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COMPOSITION OPERATORS ON DE BRANGES-ROVNYAK SPACES
ASSOCIATED TO A RATIONAL (NOT INNER) FUNCTION

RIM ALHA]JJ] AND EMMANUEL FRICAIN

ABSTRACT. In this paper, we characterize the boundedness, the compactness and the
Hilbert-Schmidt property for composition operators acting from a de Branges—Rovnyak
space J#(b) into itself, when b is a rational function in the closed unit ball of H* (but not
a finite Blaschke product). In particular, we extend some of the results obtained by D.
Sarason and ].N. Silva in the context of local Dirichlet spaces.

1. INTRODUCTION

In this paper, we study the composition operators C,(f) = foyp acting on a de Branges—
Rovnyak space .7 (b), associated to a function b belonging to the closed unit ball of H*
and satisfying log(1— |b]) € L!(T). The de Branges—Rovnyak spaces .7 (b) (see the precise
definition in Section 2) have been introduced by L. de Branges and ]. Rovnyak in the con-
text of model theory. A whole class of Hilbert space contractions is unitarily equivalent
to the restriction of the backward shift operator to .7(b) for an appropriate b belonging
to the closed unit ball of H*.

The study of composition operators has quite a recent history, but the literature on this
subject has grown very quickly and many efforts have been dedicated to characterizing
the standard spectral properties in various reproducing kernel Hilbert spaces [6, 29]. It
finds its roots in the pioneering works of E. Nordgren [22] and H.J. Schwartz [27] in the
sixties. The idea is to connect the properties of the operator C,, (boundedness, compact-
ness, Hilbert-Schmidt property,...) with the properties of its symbol . It is well-known
that for every analytic self-map ¢ of the open unit disk D, the operator C;, maps bound-
edly the Hardy space H? of the unit disk into itself. This is known as the Littlewood
subordination principle. The compactness is more subtle and has been characterized by
J. Shapiro [28] in terms of the behavior of the Nevanlinna counting function N, associ-
ated to the symbol ¢. Recall that the Nevanlinna counting function N, is a tool from
value distribution theory and is defined by

Ny(w) == > loglz|, ifwepD\{p0)} and Ny(w)=0, ifweD\p(D).
e(z)=w
In [18], Y. Lyubarskii and E. Malinnikova extended Shapiro’s compactness criterion for
composition operators C, acting from J#(0) = Kg into H?, where Ko = (OH?)' is
the so-called model space associated to an inner function ©. In [10], the second author
with M. Karaki and J. Mashreghi generalized some of the results of Y. Lyubarskii and
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E. Malinnikova for C, viewed as an operator from #(b) into H2, when b is a function
belonging to the closed unit ball of H*. Note that, since .7(b) is contractively contained
into H? (and even is closed in H? if b = © is inner), then, according to the Littlewood
subordination principle, the composition operator C, always maps boundedly #(b) into
H?.

If we require that the operator C, maps J#(b) into itself, the situation becomes dra-
matically more difficult and it imposes severe restrictions on the symbol ¢. It has been
studied by ]. Mashreghi and M. Shabankhah in [19, 20] for model spaces Kg, mainly
when the inner function © is a finite Blaschke product, which implies that the space K¢
is of finite dimension. In this case of course, the question of boundedness and compact-
ness reduces to the question of knowing whether f o ¢ € Kg, for every f € Kg.

Let us recall that when b(z) = (1 + 2)/2, z € D, the associated de Branges-Rovnyak
space .7 (b) coincides with the local Dirichlet space D(d;) (with equivalence of the norms).
More generally, if b € ball(H*) is a rational function (and not a finite Blaschke product)
such that its pythagorean mate a (see Section 2 for the definition) has only simple zeros
on T, then it is known that J#(b) = D(u) (with equivalence of the norms), where 4 is a
positive discrete measure supported on the set of the zeros of a on T. See [5]. Here D(1) is
the space of holomorphic functions on D whose derivatives are square-integrable when
weighted against the Poisson integral of the measure p. In [26], D. Sarason and J.N. Silva
studied the composition operators on D(11). They gave a criterion for the boundedness,
the compactness and the Hilbert-Schmidt property of C, on D(¢;) in terms of the behav-
ior of a counting function appropriate for the space D(d;). Of course, their results can be
translated immediately in the context of .77 (b) space where b(z) = (1 + z)/2.

One of the main difficulties when we deal with .#(b) spaces is to check if a given func-
tion f belongs or not to .7 (b). Contrary to most of the classical spaces (Hardy space,
Bergman space, Dirichlet space,...), the membership to .7(b) cannot be characterized di-
rectly by an integral condition (at least it is not known). That causes some difficulties
to check if a composition operator C, maps s#(b) into itself. In this paper, we will re-
strict ourselves to the case when b is a rational function in the closed unit ball of H%,
which is not a finite Blaschke product. In this case, we have a concrete description of
the 77 (b) space which makes the situation more tractable. In particular, the key point
in our method is a link we establish between the properties of a composition operator
Cy : H(b) — H(b) and the properties of some related weighted composition operator
W, (f) = u(f o ¢), acting on H?. Here u will be some appropriate function depending
on the values of ¢ at the zeros of the pythagorean mate a of b. Then, using known results
on Wy, we characterize the boundedness, the compactness and the Hilbert-Schmidt
property of C,, on 7 (b).

Let us mention that all the results we obtain in this paper can be translated in the con-
text of D(u) spaces where p is a finite sum of Dirac measures, and we then extend or
recover many results obtained by D. Sarason and J.N. Silva in the context of local Dirich-
let space D(d1). However, our two approaches are different. Indeed, D. Sarason and J.N.
Silva used an approach based on an appropriate counting function, whereas we use an
approach based on an interesting link with some weighted composition operators.

In Section 2, we present a quick overview of some known properties of de Branges—
Rovnyak spaces, useful for our study of composition operators. We also prove a new
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result on multipliers which is interesting in its own right. In Section 3, we give some
necessary /sufficient conditions for boundedness. In particular, we prove that the bound-
edness of C, imposes some restrictive conditions on the values of ¢ at the zeros of a on
T. Section 4 contains a characterization for the boundedness, whereas, in the last section,
we give a characterization for the compactness and the Hilbert-Schmidt property. As we
will see, major differences between the H? case and the 7 (b) case emerge, and in partic-
ular, we exhibit some examples of symbols ¢ for which C, is Hilbert-Schimdt on .77 (b)
but not compact on H2. We also discuss interesting connections with angular derivatives
in the sense of Carathéodory.

2. PRELIMINARIES ON .7 (b) SPACES

2.1. Definition of de Branges—Rovnyak spaces. Let
ball(H*) i= {be H* : |b]c = sup|b()| < 1}
zeD

be the closed unit ball of H*, the space of bounded analytic functions on the open unit
disk D = {z € C : |z2|] < 1}, endowed with the sup norm. For b € ball(H%), the de
Branges—Rovnyak space 7 (b) is the reproducing kernel Hilbert space on D associated with
the positive definite kernel kl)’\, A € D, defined as

@1) K(z) = L2

We refer the reader to the book [25] by D. Sarason and to the recent monograph [11, 12] by
the second author and J. Mashreghi for an in-depth study of de Branges—-Rovnyak spaces
and their connections to numerous other topics in operator theory and complex analysis.

It is known that () is contractively contained in the Hardy space H? of analytic
functions f on D for which

, zeD.

1

e o= (s [ 1700 Pam(©) <,

O<r<1

where m is the normalized Lebesgue measure on the unit circle T = {{ € C : |¢| = 1}. For
f € H?, the non-tangential limit f(¢) := lim,_,¢ f(2) exists for m-almost every £ € T and
<

i = ([ 15©Pamie)*

See [7, 16]. Though 5 (b) is contractively contained in H?, it is generally not closed in the
H? norm. Indeed, 27 (b) is closed in H? if and only if b = I is an inner function, meaning
that |[1(¢)| = 1fora.e. € € T. In this case, 57 (b) = K; = (I H?)" is the so-called model space
associated to I. In the particular case when I = B is a finite Blaschke product associated
to the sequence A1, ..., A, (with multiplicities m1, ..., m;,), meaning that

m;
71—1(1—)\2) , ze,

where, for 1 < j < n, A\j € D, m; € Nand v € T, then we have an explicit description of
Kp given by

(2.2) KB={Hn F— j:pe%_l},

j=1
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where N = Z?zl m; and Zn_1 denotes the set of polynomials of degree less or equal to
N — 1. See [15, Corollary 5.18].

Another particular case is when [b]|; < 1. In this case, the space .7(b) coincides
with the Hardy space H? as sets (with an equivalent norm). As already mentioned in
the introduction, the problem of boundedness and compactness for C, on H? has been
completely solved. Therefore, we will assume in the rest of the paper that ||b|, = 1.

2.2. A description of .7(b) when b is a rational function. Although the contents of the
space #(b) may seem mysterious for a general b € ball(H®), it turns out that when
b € ball(H®) is a rational function (and not a finite Blaschke product) the description of
(D) is quite explicit. Such a b is a non-extreme point of ball(H*), which is equivalent
to log(1 — |b|) € L'(T), and so there is a unique outer function a, called the pythagorean
mate for b, such that a(0) > 0 and |a|?> + |b|*> = 1 a.e. on T. When b is rational, a is also a
rational function and can be obtained from the Fejér—Riesz theorem. See [8].

Let &i,...,&, denote the distinct roots of a on T, with corresponding multiplicities
mi, ..., My, and define the polynomial a; by
(2.3) ai(z) = H(z — &),
j=1

Observe that since we assume that |[b]|, = 1, the function a has necessarily some zeros on
T (corresponding to the points where b achieves its maximum on the closed unit disk).
Results from [5, 8] show that .7#(b) has an explicit description as

(2.4) Hb) =aH* ® Pn_1,

where N = m; + --- + m,, and @ above denotes a topological direct sum in .#(b). More-
over, if f € J#(b) is decomposed with respect to (2.4) as

(2.5) f:aIfN—l—pf, where f € H? and py € Pn_1,

an equivalent norm on .7 (b) (to the natural one | - |, induced by the positive definite
kernel k%, A € D, above) is

(2.6) lavf + sl = 17152 + IpslZe

Also we use the scalar product (-, -); associated to || - ||, defined as

(27) <f1f2>b = <f~.17 f~.2>2 + <pf1 7pf2>27

for every f1 = alfl +pp, o= fg + py, in A (b). In particular, with the scalar product
given by (2.7), the direct sum in (2.4) becomes an orthogonal sum. It is important to note
that || - ||, is only equivalent to the original norm | - |, associated to the kernel in (2.1), and
its scalar product as well as the reproducing kernels and the adjoints of operators defined
on . (b) will be different. However, the boundedness and compactness properties for
the operator C, on 7 (b) do not depend on the equivalent norm we consider. So in the
rational case, there is no problem to work with the norm given by (2.6) and the scalar
product given by (2.7), which we will do in the rest of the paper.

Notice that we exclude the case when b is a finite Blaschke product because, as already
mentioned, this case has already been studied in [19, 20] for the boundedness, and since
the associated .7 (b) space is of finite dimension (when b is a finite Blaschke product), the
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problem of the compactness for the operator C,, on . (b) reduces to the problem of its
boundedness.

An important property of functions f in J#(b), when b € ball(H®) is rational (but
not a finite Blaschke product), is the existence of non-tangential limits for f and some
of its derivatives at certain points on T. More precisely, for every 1 < j < n, for every
0 < k<mj—1landevery f € 5 (b), we have

(2.8) f(lf) (fj) = zhi? f(k)(z) — p;k) (&)7
25

where [ = a1f+ pr with fe H? and pr € Pn_1. See [11, Corollary 27.22].

2.3. The multipliers of .7#(b) spaces when b is rational. A tool which will turn out to
be useful when studying the boundedness and compactness of composition operators on
(D) is the notion of multipliers. Recall that the set 0(.7(b)) of multipliers of J#(b) is
defined as

M(A (b)) = {p e Hol(D) : pf € H(),Vf € H(b)}.

Using standard arguments, we see that M (77 (b)) = H* N (b). In general, this inclusion
is strict. However, when b € ball(H®) is rational (but not a finite Blaschke product), it is
proved in [9] that we have equality, meaning that

(2.9) M(A (b)) = H® n H(b).

The following result will be useful in our study of boundedness of composition oper-
ators and is interesting in its own right.

Lemma 2.1. Let b € ball(H*®) be a rational function (but not a finite Blaschke product). Let
o € A (b) and assume that 1/ € H*. Then 1/p € IM(I(b)).

Proof. Let a be the pythagorean mate of b, to which we associate the polynomial a;(z) =

[T}=1(z — &)™ asin (2.3). Using (2.4), we can decompose ¢ € 7(b) as

(2.10) Y =a1p + Py,

where ¢ € H? and Py € PN_1. We also know from (2.8) that for every 1 < j < n and
every 0 < k < m; — 1, the function ¢(¥) has a non-tangential limit at point ¢; and

oM (&) = plk)(g)).

The assumption 1/¢ € H® implies the existence of a constant § > 0 such that for every
z €D, |p(z)| = 4. In particular, letting z tend non-tangentially to §; gives p(;) # 0 for
every 1 < j < n.

Now set h = 1/p. According to (2.9) and our assumption, we need to prove that
h € (b). Notice that for every 0 < k < m; — 1, we have

h(k) _ ¢k<807 Qola e 7@0(k))
- ¢k+1 ’

where 1)), is a polynomial of k£ + 1 variables. In particular, we deduce that for every
1< j <nandevery 0 < k < m; — 1, the function h¥) has a non-tangential limit at &;.
Consider now the (unique) polynomial p;, € &n_1 such that

&) =), 1<G <0<k <m;—1.
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The polynomial p;, can be constructed using Hermite interpolating polynomials. See
for instance [1, Chap. 1, E.7]. According to (2.4), we need to check that the function

(DRES h;m is in H? in order to conclude that h € 5#(b). To this purpose, write
= é—Ph _ l.l—cpph
ai ‘2 ai
_ 1 1-pepn 1 palpe — )
¥ ai 2 ax
It follows from (2.10) that (p, — ¢)/a; = —p € H? and since 1/ and py, are in H®,
the second term py(p, — ¢)/(pa1) is in H2. For the first term, using one more time that
Peph — 1

1/ € H™, it is sufficient to prove that € H2. To this purpose, observe that for

ai
1 < j < n,wehave

(Pepn — 1)(&5) = w(§)R(&) —1 = 0.
Thus every point §;, 1 < j < n, is a zero of the poynomial p,p, — 1. Moreover, for
I<j<nand1 <k <mj—1 wehave

(pepn = W (&) = (pepn) ™ (&)

pO (&0 (&)

I
1=
PR
~
~_
o=
<

_ R\ @ e\p,(k—0)

= &)h &)
2 (5) e epme—o
(ph)® (&)

= (ph - 1)®(g) =0,

because ph—1 = 0. Hence, for every 1 < j < n, ; is a zero of the polyomial p,p;, — 1 with
a multiplicity at least m; — 1. In particular, the polynomial a1 (z) = [ [}, (z — ;)™ divides
the polynomial p,p, — 1, meaning that the function (p,pn, — 1)/a; is also a polynomial
and thus belongs to H?. Finally 1) € H? and then 1/ € J#(b). O

Corollary 2.2. Let b € ball(H®) be a rational function (but not a finite Blaschke product). Let
o € A (b) n H®. Then, for every A € C, |\| < ||z, the function 1/(1 — Xp) € M((b)).

Proof. This result follows immediately from Lemma 2.1, because first 1 — Ay € 7 (b) and
second B

1= 2p(2)| = 1= [Mp(2)] = 1 = [Al|¢llo >0,
which implies that 1/(1 — \p) € H®. O

2.4. Two technical results in .7 (b) when b is a rational function. The next result intro-
duces a function 1), related to the symbol ¢, which will be useful in our characterization
for the boundedness of the operator C, on 7 (b). In order to prove the result, we need to
recall a formula on boundary Taylor expansion. Let h be an analytic function on the open
unit disk D. Assume that h, //, ... h() have non-tangential limits at a point ¢ € T. Then
we can write

LR
(2.11) h(z) =] neLe) (z=F+ (2 —86%(2), =zeD,

!
=
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where ¢ is an analytic function on D with a zero non-tangential limit at {. A version of
this formula appears in [11, Lemma 22.5] in the context of the upper half-plane but the
proof can be easily adapted to the context of the open unit disk.

Lemma 2.3. Let b € ball(H*®) be a rational function (but not a finite Blaschke product), let a be
its pythagorean mate to which we associate the polynomial ay(z) = [;_,(z — &)™ as in (2.3).
To each ¢ € 7 (b) n H®, we associate the function 1 defined as

¥(z) =j1j (W)mj, zeD.

z

Then ) belongs to H>.

Proof. Let h = []_1(» — #(§;))™, so that i) = h/a1. By our assumption and (2.9), the
function h belongs to /#'(b). In particular, there exists h e H? and p, € Py_ such that
h = aih + py. It follows from [11, Corollary 27.22] that

mg;—

1
B (&),
py

(2.12) ph=)
=1

where (7; ) 1<i<n, 0<k<m;—1 are the Hermite polynomials of degree less or equal to N — 1
such that

(Z) N 1 ifi:jandk:zé
Tik (&) = { 0 otherwise '

Observe that it is sufficient to prove that
(2.13) h(k) (&) =0, foreveryl <i<nand0 <k <m; — 1.
Indeed, it follows from (2.12) and (2.13) that p;, = 0, which implies that

b=t =
ay

whence ) € H?.
In order to prove (2.13), fix 1 < ¢ < n. On one hand, observe that

(2.14) h = (¢ — (&)™ i,

where 1); is an analytic function which has a non-tangential limit at ;. Moreover, accord-
ing to (2.11), we can write

p(2) = (&) + (2 = &)¢'(&) + (2 = &)e(2),

where € is an analytic function on D which has a zero non-tangential limit at point &;.
Thus, we get

h(z) = ((z = &)@/ (&) + (2 = &)e(2)) ™ wil2) = (2 = &)™ (¢'(&) + £(2)) ™ Wi(2).

On the other hand, since h € 7(b), using (2.8) and one more time (2.11), we also have

m;—1 (k) (¢
re) = 3 - + -6 a),

k=0
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where ¢; is an analytic function on D which has a zero non-tangential limit at point &;.
Therefore, we deduce that

"SRR ()

(2= &)™ (¢(&) +e(2) ™ pi(z) = D] TR &) + (2= &)™ te(2).
k=0 '
It is now easy to see that this identity implies that h(¥)(¢;) = 0 for 0 < k < m; — 1, which
concludes the proof of (2.13). O

We end this section with a result on some particular subspaces of .7 (b) which will be
of use to us in our study of compactness. It will enable us to restrict our composition
operators on some subspaces of finite codimension.

Lemma 2.4. Let b € ball(H®) be a rational function (but not a finite Blaschke product), let a be
its pythagorean mate to which we associate the polynomial ay as in (2.3). For every inner function
I, the subspaces a1 I H 2 and a1 K are closed in 7 (b). Moreover, we have

(2.15) H (D) Oy arIH? = 0\ K1 ®Ff Pn_1.
In particular, when I is a finite Blaschke product, the subspace a1 1 H? has a finite codimension in
J(b).

Here the notation &, denotes the orthogonal complement in 7 (b) with respect to the
scalar product defined in (2.7).

Proof. Let us introduce the operator V : H2 — #(b) defined by V(f) = a1f, f € H?.
According to (2.6), the operator V is an isometry from H? into . (b). Since the subspaces
K and IH? are closed subspaces of H 2 their ranges under V, respectively a; K; and
a1 H?, are closed in 77 (b).

Let us now check (2.15). To this purpose, let f € 22 (b). According to (2.5), write f as
f=a1f+p;where f e H? and p; € Py_;. Using (2.7), the function f € 2 (b) O a1 [H?,
if and only if for every h € H?, we have

0 ={f,arlhyy, = {arf + pg,arIhy, = (f, Ih)s,
which is equivalent to f € H?>© IH? = K;. In other words, f € a;K; ® Py_1, which

proves (2.15).
Now if I is a finite Blaschke product, then dim (k) < oo (see [12, Section 14.2]). Hence
dim(a1 K7 @é PN-_1) < ©, and the conclusion now follows from (2.15). O

3. SOME BASIC NECESSARY /SUFFICIENT CONDITIONS FOR BOUNDEDNESS

The aim of this section and the following is to study the boundedness of composition
operators C,, : J(b) — S (b), where Cy(f) = fop, f € A (b). Since 5 (b) is a space of
analytic functions on I, it is necessary to require that ¢ : D — D is an analytic self-map
on D, which is equivalent to require that ¢ € ball(H*).

3.1. The general case. We start with a very standard result in the theory of composition
operators on reproducing kernel Hilbert spaces but for completeness, we give a proof in
our context.

Lemma 3.1. Let b and ¢ belong to ball(H*). Assume that C,( (b)) < £ (b). Then the
followings hold:
(a) C, is a bounded operator on  (b).
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(b) If furthermore b is a non-extreme point of ball(H*), then ¢ belongs to 7 (b).

Proof. (a) We apply the closed graph theorem. Let (fi)i be a sequence in J7(b), and as-
sume that f, — fask — o, in . (b) and f; o ¢ —> gas k — o, in 7 (b). We need to
show that f o ¢ = g. Since the convergence in .7 (b) implies the pointwise convergence,
for every A € D, we have (f o ¢)(A) — g(A), as k — 0. But (fx 0 9)(A) = fr(e(N)) and
©(A) € D. Therefore, we also have fi(¢(A\)) — f(p(A)) as k — co. By unicity of the limit,
we then deduce that for every A € D, f(¢(\)) = g(A). In other words, f o ¢ = g, which by
the closed graph theorem implies that C, is bounded from /7 (b) into itself.

(b) Observe that when b is a non-extreme point of the closed unit ball of H*, the poly-
nomials belong to .7 (b) (see [11, Theorem 23.13]). In particular, the identity function e,
defined by e1(z) = 2, z € D, is in J(b), which immediately implies that ¢ = Cy(e;) €
H(D). O

It is not surprising that the problem for the boundedness of C', may occur when the
symbol ¢ touches the boundary. In the opposite case, if we assume furthermore that ¢
extends analytically trough the closed unit disc, we prove that the operator C, is always
bounded on .7#(b), when b is a non-extreme point of ball(H®).

First, let us recall that when b is a non-extreme point of ball(H*), then Hol(D), the
space of functions which are analytic in a neighborhood of the closed unit disk D, is
contained in JZ(b) (see [11, Theorem 24.6]).

Lemma 3.2. Let b be a non-extreme point of ball(H*®) and let ¢ € Hol(D) such that (D) < D.
Then C, is bounded on € (b).

Proof. Note that, for every f € 5 (b), we have f o ¢ € Hol(D) < s#(b). Then, according
to Lemma 3.1, the operator C,, is bounded from .7 (b) into itself. O

When b € ball(H®) is rational (but not a finite Blaschke product), we will see, in Sec-
tion 5, that the assumptions of Lemma 3.2 not only imply that the operator C, is bounded
but even Hilbert-Schmidt on .7°(b). We do not know if this is true for a general non-
extreme point b of ball(H®). In particular, the following question remains open.

Question 3.3. Let b be a non-extreme point of ball(H®) and let ¢ € Hol(D) such that
¢(D) < D. Does it follows that C,, is compact on 57 (b)?

3.2. The case when b is a rational function in ball(H*). Throughout the rest of this pa-
per, we now assume that b € ball(H®) is a rational function (but not a finite Blaschke
product) and |b]|c = 1. Let a be its pythagorean mate to which we associate the polyno-
mial a1(z) = [[}_;(z — ;)™ as in (2.3). We also denote by Zr(a) the set of the zeros of a
on T, that is
Zr(a) = €11 < <n).

In order to exhibit some crucial necessary conditions on the symbol ¢ for the bound-
edness of the composition operator C, on 7 (b), we need the concept of interpolating
sequence for H*, which we briefly recall now. We say that a sequence (z) in D is an
interpolating sequence for H® if, for every bounded sequence (wy), we can find a func-
tion f € H® such that f(z;) = wy, for every £ > 1. The interpolating sequences for H*
have been characterized by L. Carleson [2]. We simply mention a sufficient condition: if
there exists 0 < ¢ < 1 such that (z), satisfies |z;_1| < |2i| for every k > 2, and

1 — [z]

lim sup

koo 1= |ze—a| 7
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then (z;)x is an interpolating sequence for H*. See [21, page 159]. The following technical
and simple result will be useful for our study of composition operators on .7 (b).

Lemma 3.4. Let ¢ : D — I be a map which has a radial limit at € T satisfying p(§) € T. Then
there exists a sequence (i) < (0, 1) satisfying r, — 1, as k — oo, and the sequence (o(ri€))x
is an interpolating sequence for H™.

Proof. Let ()¢ < (0,1), ty — 1, as ¢ — . According to the assumption, we have
lo(t€)] — 1 as £ — co. Hence by induction, we can construct a subsequence (t, )r>1
such that for every k£ > 1, we have
1
1= Je(tg,8)l < 51 = lelte,, O))-
Define now rj, = ty, and z;, := @(r;€). Since

1
1=z < 5 (1 = |zp),
we deduce that . .
1i1rnsupﬂ <= <1,
k—o0 1- |Zk—1| 2
whence (z; ), is an interpolating sequence for H®. O

The next result now imposes some restrictions on the symbol ¢ for the boundedness
of the composition operator C,, on J#(b). According to Lemma 3.1, remind that, if C,, is
bounded on J#(b), then ¢ € #(b), and therefore, with (2.8), it follows that ¢ admits a
non-tangential limit p(¢;) at point §; for every 1 < j < n.

Theorem 3.5. Let ¢ : D — I be analytic. If Cy, is bounded on (b), then for every j €
{1,...,n}, we have
p(&) e DU Zr(a).

Proof. The idea of the proof is similar to [26, Lemma 4] (in the context of local Dirichlet
space). Observe that, for every j € {1,...,n}, we have |p({;)| < 1. Assume now that for
some j € {1,...,n}, we have |p(§;)| = 1, and let us show that ¢(¢;) € Zt(a). According
to Lemma 3.4, we can find a sequence (r;)r < (0,1), rp,—1, as k — o0, such that if
2, = @(1:€;5), k = 1, then (z;);, is an interpolating sequence for H*. In particular, there
is a function f € H* such that

1 if kis even

f(zx) = flo(rié;)) = { 0 ifkisodd

According to (2.4), the function a; f € J#(b) and thus C,(a1f) = (a1 o ).(f o ¢) also
belongs to /7 (b). In particular, (a1 o ).(f o ) has a non-tangential limit at &;. Thus (a1 o
©)(1:&5) (f © ¢)(rr&;) should have a limit when & — co. But observe that (f o ¢)(1:§;) =
f(2x) has two different cluster points and

n n

(a1 0 @) (k&) = | [(o(ru&s) — &)™ — [ [((&) — &)™, as k — .

i=1 i=1
Thus necessarily, we should have

n

[ [(e(&) —&)™ =o0.

i=1
Hence there exists 1 < ¢ < n such that p(¢;) = & € Zr(a). O
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We recover the following result observed by Sarason-Silva [26] in the context of D(d;)
space.

Corollary 3.6. Let b(z) = (1+ 2)/2 and ¢ : D — D be analytic. Assume that C,, is bounded on
H(b). Then either (1) e Dor (1) = 1.

Proof. It is sufficient to note that the pythagorean mate for b is given by a(z) = (1 — z)/2
and apply Theorem 3.5. O

In the study of boundedness of C,, on J#(b), according to Lemma 3.1 and Theorem 3.5,
we may assume without loss of generality that ¢ € J#(b) n ball(H*) and for every j €
{1,...,n}, we have

(&) € D v Zr(a).

Up to rearranging the sequence {;, 1 < j < n, we will now assume throughout this
paper that

(3.1) p(&) € Zr(a)  forl<j<p,
and
(3:2) p¢)eD  forp+1<j<n,

where 0 < p < n. When p = 0, the condition (3.1) is void and it corresponds to the
case when all the non-tangential limits ¢(¢;) belong to D. When p = n, the condition (3.2)
is void and it corresponds to the case when all the non-tangential limits ¢ (¢;) belong to T.

We end this section by an important necessary condition for the boundedness of the
operator C, on s#(b) which will be of use to us when making a connection with the
boundedness of some related weighted composition operators on H2.

Lemma 3.7. Let ¢ € J(b) n ball(H*) and assume that o satisfies (3.1) and (3.2). If C,, is
bounded on 7 (b), then the function

(a1 0 @) [Tjopia(p — (&)™
ai

(3.3) u=

belongs to H?.
Proof. Denote by

v={(aro9)- [] (—wE)m™,
j=p+1
so that u = v/a;. The proof is similar to the proof of Lemma 2.3, with some additional
difficulties due to the fact that we cannot decompose v as in (2.14) for the indices i such
that1 <i < p.
Since ¢ € S (b) n H® = M(s (b)), the function v belongs to .7(b). As in the proof of
Lemma 2.3, it is sufficient to prove that

(3.4) v (&) =0, foreveryl <i<nand0 <k <m; —1.

k
We decompose the proof of (3.4) into two cases depending 1 <i < porp+1<i<n.
First, let 1 < i < p. According to (3.1), we have a1(¢(&)) = 0, whence v(§;) = 0. In
order to prove that v(¥)(&;) = 0 for every 1 < £ < m; — 1, we use a similar argument used
in the proof of Theorem 3.5. We construct a function f € H® such that the membership
of v- (f o) to 7 (b) will force the derivatives of v at &; to vanish up to order m; — 1. So,
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first apply Lemma 3.4 to construct a sequence (74); < (0,1), 7y — 1 as k — oo, and such
that if z;, = (&), k > 1, then the sequence (z;) is an interpolating sequence for H®.
Thus, there exists f € H* such that

1 if kiseven

f(zk) = fle(rigy)) = { 0 ifkisodd -

Define h(2) := a1(2) [[_,11(2 — (&)™ f(2), z € D, and observe that ho p = v - (f o ).
Since h € a1 H? < #(b) and since C,, is bounded on 7 (b), the function h o ¢ € J(b).
In particular, according to (2.8), for every 0 < ¢ < m; — 1, the function (h o <p)(€) has a

non-tangential limit at &;. It follows from (2.11) that we can write

m;—1 o O (¢,
(hop))= >y P ey (o mgymiee),

£=0

where ¢ is an analytic function on D which has a zero non-tangential limit at point &;.
Observe that

[(ho@)(r&)| < [v(r&)| [ flee — 0, asr—17.

Hence (h o ¢)(&;) = 0. Then we deduce from Taylor’s formula above that

(ho @) (&) = lim (ho %O)(?ii)_—l )(2 0 0)(&)

~ lim v(rg&i) —v(&i) ;
_kLoo( GENTIEA ’“)>'

Since lim m = v/(&), and f(zx) = 1if k is even and 0 if k is odd, it follows
k—o (1, — 1)&;

necessarily that we should have v/(§;) = 0 = (h o ¢)'(&).
Now using an induction argument, we easily prove that for every 0 < ¢ < m; — 1,

v9(&) = (hop)P(&) =0,

which concludes the proof of (3.4) when 1 < i < p.

Second, let p + 1 < i < n. Observe that in this case, we have v = (¢ — ¢(&))™ s,
where 1); is an analytic function which has a non-tangential limit at &;. Then, argue as in
Lemma 2.3, to get that v (&) =0forevery 0 < ¢ < m; — 1. O

Remark 3.8. Compared to Lemma 2.3, the conclusion of Lemma 3.7 is no longer true if we
replace the assumption that C,, is bounded on /#(b) by the weaker assumption that ¢ €
(D). See Example 4.3 (c) where we exhibit a function ¢ belonging to .7 (b) n ball(H™)
but the corresponding u is not in H2.

4. SOME CHARACTERIZATION OF BOUNDEDNESS

Recall that b is assumed to be a rational function (but not a finite Blaschke product)
in ball(H®), a is its pythagorean mate to which we associate the polynomial a;(z) =

[T}y (z — &)™ asin (2.3).
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4.1. The link with weighted composition operators on H2. The following result is the
key point to characterize the boundedness of composition operators on .7#(b), making a
connection with the boundedness of some weighted composition operators on H2.

Theorem 4.1. Let ¢ € 7 (b) n ball(H™) and assume that o satisfies (3.1) and (3.2). Let u be
the function defined by (3.3). Then the following assertions are equivalent:
(i) Cy, : H(b) — H(b) is bounded;
(i1) W : H?> — H? is bounded, where W, ,(f) = u(f o ¢), f € H%.
Proof. Denoteby \; = ¢(&;) forp+1 < j < n.
(i) == (ii): assume that C, is bounded on #(b), and let f € H?. Consider the
function h defined by

n

hz)i=a(z) [] G=A)™f(z), zeD

Jj=p+1

Since h € ay H? < 5#(b), the function h o ¢ € 7 (b). According to (2.4), decompose h o ¢
ashoy=aig+p, withge H? and p € #n_;. Rewrite this as

h
(4.1) gt B
al al
and observe that
ho (a1 0 @) [T5—ppi(—Aj)™
. b+l L (fop) =u(foy).

al ay

Since C,, is bounded on #(b), Lemma 3.7 implies that uw € H? and by the Littlewood
subordination principle, f o p € H2 Thus u.(f o p) € H' and (4.1) implies that p/a; € H".
Using the fact that deg(p) < N — 1 < deg(a1), it is not difficult to see that necessarily
p = 0. Therefore u.(f o ) = h;f =g € H? and W, ,(H?) < H?. It remains to apply the
closed graph theorem to get that W, ,, is bounded on H?.

(ii) = (i): assume now that W, , is bounded on H2. According to Lemma 3.1, it
is sufficient to prove that for every f € J#(b), we have f o ¢ € J(b). Using (2.4), this is
equivalent to prove that

(4.2) popeH(b) for every polynomial p e Zn_1,
and
(4.3) (a1 0p)(goyp) e H(b) for every function g € H*.

For the property (4.2), observe that according to (2.9), o € H® N (b) = M(7 (D)), and
since 1 € JZ(b), it follows that ¢" € J#(b) for every n > 0. Hence for every polynomial
p € Zn-_1, the function p o ¢ belongs to 7 (b).

For the property (4.3), let us consider the finite Blaschke product associated to the

sequence A\p41,. - ., A, (With multiplicities my41, ..., my). In other words,
- z—=X\"
B(z) = H < =2 > , zeD.
J=pt1 1-— )\jz

Recall that we have an explicit description of Ky = (BH?)* given by (2.2). In order to
prove (4.3), using that H? = BH?® K g, we will also decompose the proof into two steps:

(4.4) (a1 0 @)((Bh) o ) € F(b), for every function h € H?,
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and

poy .
(4.5) ai o p) - = - | € H(D), for every polynomial p € Py, 1,
(on [T (1= Aj0)m Y poyn et

where N1 = 3% | m;. For (4.4), observe that

(a10¢) ((Bh)oy) = (a10¢)(Boy)(hoyp)
1

= Q1U=y 3 ma (h © 90)
Hj=p+1(1 - AJSO) J

where hy = h/[]j_,,,(1—X;2)™. Since hy € H? and W,,,, is bounded on H?, we deduce
that the function (a1 o ¢) ((Bh) o ) belongs to a; H < 5#(b), which proves (4.4).

For (4.5), observe that according to Corollary 2.2, for p + 1 < j < n, the function
(1 —Xjp)~t € M((b)). Moreover, since ¢ is also a multiplier of 77 (b) and the set
M(A (b)) is an algebra, it follows that

LoD ®o?) i (v)) < ().
l—[j=p+1(1 B Ajw)mj

which proves (4.5). Therefore (4.3) is also satisfied and then C, is bounded on J#(b). O

It turns out that the boundedness of weighted composition operators on H? has al-
ready been characterized by M. Contreras and A. Hernandez-Diaz in [4]. Let us introduce
the Borel measure 4, on D defined by

(4.6) pace(B) = | [uf2 dm

e 1 (E)nT
for every measurable subset E of the closed unit disk D. Recall that a finite Borel measure
pon D is called a Carleson measure if there exists a constant M > 0 such that

u(S(&,r)) < Mr,

for any Carleson window S(¢,r) = {z € D : [z — (| < 7}, where { € Tand 0 < r < 1.
It is proved in [4] that W, ., is bounded on H? if and only if j,,, is a Carleson measure.
Moreover, recall that the Carleson property for a measure 1 is equivalent to the embed-
ding H? < L*(u) (as was proved by L. Carleson [3]) and this embedding satisfies the
reproducing kernel thesis, meaning that H* < L?(p) is equivalent to

1—|w 2 kaH%Q
supf |||2dﬂ(£) — sup —— )

weD JD |1 - wg welD kaH%
See [21, Lecture V11] or [12, Theorem 5.15]. See also [14] for a discussion on the bound-
edness of weighted composition operators on H>.
Using Theorem 4.1, we therefore immediately get from this the following characteri-
zation for the boundedness of C, on .77 (b), when b is a rational function (but not a finite
Blaschke product) in ball(H*).

Corollary 4.2. Let p € J(b) n ball(H®) and assume that ¢ satisfies (3.1) and (3.2). Let u
be the function defined by (3.3) and let p., , be the measure defined by (4.6). Then the following
assertions are equivalent:

(i) C, : H(b) — H(b) is bounded;
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(%) fiu,p is a Carleson measure;

u(©)I”

10%) Sup,, 1 — |wl|? _
) supuep | (1= bl
Proof. The equivalence (i) <= (i) follows from Theorem 4.1 and the result of M. Contr-
eras and A. Hernandez-Diaz mentioned above. The equivalence (ii) <= (iii) has been
already observed in [14]: it follows from the fact that 1, , is a Carleson measure if and
only if

dm(&) < 4o0.

1— |w|?
sup [ dof€) <
welD ﬁ|1_w§|2 e

which, by a change of variable, is equivalent to (ii7). O

Example 4.3. Leta(z) = c(z—1)(z+1)?, z € D, where cis some suitable constant such that
a € ball(H”) and let b be its pythagorean mate (remind that b can be constructed using
the Fejér—Riesz Theorem). In the following examples, we consider symbols ¢ € ball(H*)
which are analytic in a neighborhood of D. Thus, they belong to 7 (b) (because b is a
non-extreme point of ball(H*)).

(@) Let (2) = (#+1)/2, z € D. Then (1) = 1, ¢(—1) = 0, and it can be checked
that u(z) = (z + 3)%2/32. Hence u € H® and by the Littlewood subordination
principle, the operator W, is bounded on H?, which implies by Theorem 4.1
that the operator C,, is bounded on 77 (b).

(b) Let p(2) = (z —7r)/(1 —rz), r € (0,1). Then p(1) = 1, p(—1) = —1, and it can
be checked that u(z) = (1 —r?)(1 —r)/(1 — r2)3. Hence u € H* and by the Lit-
tlewood subordination principle, the operator W, ., is bounded on H?. Therefore,
according to Theorem 4.1, the operator C, is bounded on 7 (b).

(c) Let p(2) = 22, z € D. Then (1) = p(—1) = 1 and it can be checked that u(z) =
(22 +1)?/(z + 1). Hence u ¢ H?, and it follows from Lemma 3.7 that the operator
C,, is not bounded on J#(b).

In Examples 4.3 (a) and (b), the associated function v € H* and so the boundedness
of Wy, on H? is a simple consequence of the Littlewood subordination principle. We
will exhibit, in Example 4.11 below, a rational function b and a symbol ¢ for which the
associated function u € H*\H® but yet generate a bounded operator C,, on J#(b), and
thus a bounded operator W, ., on H.

Using results from [14], we can also obtain an interesting sufficient condition for the
boundedness.

Corollary 4.4. Let ¢ € 7 (b) n ball(H*) and assume that ¢ satisfies (3.1) and (3.2). Let u be
the function defined by (3.3) and assume that v € H>. Assume also that for some & > 0, we have

4.7) supess,c 4, |u(2)| < o0,
where As := {C € T : |¢(2)| =1 — 6}. Then the operator C, is bounded on  (b).

Proof. According to Theorem 4.1, the operator C, is bounded on J#(b) if and only if the
operator W, ., is bounded on H2. Now the conclusion follows applying [14, Theorem
2.9]. O

In the rest of this section, we give some additional necessary and/or sufficient condi-
tions more tractable for the boundedness of the composition operator C,, on 77 (b).
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4.2. Angular derivatives and boundedness. We now explain how the existence of an-
gular derivative in the sense of Carathéodory for the symbol ¢ is involved in the bound-
edness of C,,. In particular, we extend a result of D. Sarason and J.N. Silva in our context.
See [26, Theorem 2]. Recall first that a function ¢ € ball(H*) has an angular derivative in
the sense of Carathéodory (briefly an ADC) at a point { € T if ¢ and ¢’ both have a non-
tangential limit at £ and |p(§)| = 1. A well-known characterization of Carathéodory says
that ¢ has an ADC at { € T if and only if
¢ := liminf w < 0.
z—E& 1— |Z|
Moreover in this case, ¢ = |¢’(£)| > 0. See for instance [6, Theorem 2.44]. D. Sarason also
observed that if ¢ has an ADC at £, then

(4.8) o P =00 s ),
z—=¢
See [24] or [11, Theorem 21.1].
Corollary 4.5. Let ¢ € 5 (b) n ball(H®) and assume that ¢ satisfies (3.1) and (3.2). For
1<k <pletl <l <nsuchthat p(&) = &,. Assume that the operator C, is bounded on

S (b). Then for every 1 < k < p, we have my, < my,. Furthermore, if for some 1 < k < p, we
have my, = my,, then the function ¢ has an ADC at &.

Proof. It follows from our assumption and Theorem 4.1 that the operator W, , is bounded
on H?, where u is defined by (3.3). Hence, there is a constant C' > 0 such that, for every
g € H?, we have

Wi pgll2 < Clglla.
Apply this inequality with g = k), A € D, where k) (z) = (1 — Az)7}, and use the well-

known fact that Wy ,kx = u()ky () to get
(4.9) [u(Mkgnll2 < Cllka2-

Let’s fix 1 < k < p, and for simplicity, denote by ¢ = ¢y, so that ¢ (&) = &. Applying (4.9)
with A = 7, for 0 < r < 1, gives

1—r2
|QIU(7“£/§)I2 <2

1— lp(rér)

With the definition of u, we obtain
1- T‘ Té-k gz
1 — [p(réx) \21—[’ &k — &

where \; = ¢(&;) € D, for p 4+ 1 < j < n. The last inequality can be rewritten as

2m;

n
[T le(rée) =217 < €2,

j=p+1

1 — 2 &) — & 2my - n -
1 - "P(:fk)‘z ’()T?Egkkz §k|2l7’nk . H “p(rfk) — )\j‘Q I < C?

Y
T j=p+1

where
n n

ke = || letr&) —&P™ and e = [ Ir&—&I*™.

i=1,i#0 i=li#k
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But, using that [¢(7&;) — &| = 1 — |¢(7&k)|, we have
11?2 fo(r&e) —&*™ _ (L= r)(1 = Jo(rén)))*™
L—[p(r&e)l* [rée — &l — o(r&R) N + lo(rée)[) (1 — r)2me
)

_ 1A= ferg) ™
T2 (L—r)2m-l

from which it follows that

(= &) ?™ ™ _ o Chr
(1 —r)2me—t Ker H?:p—‘,—l lp(rér) — )‘j|2mj
This can be rewritten as
1_ 2m;—1 1— 2myp—2my
1—r Ko [ Ti—per lo(r&e) — Aj[*ms

Observe now that
Ck,r

R r H;'l:p+1 ’90<T§k) - )‘j|2mj

— Ciy, asr —1,

where . )
[l i 166 — &l7™ 1
[T & = &P TT i & = AP
If my. > my, then it follows from (4.10) that
1 _ le—l
lim inf <|(P(T€k)’> =0,
r—1 1—7r

which is not possible by Carathéodory’s theorem. Therefore, m; < m,. Moreover, if
my, = my, then it also follows from (4.10) that

C}ag =

< Q0.

lim inf M < o0,
r—1 T
and by Carathéodory’s theorem, the function ¢ has an ADC at point &. O

Remark 4.6. Let’s come back to Examples 4.3. In these examples, a has two zeros ¢; = 1
and (; = —1, with multiplicities m; = 1 and my = 2. If ¢ € J(b) n ball(H*) with
¢(—=1) = 1, then, according to Corollary 4.5, the operator C, cannot be bounded on
7€ (b). In other words, if C,, is bounded on J#(b), then either ¢(—1) € D or ¢(—1) = —1.
In particular, we recover the conclusion of Example 4.3 (c).

The following result is a partial converse of Lemma 3.7.

Corollary 4.7. Let ¢ € 7 (b) n ball(H™) which satisfies (3.1) and (3.2). Let u be the function
defined by (3.3). Assume that u € (). Then the operator C, is bounded on S (b).

Proof. Since u € J(yp), it follows from a result of M. Jury [17] that the operator A =
C:;T;f is bounded from H? into itself, where T, is viewed here as an unbounded operator,

densely defined on reproducing kernels of H? by the formula

T*ky = u(Nky, AeD.

Hence the operator A has an adjoint A* : H?> — H? which is bounded and satisfies for
every f € H? and every A€ D

(A*f)()‘) =< A*fa k)\ >o=< f7 Ak/\ >2
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=< f, C* T¥ky >o
=< Cuf,u(N)ky >2
= u(A) f(p(N).

For every f € H? and \ € D, we then have

(Wuo F)A) = (A7 F)(N).
Finally, W, , = A* is bounded on H?, which implies, according to Theorem 4.1, that C,,
is bounded on 7 (b). D

Remark 4.8. It should be noted that the condition u € .7 (¢) is not, in general, a necessary
condition for the boundedness of the operator C, on 7 (b). Indeed, if we come back to
Example 4.3 (b), the symbol ¢ is a Blaschke factor associated to point r € (0, 1), and then
H () = K, = Ck,, where k,(z) = (1 — rz)~!. Moreover, the operator C,, is bounded
on 7 (b), whereas the associated function u is not a constant multiple of k,, and thus
u¢ A (p).

Nevertheless, the next result gives a particular situation where the converse of Corol-
lary 4.7, as well as the converse of Corollary 4.5 on angular derivatives, hold true.

Corollary 4.9. Let b(z) = (1 + 2)/2, z € D, and let ¢ € F°(b) N ball(H*). Assume that
(1) = 1 and let u be the function defined by (3.3). Then the following assertions are equivalent:
(i) the operator Cy, : S (b) — () is bounded;
(i7) the function ¢ has an ADC at point 1;
(t3i) the function u belongs to ().

Proof. Observe that when b(z) = (1 + z)/2, then a;(z) = z — 1 and since (1) = 1, we
have u(z) = (¢(2) — 1)/(z — 1), z € D. The implication (i) = (¢i) follows directly from
Corollary 4.5. The implication (ii) — (7i¢) follows from (4.8), whereas the implication
(ti) = (i) follows from Corollary 4.7. O

Remark 4.10. As we already mentioned, in the case when b(z) = (1 + z)/2, then s (b)
coincides with the local Dirichlet space D(d;) associated to the Dirac measure ¢; at point
1. In particular, we may translate Corollary 4.9 in the context of D(d;) and recover a result
of D. Sarason and ].N. Silva [26, Theorem 2]. However, our proof is different from Sarason
and Silva’s proof. More precisely, they use a characterization of boundedness which is
based on some counting function adapted to the situation of D(d;) space, whereas we
use a characterization based on the boundedness of some related weighted composition
operator on H?.

Example 4.11. Let b(z) = (2 + 1)/2 and let (\,,),>1 be a sequence in D tending to 1 and
satisfying

1= Aa| _
(4.11)
7;1 Do — 12

(For example, we can take A, = (1 —27")exp(%), n > 1). Let us now consider the

Blaschke product B associated to (Ay,),. A result of O. Frostman [13] says that, under the

condition (4.11), the function B has an ADC at point 1. Multiplying B by a unimodular

constant if necessary, we can assume that B(1) = 1. The property (4.8) now implies that

the function

B(z) -1
z—1

u(z) = , z€D,
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belongs to K  and then, in particular to H2. Since B(z) = (z—1)u(z)+1and u € H?, then
B e A (b). According to Corollary 4.9, the operator Cp is bounded on J#(b). Observe
that in that case u ¢ H™ because

-1
An — 1

[u(An)| =

‘—»oo, n — 0.

4.3. The case when (&) € D, 1 < j < n. We have given a necessary condition on the
behavior of p ata point {;, € Zt(a) when ¢(&) € T. In the other direction, when ¢(&;) € D,
1 < 7 < n, we now give a sufficient condition.

Corollary 4.12. Let ¢ € 77 (b) n ball(H*) and assume that for every 1 < j < n, we have
(4.12) limsup |p(2)| < 1.

z—E;
Then the operator C., is bounded on € (b).

Proof. In order to show that C, is bounded on .77 (b), we will use Corollary 4.2 and prove
that

(4.13) supﬁr(l — |w|?)

welD

u(©)I”

T we@p ™) =

where u is defined by
(o) [Iioi(e—=A)™

u = = —
al al

with v = (a1 0 @) H;:1(90 — Aj)™. (According to (4.12), observe that A\; = ¢(¢;) € D for
every 1 < j < n, whence p = 0 in the notation of (3.1)). It follows from our assumption
that there exists 0 < L < 1 and § > 0 such that for every 1 < j < n and for every z € D,
we have

|z =&l <6 = |p(2)] < L.
Let Vg, = {§ e T: [ —§| <d}and V = (J_; V,. Then, for almost all { € V, we have

lp(€)] < L.
On one hand, observe now that on T\V, the function a; is bounded below, and then

u = v/a; is bounded by some constant C. Thus, for every w € D, we get

_wQMm 201 _ wl? ;m
LW“ o) @) < O ) | (@

= C?(1 = [w*)[Cyhul3

Now, by the Littlewood subordination principle, the operator C, is bounded on H?,
whence

[Cokull3 < 1062 1kwl3 = |Col? (1 — [w]*) 7
Finally, for every w € D, we obtain
2
|- ) MOF ey < 2oL
J, O ) g m@) < Pl
On the other hand, for w € D and for almost all £ € V, we have

[1—wp(§)] =1 —|w|[e)] =1 - Llw[>1-L>0.
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Moreover, a; © ¢ is in H* and by Lemma 2.3, the function H?Il(cp(z) — )" (2 = &)™
is in H2. Hence u € H?, which gives

(1~ o) u(o)? Jul?
J, T—wpep MO<a-Lp

Finally (4.13) is satisfied, from which it follows that the operator C,, is bounded on J#'(b).
O

Example 4.13. Let b € ball(H®) be a rational function (but not a finite Blaschke product),
and let a1(z) = [ [, (z — §;)™ be the associated polynomial as in (2.3). Let ¢» € H* and
let

ﬁz—@ Yah(z zeD,

where for 1 < j < n, o is a real number satisfying o; > m; — 1/2, and c is a constant
such that H(p”oo = 1. Observe that the function ¢ : D —— DD is analytic and, since a; > 1/2,
for every 1 < j < n, we have

limsup |¢(2)] =0 < 1.
Zﬁgj

Moreover, since

o) _ )

ar(z)  TIj=(z = &)mames”
and 2(m; — «;) < 1, itis easy to check that ¢/a; belongs to H2. In particular, ¢ € a1 H?
7€ (b). Thus, we can apply Corollary 4.12 which implies that C, is bounded on J#(b).

z e D,

5. SOME CHARACTERIZATION OF COMPACTNESS AND THE HILBERT-SCHMIDT
PROPERTY

As for the boundedness, we establish a link between the compactness of the operator
Cy, on ' (b) and the compactness of the operator W, , on H 2 where u is defined as
n (3.3). In this section, we still assume that b € ball(H®) is a rational function (but
not a finite Blaschke product), and a is its pythagorean mate to which we associate the
polynomial a1 (2) = [[j_,(z — &)™ asin (2.3).

5.1. Thelink with weighted composition operator for compactness. The following gen-
eral fact will be of use to us. It is probably folklore and we leave the proof to the reader.
Here £(.7#,K) denotes the space of bounded linear operator from an Hilbert space .
into another Hilbert space K.

Lemma 5.1. Let T} € L(J4,55), To € L(IG, 7)), Vi € L(5,54) and Vy € L(HG, 75).
Assume that Th'Vy = Vo1, and assume that Vi is an isomorphism and Vy is an isometry. Then
Ty is compact (respectively Hilbert—Schmidt) if and only if T is compact (respectively Hilbert—
Schmidt).

The following result will be the key in our characterization of compactness for the
composition operators on .77 (b).

Theorem 5.2. Let ¢ € 7 (b) N ball(H®) and assume that o satisfies (3.1) and (3.2). Let u be
the function defined by (3.3). Then the following assertions are equivalent:

(i) C, : H(b) — H(b) is compact (respectively Hilbert—Schmidt).
(i) Wy, : H* — H? is compact (respectively Hilbert-Schmidt).
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Proof. According to Theorem 4.1, we can assume that both operators C, and W, , are
bounded respectively on 7 (b) and H2. For p + 1 < j < n, denote by \; := ¢(¢;) € D and

let
u

V= = T
Hj:p+1(1 - )‘J'SO) 7

On one hand, since [ [7_,, (1~ Ajp)™ isin H* and invertible in H* (because |1 —\;¢p| >
1—1A;| > 0), the operator W, ., is bounded (respectively compact or Hilbert-Schmidt) on
H?if and only if the operator Wy, , is bounded (respectively compact or Hilbert-Schmidt)
on H2.

On the other hand, let us consider the finite Blaschke product B associated to the se-
quence A\, 1, ..., A,, with multiplicities m, 1, ..., m,, and denote by R; the restriction of
C,, to the closed subspace a1 BH 2 of (1),

Ry : aiBH?> — #(b)
o= Rif=Cuf=foep.

According to Lemma 2.4, the subspace a1 BH 2 is of finite codimension in .7 (b) from
which it follows that the operator C,, is compact (respectively Hilbert-Schmidt) on .77 (b)
if and only if the operator R; is compact (respectively Hilbert-Schmidt) from a1 BH? into
(D).

Therefore it is sufficient to prove that Ry : aiBH? — J#(b) is compact (respectively
Hilbert-Schmidt) if and only if Wy, : H> — H? is compact (respectively Hilbert-
Schmidt). To make the link between these two operators, let us introduce now

Vi . H? — ay BH?
[ = Wif=aBf,

and
Vo : H? — A (b)
g = Vag=ag.
The subspace a; BH? is viewed here as a closed subspace of #(b) and in particular is
equipped with the .7 (b) norm || - ||;. Thus, according to (2.6), the operators V; and V5 are
isometries. Moreover, the operator V; is onto. Let us check that

6.1) R\Vi = VaWy .
To this purpose, take f € H?. We have
(RiVi)(f) = Ri(a1Bf) = (a1 09)(Bop)(foy)

s (alaj 2 (Bog)(fog).

But observe that

aiop ai1op) 194 (p—X)™
( 1a )(Bo(p) = ( 1a ) H ((1_5\'3))%
1 L j=pt1 ¥
B u
H;L:erl(l - A‘7()0)7%

Thus, for every f € H?, we have

(R1iV1)(f) = a1p(f o )
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= 01W¢7@f
= (‘/QW¢7<P)(f)’

which proves (5.1). It remains now to apply Lemma 5.1 to get that the operator R; :
a1BH? — 2(b) is compact (respectively Hilbert-Schmidt) if and only if the operator
Wy : H> — H? is compact (respectively Hilbert-Schmidt). This concludes the proof.

]

It turns out that the compactness of weighted composition operators on H? has also
been characterized by M. Contreras and A. Hernandez-Diaz in [4]. Recall that a finite
Borel measure . on D is called a vanishing Carleson measure if

o 567
r—0 £eT r

=0.

Then, it is proved in [4] that the operator W, , is compact on H? if and only if p1,,, is
a vanishing Carleson measure, where y,, , is defined by (4.6). Moreover, the vanishing
Carleson property for a measure y is equivalent to the compactness of the embedding
H? < L*(u), which satisfies the reproducing kernel thesis, meaning that H? embeds
compactly into L?(p) if and only if

1 — Jw|?
————du(f) - 0, as|w| — 1.
Js i gp .

See [23] for a discussion on the vanishing Carleson measures and [14] for a discussion on
the compactness of the weighted composition operators on H>.

Using Theorem 5.2, we therefore immediately get from the previous discussion the
following characterization for the compactness of the composition operators on 7 (b).

Corollary 5.3. Let ¢ € J(b) n ball(H®) and assume that o satisfies (3.1) and (3.2). Let u
be the function defined by (3.3) and let pu., , be the measure defined by (4.6). Then the following
assertions are equivalent:

(i) C, : H(b) — H(b) is compact.
(ii) ftu,, is a vanishing Carleson measure.

) ()12
(i) JT(l\l —|st2‘(§§|€2’)‘ dm () —> 0as [w] — 1.

We also have a characterization for the Hilbert-Schmidt property.

Corollary 5.4. Let p € 7(b) n ball(H*) and assume that o satisfies (3.1) and (3.2). Let u be
the function defined by (3.3). Then the following assertions are equivalent:

(i C, %” b) %”(b) is Hilbert—Schmidt.
(ii) J dm(§) < 0.

Proof. Since (z”)nzg is an orthonormal basis of H?, the operator W, , : H> — H? is
Hilbert-Schmidt if and only if

0
2 W23 < 0.
n=0
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But observe that

e¢] e¢]

EMMW%EWM&QmWw%mea
n=0

n=0 n=0

By the monotone convergence theorem, we get
o0 o}
D Wl = [ W@ X lo(©)P am(e)
n=0 n=0

[ _meR
- | g

The conclusion follows now directly from Theorem 5.2. O

5.2. Some necessary/sufficient conditions for compactness. We have an analogue of
Corollary 4.4 for the compactness.

Corollary 5.5. Let ¢ € 7 (b) n ball(H*) and assume that ¢ satisfies (3.1) and (3.2). Let u be
the function defined by (3.3) and assume that u € H?. Assume also that

(5.2) supess,c 4, |u(z)| — 0, asdé — 0,
where As := {C € T : |p(2)| = 1 — 6}. Then the operator C, is compact on € (b).

Proof. According to Theorem 5.2, the operator C,, is compact on J#(b) if and only if the

operator W, , is compact on H 2. Now the conclusion follows applying [14, Theorem
2.9]. O

When we have a compact operator, we can slightly improve the conclusion of Corol-
lary 4.5.

Corollary 5.6. Let ¢ € 7 (b) n ball(H®) satisfying (3.1) and (3.2), and for 1 < k < p, let
1 < €, < nsuch that o(&;) = &, . Assume that the operator C,, is compact on S (b). Then for
every 1 < k < p, we have my, < my, . In particular, the §’s cannot be fixed points for .

Proof. Argue by absurd and assume that C, is compact on 77 (b) but for some 1 < k <
p, we have my, < my. For simplicity, we denote ¢ = /. On one hand, according to
Corollary 4.5, we should have m, = my, (for this fixed k). On the other hand, it follows
from Theorem 5.2 that the operator W, ., is compact on H?. Hence its adjoint Wy is also
compact on H2. Recall now that for every \ € D, we have

W oka = u(Nkyn),

where £k is the reproducing kernel of H? at point A, and it is well-known that

k. .
L 0, weakly in H?,  as|z| — 1.
2|12
Thus, by compactness, we get
Wegkels
[krey |12 ’ ’
from which it follows that
1— 2
(5.3) u(r&y)[? "0, asr—1.

1 — o(ré)|?



24 ALHA]JJ] AND FRICAIN

Using the same arguments as in the proof of Corollary 4.5, it is easy to check that

1- |<P(7“fk)|>2mll I 2my,—2
_— <20y |u(r ————— (1 — )=
= S A
1—r?
= QCT u Tgk 27,
TG
where
o TTis s i 76 — &1 1 .
[ i lo(r&e) — &P [T 01 lo(rée) — Aj[*™
We deduce from (5.3) that
lim w =0.
r—1 1—7r
But this is in contradiction with Carathéodory’s theorem. O

Corollary 5.7. Let b be a rational function in ball(H*) (but not a finite Blaschke product) and as-
sume that the zeros {;, 1 < j < n, on T of its pythagorean mate a all have the same multiplicities.
If C, is compact on 7 (b), then for all 1 < j < n, we have p(&;) € D.

Proof. Argue by absurd and assume on one hand that the operator C,, is compact on
2 (b) and on the other hand that there exists some 1 < k£ < p, such that [¢(;)| = 1. Then,
by Theorem 3.5, there is some 1 < ¢, < n such that ¢(§;) = &, . But, by our assumption,
we have my, = my, , which gives a contradiction with Corollary 5.6. O

Remark 5.8. Let b(z) = (1 + 2)/2. According to Corollary 5.7, if ¢ € 7 (b) n ball(H™) and
©(1) = 1, then the operator C, is not compact on 7 (b). In particular, we recover a result
of D. Sarason and J.N. Silva [26, Theorem 3.5] obtained in the context of local Dirichlet
space D(61).

Corollary 5.7 might suggest that if a symbol ¢ touches the boundary at some boundary
zeros of a, then C', cannot be compact. This is not true as the following example shows.

Example 5.9. Let a(z) = ¢(z — 1)(z + 1)?, z € D, where c is some suitable constant such
that @ € ball(H®) and let b be its pythagorean mate. Let us now consider the symbol
o(z) = —(1 + 2)/2, z € D. Of course we have ¢(1) = —1 and ¢(—1) = 0. Since b is
non-extreme, ¢ € J(b) N ball(H*). Now straightforward computations show that for
every { € T, we have

[u(©)l?
1—p(&)P
from which it follows by Corollary 5.4 that the operator C, is Hilbert-Schmidt on .7 (b).

=1,

Corollary 5.4 enables us to obtain the following improvement of Lemma 3.2.

Corollary 5.10. Let b € ball(H™) be a rational function (but not a finite Blaschke product) and
let p € A(b) N ball(H®) such that |¢|| < 1. Then C, is Hilbert-Schmidt on 7 (b).

Proof. By our assumption, for every 1 < j < n, we have ¢(¢;) € D and the corresponding
function u is defined by
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Hence, according to Lemma 2.3, this function u belongs to A 2_ It remains to observe that
Ju(z)? Jull3
IV am(¢) < U2 <o,
Lr 1= p(Q)? 1= el
and Corollary 5.4 implies that C, is Hilbert-Schmidt on 77 (b). O
Remark 5.11. Itis not difficult to see that the proof of Theorem 5.2 also shows that C, is of

trace—class on J#(b) if and only if W, , is of trace—class on H?. Using now [14, Theorem
2.8], we can deduce that when |¢| < 1, the operator C, is indeed trace—class on .7 (b).

A reinforcement of the condition of Corollary 4.12 forces C, to be compact on J#(b).
Theorem 5.12. Let p € 7 (b) n ball(H*). Assume that for every 1 < j < n, we have
(5.4) limsup|p(z)] < 1,

Z—>£j
and p(D) "' T < {§; : 1 < j < n}. Then C,, is compact on 7€ (b).

Proof. The assumption (5.4) implies that, for every 1 < j < n, we have \; = ¢(&;) € D.
Hence, according to Corollary 5.3, the operator C, is compact on .7 (b) if and only if

(O ) )
(55) ) UT T—wp(e) dm“))‘o’

where u is defined by u(z) = %((j))) [T (o(2) — (&)™

In order to prove (5.5), argue as in the proof of Corollary 4.12 to see that there exists
0<L<1landd>Osuchthatif Vg, = {¢eT:|¢—&| <0}, 1<j<nandV =V,
then for almost all { € V, we have |¢(§)| < L. Thus it follows that, for every w € D and
for almost all £ € V, we have

[1—wp(§)] =1 —[wlle()] =1-L>0.

Hence, for almost all £ € V, we obtain that

u(©)” lax © o
[1—wp())? = (1-1L)?

U( = @gj)) seh

According to Lemma 2.3, since ¢ € .7 (b), we know that ¢y € H 2 and we deduce that

. 'LU2 u 2 a 0
L <1’1 lL;ngfQ)’ dm(€) < (1~ |uw| >”( : “") 15

from which it immediately follows that

| (1~ ) u()? )
i (fv T wo(@) dm@) =0

In order to prove (5.5), it remains to check that

| (= PP\
56 b OT\V - ()P dm@) -

(€)%,

where
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To this purpose, observe that for { € T\V, we have for every 1 < j < n, [£ — &;| = 6,
whence

@ = Jle =™ = 6"
j=1

Moreover, for almost all £ € T\V, we have

H (&) — w(E)™ < 2N’

which gives that
o\ N
1< (5) laop©)
Hence, we obtain
u(€)I? <2> (1 — |wl?)|ay((€))”
1— = d
Joo 0= P 5 ﬂw i Y
2 — W) [Tj_y [(€) — &1*™
d .
<(5) [ (eI ()
In particular, in order to prove (5.6), it is suff1c1ent to check that
. (1= JwP) T2y le(€) — &P
5.7 | J d = 0.
7) |J§1<ﬁ 1-we@P (e)

Since ¢ € (b) < H?, the function ¢ has radial limits at almost all points in T. Denote

by
E= {5 eT: (&) = linlr{ o(ré) exists} .
We have m(T\E) = 0 and then

[ QT 00 =68 [ 0= )T (6 -
T 11 —wp(§)? E 11 —wp(§)?
Fixnow 0 < e < 1and for 1 < j < n, introduce the following subsets of £/ defined by

dm(§).

Wj={{eE:|p¢) —&|<e} and W=[]W;

j=1
Note that for £ € W, we have

[ Tle(€) — &P < 247,
=1

whence

(1~ ) Ty lole) — &2 vl (1 fwp)
J, - wp@)P dm(e) <42 | o (@

= 4N (1 — [w]?)|Cykul3
<AV Cy|| 2 112



COMPOSITION OPERATORS ON DE BRANGES-ROVNYAK SPACES 27
For the integral on E\W, observe that

Lei= sup |p(€)] <1.
EeE\W

Indeed argue by absurd and assume that L. = 1. Then there exists ((x)r; < E\W such
that |¢(Cx)| — 1, as k — 0. By compactness, we may assume that ¢((;) — e ask — oo,
for some 0 € R. Hence, for every n > 0, there exists N € N such that

k>N = |p(C) — €?| < g

Since (i, € E, there is 0 < r < 1 such that

[p(raci) = p(G)] < 3.

which gives that
k=N = |p(rile) — €| <.
In particular, = (D) N T and then our assumption implies that there exists 1 < j < n

such that ¢?? = §;. Therefore, ¢(¢;) — &, as k — oo, which contradicts the fact that
(x € E\W. Thus, L. < 1 and for every { € E\W, we have

(L= o) ITjo (@) &P _ an

2
11 —wp(€)[? = (1—L€)2(1_|w| ).
We then deduce that
(1= ) [Thes (&) — &P o
JE\W i _j@190(5)|2 J dm(§) < m(l — |w‘2)_

Now, one can choose 0 < rg < 1 such that
N

-z w|?) < €2,
€

ro < |w| <1 =

which gives
f (1= [w) TT5=y (&) — &/*™
T 1 —wp ()
Finally (5.7) is proved, which concludes the proof. O

am(€) < (1Cl2 oy + 1) £

Example 5.13. Let b(z) = (1 + 2?)/2, z € D. Then, we easily check that its pythagorean
122

mate is a(z) = (1 — 2%)/2, z € D. For v > 1/2, consider ¢(z) = ( 5 )7, z € D. Observe
that

1
() = zeD,

a(z) (1_22>1777

2

and since v > 1/2, we have ¢ € aH? < J#(b). Moreover, liq}l(p(z) = 0. Finally, we see

that -

1—22
2

But ¢(+7) = 1 and then ¢(D) n T = {1}. Thus, we can apply Theorem 5.12 which implies
that the operator C,, is compact on J#(b).

=le=-1<z=-+i

o) = 1|
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5.3. Hilbert-Schmidt property in some particular cases.

Corollary 5.14. Let b(z) = (1 + z)/2 and let p € 52 (b) n ball(H®). The following assertions
are equivalent:

(i) C., is Hilbert-Schimdt on ¢ (b).

(ii) (1) € D and

lo(€) — 112|e(&) — (1)
| ey e <

Proof. On one hand, recall that when b(z) = (1 + z)/2, then a;(z) = z — 1. On the other
hand, observe that, according to Corollary 5.7, the condition (1) € D is necessary for the

compactness of C, on . (b). Now, it follows from Corollary 5.4 that the operator C., is
Hilbert-Schmidt on #(b) if and only if

w@p
J. g © <o

where

u(z) = 2B oy o)) =
ai(z)

which gives the result. O

Example 5.15. Let b(z) = (1 + z)/2, z € D. Then a(z) = (1 — 2)/2, z € D. It is known that
the operator C, is not compact on H? (see [29]), whereas, according to Corollary 5.14, the
operator C,, is Hilbert-Schmidt on .7 (b). Indeed, on one hand, we have a(1) = 0. On the
other hand, easy computations show that

ja(§) —1[%|a(§) —a(D)]* _ 1

(p(2) = D(p(2) — (1)

z—1

€ —1PA~Ja(©OP) 4
whence assertion (ii) of Corollary 5.14 is trivially satisfied. Thus the operator C, is
Hilbert-Schmidt on J#(b).

Example 5.16. Let b(z) = (1 — 2?)/2, z € D. Then, it is easy to see that a(z) = (1 + 22)/2,
zeD,and thus a1(z) = 22+ 1 = (2 —1i)(2 +1i), 2 € D. According to Corollary 4.12, observe
that C,, is bounded on 7 (), because

limsup |a(2)| = |a(+7)| = 0.

z—+1

Now straightforward computations show that
w@F  _ [u©F _ [t+a(@P[L+&

L—1a(©)]> — [p(O 1 — €22
In a neighborhood of 1, we then have
(P 1

L=la(§)) ~ 1= ¢

u(©))? )
o a@p &) =

Hence, according to Corollary 5.4 the operator C|, is not Hilbert-Schmidt on 7 (b).

from which it follows that

The previous examples motivate the following question.
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Question 5.17. Let b € ball(H ) be a rational function (but not a finite Blaschke product),
and let a be its pythagorean mate. Is C, compact on 77 (b)?

Observe that according to Corollary 4.12, C,, is at least always bounded on 7 (b) be-
cause, for all 1 < j < n, we have

limsup |a(2)| = |a(&;)| = 0.

z—E;
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