ´ξj | 2m j ε 2 4 2 4

 42 j " tξ P E : |ϕpξq ´ξj | εu and W " N , whence ż W p1 ´|w| 2 q ś n j"1 |ϕpξq ´ξj | 2m j |1 ´wϕpξq| 2 dmpξq 4 N ε 2 ż T p1 ´|w| 2 q |1 ´wϕpξq| 2 dmpξq " 4 N ε 2 p1 ´|w| 2 q}C ϕ k w } 2 N ε 2 }C ϕ } 2LpH 2 q .

  It follows from (2.10) that pp ϕ ´ϕq{a 1 " ´φ P H 2 and since 1{ϕ and p h are in H 8 , the second term p h pp ϕ ´ϕq{pϕa 1 q is in H 2 . For the first term, using one more time that

	The polynomial p h can be constructed using Hermite interpolating polynomials. See
	for instance [1, Chap. 1, E.7]. According to (2.4), we need to check that the function
	ψ :"	h ´ph a 1	is in H 2 in order to conclude that h P H pbq. To this purpose, write
			ψ "	1 ϕ ´ph a 1	"	1 ϕ	.	1 ´ϕp h a 1
			"	1 ϕ	.	1 ´pϕ p h a 1	`1 ϕ	.	p h pp ϕ ´ϕq a 1	.
	1{ϕ P H 8 , it is sufficient to prove that	p ϕ p h a 1 ´1

  1. A well-known characterization of Carathéodory says that ϕ has an ADC at ξ P T if and only if

		c :" lim inf zÑξ	1 ´|ϕpzq| 1 ´|z|	ă 8.
	Moreover in this case, c " |ϕ 1 pξq| ą 0. See for instance [6, Theorem 2.44]. D. Sarason also
	observed that if ϕ has an ADC at ξ, then	
	(4.8)	z Þ ÝÑ	ϕpzq ´ϕpξq z ´ξ	is in H pϕq.

See

[START_REF] Sarason | Angular derivatives via Hilbert space[END_REF] 

or

[START_REF] Fricain | The theory of Hpbq spaces[END_REF] Theorem 21.1]

.

Corollary 4.5. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). For 1 k p, let 1 k

  then it follows from (4.10) that

	lim inf rÑ1	ˆ1 ´|ϕprξ k q| 1 ´r	˙2m l	´1 " 0,
	which is not possible by Carathéodory's theorem. Therefore, m k	m . Moreover, if
	m k " m , then it also follows from (4.10) that	
	lim inf rÑ1	1 ´|ϕprξ k q| 1 ´r	ă 8,

and by Carathéodory's theorem, the function ϕ has an ADC at point ξ k . Remark 4.6. Let's come back to Examples 4.3. In these examples, a has two zeros ζ 1 " 1 and ζ 2 " ´1, with multiplicities m 1 " 1 and m 2 " 2. If ϕ P H pbq X ballpH 8 q with ϕp´1q " 1, then, according to Corollary 4.5, the operator C ϕ cannot be bounded on H pbq. In other words, if C ϕ is bounded on H pbq, then either ϕp´1q P D or ϕp´1q " ´1.

In particular, we recover the conclusion of Example 4.3 (c).

  1, that C ϕ is bounded on H pbq. It should be noted that the condition u P H pϕq is not, in general, a necessary condition for the boundedness of the operator C ϕ on H pbq. Indeed, if we come back to Example 4.3 (b), the symbol ϕ is a Blaschke factor associated to point r P p0, 1q, and then H pϕq " K ϕ " Ck r , where k r pzq " p1 ´rzq ´1. Moreover, the operator C ϕ is bounded on H pbq, whereas the associated function u is not a constant multiple of k r , and thus u R H pϕq.

	Remark 4.8.

  . Recall that a finite Borel measure µ on D is called a vanishing Carleson measure if Then, it is proved in[START_REF] Manuel | Weighted composition operators on Hardy spaces[END_REF] that the operator W u,ϕ is compact on H 2 if and only if µ u,ϕ is a vanishing Carleson measure, where µ u,ϕ is defined by (4.6). Moreover, the vanishing Carleson property for a measure µ is equivalent to the compactness of the embedding H 2 Ď L 2 pµq, which satisfies the reproducing kernel thesis, meaning that H 2 embeds compactly into L 2 pµq if and only if ż

	lim rÑ0	sup ξPT	µpSpξ, rqq r	" 0.

D 1 ´|w| 2 |1 ´wξ| 2 dµpξq Ñ 0, as |w| Ñ 1.

Some necessary/sufficient conditions for compactness.

  2 , the operator W u,ϕ : H 2 Ñ H 2 is Hilbert-Schmidt if and only if We have an analogue of Corollary 4.4 for the compactness. Let ϕ P H pbq X ballpH 8 q and assume that ϕ satisfies (3.1) and (3.2). Let u be the function defined by (3.3) and assume that u P H 2 . Assume also that(5.2) supess zPA δ |upzq| Ñ 0, as δ Ñ 0,where A δ :" tζ P T : |ϕpzq| ě 1 ´δu. Then the operator C ϕ is compact on H pbq.

	But observe that					
	8			8			8	ż
	ÿ	}W u,ϕ z n } 2 2 "	ÿ	}uϕ n } 2 2 "	ÿ	|upξq| 2 |ϕpξq| 2n dmpξq.
	n"0			n"0			n"0	T
	By the monotone convergence theorem, we get
		8					ż	8
		ÿ	}W u,ϕ z n } 2 2 "	|upξq| 2	ÿ	|ϕpξq| 2n dmpξq
		n"0					T	n"0
					"	ż T	|upξq| 2 1 ´|ϕpξq| 2 dmpξq.
	The conclusion follows now directly from Theorem 5.2.
	5.2. Corollary 5.5.					
				8	
				ÿ	}W u,ϕ z n } 2 2 ă 8.
				n"0	

Proof. According to Theorem 5.2, the operator C ϕ is compact on H pbq if and only if the operator W u,ϕ is compact on H 2 . Now the conclusion follows applying [14, Theorem 2.9].

  3, this function u belongs to H 2 . It remains to observe that and Corollary 5.4 implies that C ϕ is Hilbert-Schmidt on H pbq. It is not difficult to see that the proof of Theorem 5.2 also shows that C ϕ is of trace-class on H pbq if and only if W u,ϕ is of trace-class on H 2 . Using now [14, Theorem 2.8], we can deduce that when }ϕ} 8 ă 1, the operator C ϕ is indeed trace-class on H pbq.

	ż	T	|upzq| 2 1 ´|ϕpζq| 2 dmpζq	}u} 2 2 1 ´}ϕ} 2 8	ă 8,
	Remark 5.11.				

  Hence, for almost all ξ P V , we obtain that According to Lemma 2.3, since ϕ P H pbq, we know that ψ P H 2 and we deduce that To this purpose, observe that for ξ P TzV , we have for every 1 j n, |ξ ´ξj | ě δ, whence|a 1 pξq| " |ξ ´ξj | m j ě δ N .Moreover, for almost all ξ P TzV , we have |ϕpξq ´ϕpξ j q| m j 2 N ,

								n
								ź
								j"1
					n			
					ź		
					j"1		
	which gives that						
					|upξq|	ˆ2 δ	˙N |pa 1 ˝ϕqpξq|.
	Hence, we obtain					
	ż TzV	p1 ´|w| 2 q	|upξq| 2 |1 ´wϕpξq| 2 dmpξq	ˆ2 δ	˙2N ż	TzV	p1 ´|w| 2 q|a 1 pϕpξqq| 2 |1 ´wϕpξq| 2	dmpξq
								ˆ2 δ	˙2N ż	T	p1 ´|w| 2 q |1 ´wϕpξq| 2 ś n j"1 |ϕpξq ´ξj | 2m j
					|upξq| 2 |1 ´wϕpξq| 2	}a 1 ˝ϕ} 8 p1 ´Lq 2 |ψpξq| 2 ,
	where				ψpξq "	n ź j"1	ˆϕpξq ´ϕpξ j q ξ ´ξj	˙mj	, ξ P T.
			ż	V	p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| 2 dmpξq p1 ´|w| 2 q	}a 1 ˝ϕ} 8 p1 ´Lq 2 }ψ} 2 2 ,
	from which it immediately follows that
					lim |w|Ñ1 ˆżV	p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| 2 dmpξq ˙" 0.
	In order to prove (5.5), it remains to check that
	(5.6)				lim |w|Ñ1 ˜żTzV	p1 ´|w| 2 q|upξq| 2 |1 ´wϕpξq| 2 dmpξq ¸" 0.

  and since γ ą 1{2, we have ϕ P aH 2 Ď H pbq. Moreover, lim

					2 2 ¯γ, z P D. Observe
	that				
	ϕpzq apzq	"	1 ´1´z 2	¯1´γ ,	z P D,
			2		

zÑ˘1 ϕpzq " 0. Finally, we see that

|ϕpzq| " 1 ô ˇˇˇ1 ´z2 2 ˇˇˇ" 1 ô z 2 " ´1 ô z " ˘i.

  [START_REF] Peter | Theory of H p spaces[END_REF], the condition ϕp1q P D is necessary for the compactness of C ϕ on H pbq. Now, it follows from Corollary 5.4 that the operator C ϕ is Hilbert-Schmidt on H pbq if and only if It is known that the operator C a is not compact on H 2 (see[START_REF] Shapiro | Composition operators and classical function theory[END_REF]), whereas, according to Corollary 5.14, the operator C a is Hilbert-Schmidt on H pbq. Indeed, on one hand, we have ap1q " 0. On the other hand, easy computations show that whence assertion (ii) of Corollary 5.14 is trivially satisfied. Thus the operator C a is Hilbert-Schmidt on H pbq. Let bpzq " p1 ´z2 q{2, z P D. Then, it is easy to see that apzq " p1 `z2 q{2, z P D, and thus a 1 pzq " z 2 `1 " pz ´iqpz `iq, z P D. According to Corollary 4.12, observe that C a is bounded on H pbq, because Hence, according to Corollary 5.4 the operator C a is not Hilbert-Schmidt on H pbq.

			ż T	|upξq| 2 1 ´|ϕpξq| 2 dmpξq ă 8,
	where	upzq "	a 1 pϕpzqq a 1 pzq	pϕpzq ´ϕp1qq "	pϕpzq ´1qpϕpzq ´ϕp1q z ´1	,
	which gives the result.				
			|apξq ´1| 2 |apξq ´ap1q| 2 |ξ ´1| 2 p1 ´|apξq| 2 q	"	1 4	,
	Example 5.16. lim sup	|apzq| " |ap˘iq| " 0.
			zÑ˘i
	Now straightforward computations show that
		|upξq| 2 1 ´|apξq| 2 "	|upξq| 2 |bpξq| 2 -	|1 `apξq 2 | 2 |1 `ξ2 | 2 |1 ´ξ2 | 2	.
	In a neighborhood of 1, we then have
				|upξq| 2 1 ´|apξq| 2 -	1 |1 ´ζ| 2 ,
	from which it follows that			
			ż		

Example 5.15. Let bpzq " p1 `zq{2, z P D. Then apzq " p1 ´zq{2, z P D. T |upξq| 2 1 ´|apξq| 2 dmpξq " 8.
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