
HAL Id: hal-03844095
https://hal.science/hal-03844095

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on Dynamic Transformations of Symbolic
Heaps

Nicolas Peltier

To cite this version:
Nicolas Peltier. Reasoning on Dynamic Transformations of Symbolic Heaps. TIME 2022 : 29th
International Symposium on Temporal Representation and Reasoning (TIME 2022), Nov 2022, online,
France. �10.4230/LIPIcs.TIME.2022.7�. �hal-03844095�

https://hal.science/hal-03844095
https://hal.archives-ouvertes.fr

Reasoning on Dynamic Transformations of
Symbolic Heaps
Nicolas Peltier #

Univ. Grenoble Alpes, CNRS, LIG, France

Abstract
Building on previous results concerning the decidability of the satisfiability and entailment problems
for separation logic formulas with inductively defined predicates, we devise a proof procedure to
reason on dynamic transformations of memory heaps. The initial state of the system is described by
a separation logic formula of some particular form, its evolution is modeled by a finite transition
system and the expected property is given as a linear temporal logic formula built over assertions in
separation logic.

2012 ACM Subject Classification Theory of computation→ Separation logic; Theory of computation
→ Automated reasoning; Theory of computation → Modal and temporal logics

Keywords and phrases Separation Logic, Symbolic Heaps, Linear Temporal Logic

Digital Object Identifier 10.4230/LIPIcs.TIME.2022.7

Funding This work has been partially funded by the the French National Research Agency
(ANR-21-CE48-0011).

1 Introduction

Separation logic (SL) [14] is a dialect of bunched logic [10], that was introduced in verification
to reason on programs manipulating dynamically allocated memory. The logic uses a
particular connective ∗ to assert that two formulas hold on disjoint parts of the memory,
which allows for more concise specifications. It supports local reasoning, in the sense that
the properties of a program can be asserted and proven by referring only to the part of the
memory that is affected by the program, and not to the global state of the system. The
expressive power of the logic may be enhanced by using inductively defined predicates, which
can be used to define recursive data structures of unbounded sizes, such as lists or trees. For
instance, the following rules define a predicate lseg(x, y) denoting a non empty list segment
from x to y: {lseg(x, y)⇐ x 7→ (y), lseg(x, y)⇐ ∃z.(x 7→ (z) ∗ lseg(z, y))}. Informally,
x, y, z denotes locations (i.e., memory addresses), x 7→ (y) states that location x is allocated
and points to location y and the separating conjunction x 7→ (z) ∗ lseg(z, y) states that
the heap contains a list segment lseg(z, y) together with an additional memory cell x that
points to z (it implicitly entails that x is distinct from all the memory locations allocated in
the list segment from z to y). These predicates may be hard coded, but they may also be
defined by the user, to tackle custom data structures. For the fragment of separation logic
called symbolic heaps (formally defined later), satisfiability is decidable [3], but entailment
is undecidable in general (entailment cannot be reduced to satisfiability since the fragment
does not include negations). However, a general class of decidable entailment problems is
described in [7], based on restrictions on the form of the inductive rules that define the
semantics of the inductive predicates. More recently, it was shown that the entailment
problem is 2-EXPTIME complete [11, 4] for such inductive rules. Building on these results,
we devise in the present work a proof procedure to reason on dynamic transformations of
data structures specified by SL formulas with inductively defined predicates. More precisely,
we consider entailments of the form ϕ |=S

R Φ, where ϕ is an SL formula (more precisely a
symbolic heap), R is a set of inductive rules, S is a transition system and Φ is a formula

© Nicolas Peltier;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Nicolas.Peltier@univ-grenoble-alpes.fr
https://doi.org/10.4230/LIPIcs.TIME.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Reasoning on Dynamic Transformations of Symbolic Heaps

combining symbolic heaps with temporal connectives of linear temporal logic (LTL) [13].
Informally, such an entailment is valid if the formula Φ holds w.r.t. all the runs obtained
by starting from a structure satisfying the formula ϕ and following the transition system S.
The symbolic heap ϕ describes the initial state of the system, R defines the semantics of
the inductively defined predicate symbols, S describes how the system evolves along time
and Φ gives the expected behavior of the system. The system S may affect the considered
structure by changing the value of variables, by allocating or freeing memory locations, or by
redirecting already allocated locations. For instance, we may check whether an entailment
lseg(x, nil) |=S

R FFF lseg(x, x) holds, meaning that an initial list segment from x to nil is
eventually transformed into a circular list, or that lseg(x, nil) |=S

R GGG(q ⇒ lseg(x, nil))
holds, meaning that each time the system reaches state q the heap contains a list from x to
nil. We show that the entailment problem is undecidable in general, but decidable if the
considered transition system satisfies some conditions, which, intuitively, prevent actions
affecting the value of the variables to occur inside loops (the other actions are not restricted).
The proposed decision procedure is modular, and relies on a combination of the algorithm
described in [12, 11] for checking the satisfiability of separation logic formulas with usual
model checking and model construction procedures for LTL.

Related work

Dynamic transformations are usually tackled in SL using Hoare logic, with pre and post-
conditions defined with the help of separating implications (see, e.g., [1]). Separating
implication is not used in our approach due to the difficulty of reasoning automatically with
this connective, especially in connection with inductive definitions (however, the so-called
context predicates introduced in Section 7 can be viewed as a restricted form of separating
implication). The combination of SL with temporal connectives is rather natural and has been
considered in [2]. In [8, 6], temporal extensions of the related bunched logic are considered.
Our approach departs from this work because the fragment of separation logic that we
consider is very different: while the logic in [2] is based on quantifier-free separation logic
formulas (with arbitrary combinations of boolean and separating connectives), we focus on
symbolic heaps, i.e., on separating conjunctions of inductively defined atoms (with existential
quantification). Thus on one hand our basic assertion language is more restricted because we
strongly restricts the nesting of separation connectives, but on the other hand the addition
of inductively defined predicates greatly increases the expressive power of the language
and allows one to tackle richer data structures. In particular we emphasize that – without
temporal connectives – entailment is 2-EXPTIME complete for the fragment that we consider,
whereas satisfiability is PSPACE-complete for that considered in [2].

2 Separation Logic

We define the syntax and semantics of a fragment of separating logic called symbolic heaps
and we recall the conditions on the inductive rules that ensure that the entailment problem is
decidable. Most definitions are standard, see [14, 7] for additional explanations and examples.

▶ Definition 1. (Symbolic Heaps) Let V be a countably infinite set of variables. Let P be a
finite set of predicate symbols. Each symbol p in P is associated with a unique natural number
called the arity of p. Let κ be a fixed natural number, denoting the number of record fields.
An equational atom is an expression of the form x ≃ y or x ̸≃ y, where x, y ∈ V. A points-to
atom is an expression of the form x 7→ (y1, . . . , yκ) with x, y1, . . . , yκ ∈ V. A predicate atom

N. Peltier 7:3

is an expression of the form p(x1, . . . , xn) with p ∈ P, n = arity(p) and x1, . . . , xn ∈ V. A
spatial atom is either a points-to atom or a predicate atom. An atom is either an equational
atom or a spatial atom. The set of symbolic heaps is the set of expressions of the form:
∃x1 . . . ∃xn.(α1 ∗ · · · ∗ αm) where x1, . . . , xn are variables and α1, . . . , αm are atoms (with
possibly n = 0 and/or m = 0). The connective ∗ is called separating conjunction. An empty
separating conjunction is denoted by emp. For every symbolic heap ϕ, we denote by fv(ϕ) the
set of variables freely occurring in ϕ.

For all vectors xxx = (x1, . . . , xn) and yyy = (y1, . . . , yn) of the same length, we denote by
xxx ≃ yyy the separating conjunction x1 ≃ y1 ∗ · · · ∗ xn ≃ yn. If ϕ is a symbolic heap, then ∃xxx.ϕ
denotes the symbolic heap ∃x1 . . . ∃xn.ϕ. For every symbolic heap ϕ we denote by v7→(ϕ) the
set of free variables x such that ϕ contains a points-to atom of the form x 7→ (yyy).

▶ Definition 2 (Substitutions). A substitution is a function mapping every variable x to a
variable. For every substitution σ and for every symbolic heap ϕ, we denote by ϕσ the symbolic
heap obtained from ϕ by replacing every free occurrence of a variable x by σ(x). If x1, . . . , xn
are pairwise distinct variables, we denote by {x1 ← y1, . . . , xn ← yn} the substitution σ such
that σ(xi) = yi for all i = 1, . . . , n and σ(x) = x if x ̸∈ {x1, . . . , xn}.

Symbolic heaps are interpreted in structures defined as follows.

▶ Definition 3 (SL Structures). Let L be a countably infinite set of so-called locations. An
(SL) structure is a pair (s, h) where:

s is a store, i.e., a function mapping every variable to a location.
h is a heap, i.e., a finite partial function mapping locations to κ-tuples of locations. We
denote by dom(h) the finite domain of h, by |h| the cardinality of dom(h) and by locs(h)
the set: {ℓi | ℓ0 ∈ dom(h), h(ℓ0) = (ℓ1, . . . , ℓκ), 0 ≤ i ≤ κ}.

A location ℓ ∈ dom(h) is allocated in h. A variable x such that s(x) ∈ dom(h) is allocated
in (s, h).

Intuitively, s gives the values of the variables and h denotes the dynamically allocated memory.
A heap will often be denoted as a set of tuples h = {(ℓ0, . . . , ℓκ) | ℓ0 ∈ dom(h), h(ℓ0) =
(ℓ1, . . . , ℓn)}. In particular, ∅ denotes the heap that allocates no location. Two heaps h1 and
h2 are disjoint if dom(h1)∩ dom(h2) = ∅. In this case h1 ⊎ h2 denotes the union of h1 and h2
defined as follows: dom(h1 ⊎ h2) def= dom(h1) ∪ dom(h2), and h(ℓ) = hi(ℓ) for all i = 1, 2 and
ℓ ∈ dom(hi).

The semantics of the predicate symbols is defined by user-provided inductive rules:

▶ Definition 4 (Inductive Rules). A set of inductive definitions (SID) is a set of rules of
the form p(x1, . . . , xn) ⇐ ϕ such that p ∈ P, n = arity(p), x1, . . . , xn are pairwise distinct
variables, and ϕ is a symbolic heap with fv(ϕ) ⊆ {x1, . . . , xn}.

For every symbolic heap ϕ, we write ϕ ⇐R ϕ′ if ϕ is of the form ∃uuu.(p(y1, . . . , yn) ∗
ϕ′), R contains a rule p(x1, . . . , xn) ⇐ ∃vvv.ψ (where ψ contains no quantifier) and ϕ′ =
∃uuu∃vvv.(ψ{xi ← yi | i = 1, . . . , n} ∗ ϕ′). We assume by α-renaming that the vector vvv contains
no variable in uuu, fv(ϕ) or (x1, . . . , xn). As usual ⇐∗

R is the reflexive and transitive closure
of ⇐R.

The satisfiability relation is defined inductively as follows. We emphasize that equational
atoms are valid only if the heap is empty; this convention allows us to simplify notations (it
avoids having to use both the separating conjunction and the standard one).

▶ Definition 5 (Satisfiability). We write (s, h) |=R ϕ if one of the following conditions holds:

TIME 2022

7:4 Reasoning on Dynamic Transformations of Symbolic Heaps

h = ∅ and either (ϕ = (x ≃ y) and s(x) = s(y)), or (ϕ = (x ̸≃ y) and s(x) ̸= s(y)).
ϕ = x 7→ (y1, . . . , yκ) and h = {(s(x), s(y1), . . . , s(yκ))}.
ϕ = ϕ1∗ϕ2 and there exist disjoint heaps h1 and h2 such that h = h1⊎h2 and (s, hi) |=R ϕi,
for all i = 1, 2.
ϕ = p(x1, . . . , xn) with p ∈ P, p(x1, . . . , xn)⇐∗

R ψ, ψ contains no predicate symbols and
(s, h) |=R ψ.
ϕ = ∃x.ψ, and there exists a store s′ coinciding with s on all variables distinct from x

such that (s′, h) |=R ψ.
An R-model of ϕ is a structure (s, h) such that (s, h) |=R ϕ. If ϕ, ϕ′ are symbolic heaps, we
write ϕ |=R ϕ′ if the entailment (s, h) |=R ϕ =⇒ (s, h) |=R ϕ′ for all SL structures (s, h),
and ϕ ≡R ψ if ϕ |=R ψ and ψ |=R ϕ.

Restricting Inductive Definitions
While the entailment problem is undecidable in general for symbolic heaps with inductively
defined predicates, a very general decidable class is identified in [7]. This fragment is defined
by restricting the form of the inductive rules, which must satisfy three conditions, recalled
below (we use the slightly more general version of establishment given in [11]).

▶ Definition 6 (Progress, Connectedness and Establishment (PCE)). A rule p(x1, . . . , xn)←
∃yyy.ϕ (where ϕ contains no quantifier) is:

progressing if ϕ is of the form x1 7→ (z1, . . . , zκ) ∗ϕ′, where ϕ′ contains no points-to atom
(i.e., the rule allocates exactly one location x1);
connected if, moreover, every predicate atom in ϕ′ is of the form q(z,vvv) with z ∈
{z1, . . . , zκ} (i.e., the locations allocated by the called predicates are successors of x1).

A SID R is progressing (resp. connected) if all the rules in R are progressing (resp. connected).
It is is established if for every atom p(x1, . . . , xn) and for every formula ϕ containing no
predicate symbol, if p(x1, . . . , xn)⇐∗

R ϕ and x is existentially quantified in ϕ then ϕ contains
atoms yi ≃ yi+1 (for i = 0, . . . , n, with n ≥ 0) such that x = yn+1 and either ϕ contains a
points-to atom of the form y0 7→ (zzz) or y0 ∈ {x1, . . . , xn} (i.e., every existentially quantified
variable either is equal to a free variable or is eventually allocated).

▶ Example 7. The following set, defining a list segment ending at an arbitrary location, is
progressing and connected, but not established:

{lseg′(x)⇐ ∃y.x 7→ (y), lseg′(x)⇐ ∃z.(x 7→ (z) ∗ lseg′(z))}

In the remainder of the paper we assume that a set of inductive rules R is given, satisfying
the PCE conditions. This is the case for the rules given in the Introduction for the predicate
lseg. We now introduce a notion of heap constraints, which combine positive and negative
assertions denoted by symbolic heaps, with constraints specifying that some variables are
unallocated:

▶ Definition 8. (Heap Constraint) A heap constraint is a triple (S+, S−, X), where S+ and
S− are sets of symbolic heaps, S+ ̸= ∅ and X ⊆ V. We write (s, h) |=R (S+, S−, X) if for
all ϕ ∈ S+: (s, h) |=R ϕ; for all ϕ ∈ S−: (s, h) ̸|=R ϕ; and for all x ∈ X: s(x) ̸∈ dom(h).

The decidability of the satisfiability problem for such constraints follows from [12, 11]:

▶ Lemma 9. There exists an algorithm that, given a heap constraint (S+, S−, X) and a
progressing, connected and established set of rules R, checks whether there exists an SL
structure (s, h) such that (s, h) |=R (S+, S−, X).

N. Peltier 7:5

3 Actions Operating on SL Structures

We define the basic actions that can occur in transition systems. The set of actions includes
tests, affectations, redirections of allocated locations, as well as allocations and desallocations.

▶ Definition 10 (Actions). Let V⋆ be a finite set of variables. A term is either an element
of V⋆ or an expression of the form x.i where x ∈ V⋆ and i ∈ {1, . . . , κ}. A condition is a
boolean combination of atomic conditions, that are expressions of the form t ≈ s where t, s
are terms. An action is an expression of one of the following forms: pass (null action);
t := s, where t and s are terms (affectation or redirection); alloc(x) or free(x), where
x ∈ V⋆ (allocation and desallocation); or test(γ), where γ is a condition (test).

The semantics of conditions is defined below.

▶ Definition 11 (Semantics of Conditions). For every structure (s, h) and for every term t

we write t ▷(s,h) ℓ (t evaluates to ℓ) if either t ∈ V⋆ and s(t) = ℓ, or t = x.i with x ∈ V⋆,
s(x) ∈ dom(h), h(s(x)) = (ℓ1, . . . , ℓκ) and ℓ = ℓi. We write (s, h) |= t ≈ s if there exists ℓ ∈ L
such that t ▷(s,h) ℓ and s ▷(s,h) ℓ. The relation |= is extended to every boolean combination of
atomic conditions inductively as usual.

Observe that the semantics of x ≈ y is different from that of x ≃ y, which requires that the
heap be empty. Furthermore, (s, h) |= x.i ≈ x.i (for i = 1, . . . , κ) holds iff x is allocated. We
thus denote by A(x) (for “x is allocated”) the formula x.1 ≈ x.1. The semantics of actions
is rather natural, and formally defined below (to make allocations deterministic we assume
that the variable allocated by alloc(x) points to itself).

▶ Definition 12 (Semantics of Actions). For every SL structure (s, h) and action a, we denote
by (s, h)[a] the result of the application of the action a on (s, h) defined as follows:

If a = pass then (s, h)[a] def= (s, h).
If a = (x := s) with x ∈ V⋆ and s ▷(s,h) ℓ then (s, h)[a] def= (s′, h), where s′(x) = ℓ and s′

coincides with s on all variables distinct from x.
If a = (x.i := s) with x ∈ V⋆, s(x) ∈ dom(h), h(s(x)) = (ℓ1, . . . , ℓn) and s ▷(s,h) ℓ then
(s, h)[a] def= (s, h′), where dom(h′) = dom(h), h′(s(x)) = (ℓ1, . . . , ℓi−1, ℓ, ℓi+1, . . . , ℓκ), and
h′ coincides with h on all locations distinct from s(x).
If a = free(x), s(x) ∈ dom(h) then (s, h)[a] def= (s, h′) where dom(h′) = dom(h) \ {s(x)}
and h′ coincides with h on all locations distinct from s(x).
If a = alloc(x), s(x) ̸∈ dom(h) then (s, h)[a] def= (s, h′) where dom(h′) = dom(h) ∪ {s(x)},
h(s(x)) = (s(x), . . . , s(x)) and h′ coincides with h on all locations distinct from s(x).
If a = test(γ) and (s, h) |=R γ then (s, h)[a] def= (s, h).

Otherwise (s, h)[a] is undefined.

▶ Proposition 13. For all structures (s, h) and actions a, if (s′, h′) = (s, h)[a] then s′(V⋆) ∪
locs(h′) ⊆ s(V⋆) ∪ locs(h).

Proof. By an immediate case analysis on the set of actions. ◀

4 Transition Systems

Transition systems are finite state automata where the transitions are labeled by actions:

TIME 2022

7:6 Reasoning on Dynamic Transformations of Symbolic Heaps

▶ Definition 14 (Transition Systems). Let S be a countably infinite set of states. A transition
system is a triple S = (Q,R, qI) where Q is a finite subset of S, R is a finite set of transition
rules of the form (q, a, q′) where q, q′ ∈ Q and a is an action, and qI ∈ Q is the initial state.
A run in S from a structure (s, h) is an infinite sequence of tuples (qi, si, hi, ai)i∈N such that
q0 = qI , (s0, h0) = (s, h), and for every i ∈ N: (qi, ai, qi+1) ∈ R and (si+1, hi+1) = (si, hi)[ai].
We denote by ⪰S the smallest transitive relation such that (q, a, q′) ∈ R =⇒ q ⪰S q′. We
write q ∼S q′ iff q ⪰S q′ and q′ ⪰S q and q ≻S q′ if q ⪰S q′ and q′ ̸⪰S q.

Note that the above definition entails that (si, hi)[ai] must be defined, for all i ∈ N. For
simplicity we assume that all runs are infinite (finite runs may be encoded if needed by
adding a final state qF with a transition (qF , pass, qF)).

▶ Example 15. The following transition system adds an element x to a list starting at y:

0start 1 2
alloc(x) x.1 := y

pass

▶ Example 16. The following transition system desallocates a list segment from x to y.

0start 1 2 3

4

test(x ̸≈ y)

test(x ≈ y)

z := x x := z.1

free(z)

pass

5 Temporal Formulas

We now define temporal formulas built over a set of assertions containing symbolic heaps,
states, actions and conditions, using the usual set of LTL connectives:

▶ Definition 17. (Syntax of LTL Formulas) The set AS of LTL atoms contains all symbolic
heaps ϕ with fv(ϕ) ⊆ V⋆, all atomic conditions, all actions and all states in S. The set of
LTL formulas is the least set containing AS and such that for all LTL formulas Φ,Ψ: ¬Φ,
Φ ∨Ψ, XXX Φ, ΦUUU Ψ are LTL formulas.

The additional connectives ∧, FFF , RRR etc. are defined as usual. The semantics of LTL formulas
is recalled below. Note that LTL atoms are interpreted arbitrarily at this point.

▶ Definition 18 (Semantics of LTL Formulas). An LTL interpretation I is a mapping from
AS × N to {true, f alse}. For any LTL formula Φ, we write I |= Φ if (I, 0) |= Φ, and
(I, i) |= Φ iff one of the following conditions holds:

Φ ∈ AS and I(Φ, i) = true, or Φ = ¬Ψ and (I, i) ̸|= Ψ;
Φ = Φ1 ∨ Φ2 and (I, i) |= Φj, for some j = 1, 2; or Φ = XXX Ψ and (I, i+ 1) |= Ψ;
Φ = Φ1UUU Φ2 and there exists j ≥ i such that (I, j) |= Φ2 and (I, k) |= Φ1 for all
k ∈ {i, . . . , j − 1}.

N. Peltier 7:7

In the following, we will assume that all the considered LTL interpretations are ultimately
periodic (so that they admit a finite representation) i.e., that there exist natural numbers k, l
such that, for every i ≥ k and for every atom α ∈ AS : I(α, i) = I(α, i+ l). It is well-known
that every satisfiable LTL formula admits an ultimately periodic model. Definition 19 relates
the semantics of LTL atoms to SL structures and transition systems.

▶ Definition 19 (Compatibility). Let S = (Q,R, qI) be a transition system. An LTL inter-
pretation I is compatible with a run (qi, si, hi, ai)i∈N in S w.r.t. a formula Φ iff the following
conditions holds, for all i ∈ N:

For every symbolic heap or condition ϕ occurring in Φ, I(ϕ, i) = true ⇐⇒ (si, hi) |=R ϕ.
For all actions a, I(a, i) = true ⇐⇒ a = ai.
For all states q ∈ Q, I(q, i) = true ⇐⇒ qi = q.

An LTL interpretation I is compatible with an SL structure (s, h) and a transition system
S = (Q,R, qI), w.r.t. a formula Φ if it is compatible with some run (qi, si, hi, ai)i∈N in S.

We are now in the position to define the satisfiability relation that relates SL structures
to LTL formulas, w.r.t. a given transition system.

▶ Definition 20 (Entailment). Let S be a transition system. For every structure (s, h)
and LTL formula Φ, we write (s, h) |=S

R Φ iff I |= Φ holds for every LTL interpretation
compatible with (s, h) and S w.r.t. Φ. We write (s, h) |=S/(qi,ai)i∈N

R Φ if there exists a run
(qi, si, hi, ai)i∈N in S with s0 = s and h0 = h, and an LTL interpretation I that is compatible
with (qi, si, hi, ai)i∈N such that I |= Φ.

For every symbolic heap ϕ, we write ϕ |=S
R Φ if the entailment (s, h) |=R ϕ =⇒ (s, h) |=S

R
Φ holds for all structures (s, h).

▶ Example 21. If S is the transition system of Example 15, then the entailments lseg(y, z) |=S
R

FFF lseg(x, z) and lseg(y, z) |=S
R XXXXXXGGG lseg(x, z) are valid. Note that the structures in

which x is initially allocated are not considered for testing the entailment.
If S now denotes the transition system of Example 16, then the entailment lseg(x, y) |=S

R
FFF emp is not valid (because the initial list segment may be cyclic).

It is easy to see that model checking is decidable:

▶ Lemma 22. The problem of checking whether (s, h) |=S/(qi,ai)i∈N
R Φ is decidable (if the

sequence (qi, ai)i∈N is ultimately periodic).

Proof. Since s, h, qi and ai are given, the run (if it exists) (qi, si, hi, ai)i∈N such that s0 = s

and h0 = h, and the compatible LTL interpretation I are easy to compute, using Definition
11. Using Proposition 13, we get si(V⋆)∪ locs(hi) ⊆ s(V⋆)∪ locs(h) for all i ∈ N, thus the set
of structures {(si, hi) | i ∈ N} is necessarily finite. Thus, the interpretation I is ultimately
periodic and the test I |= Φ can be performed using well-known algorithms for LTL. ◀

However, the entailment problem is undecidable in general:

▶ Theorem 23. The problem of checking whether ϕ |=S
R Φ is undecidable (even if R is

progressing, connected and established).

Proof. (Sketch) Turing machines (TM) may be simulated by transition systems: the elements
of the alphabet are denoted by pairwise distinct free variables, a tape (x1, . . . , xn) is encoded
as a heap (denoting a doubly linked list): {(ℓi, ℓ′

i, ℓi−1, ℓi+1) | i = 1, . . . , n} with ℓ′
i = s(xi),

and the position of the head is denoted by a variable x. Moves are encoded by actions x := x.2
(left move) or x := x.3 (right move). Tests are performed by actions of the form test(x.1 ≈ y),

TIME 2022

7:8 Reasoning on Dynamic Transformations of Symbolic Heaps

where y is the variable associated with the considered symbol. The action x.1 := y writes y at
the current position in the tape. Note that if the initial heap does not contain enough allocated
locations then the transition system may be “stuck” (because a right move cannot be applied,
hence no run will exist). However, the following rules define a predicate p that allocates a tape
of arbitrary size filled with a symbol u (which may be instantiated by a blank denoted by some
free variable b). The variables y and z denote the start and the end of the tape, respectively:
{p(x, y, z, u)⇐ x 7→ (u, y, z), p(x, y, z, u)⇐ ∃x′.(x 7→ (u, y, x′) ∗ p(x′, x, z, u))}. It is easy
to check that the non termination of the considered TM (on an empty tape) can be checked
by testing whether the entailment p(x, y, z, b) |=S

R GGG(¬
∨
q∈QF

q) holds, where QF is the set
of final states (note however that the entailment p(x, y, z, b) |=S

R FFF (
∨
q∈QF

q) does not encode
termination, as it may have counter models in which p(x, y, z, b) does not allocate enough
memory cells to execute the TM). ◀

To overcome this issue we require that no action of the form x := t occurs inside a loop:

▶ Definition 24 (Oriented Transition System). A transition system S = (Q,R, qI) is oriented
if for every transition (q, a, q′) in R, if a is of the form x := t then q ≻S q′.

The transition system of Example 15 is oriented, but not that of Example 16.

6 Symbolic Execution of Actions

We now show how to execute actions symbolically on SL formulas. We first define an LTL
formula encoding the conditions ensuring that an action can be performed:

▶ Definition 25 (Precondition). For all actions a, pre(a) is defined as follows (with x, y ∈ V⋆):
pre(alloc(x)) def= ¬A(x), pre(free(x)) def= A(x), pre(x.i := y) def= A(x), pre(x := y.i) def= A(y),
pre(x.i := y.j) def= A(x) ∧ A(y), pre(test(γ)) def= γ and pre(a) def= ⊤ otherwise.

▶ Proposition 26. For every action a and for every structure (s, h), (s, h) |=R pre(a) iff
(s, h)[a] is defined.

Proof. Immediate. ◀

Given a symbolic heap ϕ and action a, it is sometimes possible to compute the strongest
postcondition of ϕ w.r.t. to a, which describes the state of the memory after action a is
performed on a structure satisfying ϕ:

▶ Definition 27 (Strongest Postcondition). For every symbolic heap ϕ and for every action
a, we define a formula spc(ϕ, a) (strongest postcondition of α w.r.t. a) as follows (where x′

denotes a fresh variable).
spc(ϕ, pass) def= ϕ.
spc(∃yyy.ϕ, alloc(x)) def= ∃yyy.(x 7→ (x, . . . , x) ∗ ϕ).
spc(∃yyy.(x 7→ (y1, . . . , yκ) ∗ ϕ), free(x)) def= ∃yyy.ϕ.
spc(ϕ, x := y) def= ∃x′.(ϕ{x← x′} ∗ x ≃ y) (if x, y ∈ V⋆).
spc(∃uuu.(ϕ ∗ y 7→ (y1, . . . , yκ)), x := y.i) def= ∃uuu∃x′.((ϕ ∗ y 7→ (y1, . . . , yκ)){x← x′} ∗ x ≃ yi).
spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ ϕ), x.i := z) def= ∃uuu.(x 7→ (x1, . . . , xi−1, z, xi+1, . . . , xκ) ∗ ϕ) (if
z ∈ V⋆).
spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ ϕ), x.i := x.j) def= ∃uuu.(x 7→ (x1, . . . , xi−1, xj , xi+1, . . . , xκ) ∗ ϕ).
spc(∃uuu.(x 7→ (x1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ ϕ), x.i := y.j) def= ∃yyy.(x 7→ (x1, . . . , xi−1, yj ,

xi+1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ ϕ) (if x ̸= y).
Otherwise spc(ϕ, a) is undefined.

N. Peltier 7:9

In all cases, ϕ may be emp.

▶ Example 28. For instance, we have:

spc(x 7→ (y, z), x.1 := x) = x 7→ (x, z)
spc(x 7→ (y, z), x := y) = ∃x′.(x′ 7→ (y, z) ∗ x ≃ y)
spc(x 7→ (y, z), free(x)) = emp

But both spc(x 7→ (y, z), y.1 := x) and spc(lseg(x, y), x.1 := y) are undefined.

▶ Lemma 29. Let ϕ be a symbolic heap and let a be an action. If spc(ϕ, a) is defined then
for every structure (s, h) such that (s, h)[a] is defined, we have (s, h) |=R ϕ =⇒ (s, h)[a] |=R
spc(ϕ, a).

Proof. By inspection of the different actions, using Definition 11. ◀

Similarly, it is possible in some cases to define the weakest precondition of a symbolic
heap w.r.t. an action, asserting conditions that guarantee that the given formula is satisfied
after the action is performed:

▶ Definition 30 (Weakest Precondition). For every symbolic heap ϕ and for every action a,
the formula wpc(ϕ, a) is defined as follows (where x′ denotes a fresh variable).

wpc(ϕ, pass) def= ϕ.
wpc(∃xxx.(ϕ ∗ x 7→ (y1, . . . , yκ)), alloc(x)) def= ∃xxx.(ϕ ∗ y1 ≃ x ∗ · · · ∗ yκ ≃ x).
wpc(∃xxx.ϕ, free(x)) def= ∃xxx∃y1 . . . ∃yκ.(ϕ ∗ x 7→ (y1, . . . , yκ)).
wpc(ϕ, x := y) def= ϕ{x← y} (if x, y ∈ V⋆).
wpc(∃xxx.(ϕ∗x 7→ (x1, . . . , xκ)), x.i := y) def= ∃xxx∃x′.(ϕ∗x 7→ (x1, . . . , xi−1, x

′, xi+1, . . . , xκ)∗
xi ≃ y) (if y ∈ V⋆).
wpc(∃xxx.(ϕ ∗ x 7→ (x1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ)), x.i := y.j) def= ∃xxx∃x′.(ϕ ∗ x 7→ (x1, . . . ,

xi−1, x
′, xi+1, . . . , xκ) ∗ y 7→ (y1, . . . , yκ) ∗ xi ≃ yj).

wpc(∃xxx.(ϕ∗x 7→ (x1, . . . , xκ)), x.i := x.j) def= ∃xxx∃x′.(ϕ∗x 7→ (x1, . . . , xi−1, x
′, xi+1, . . . , xκ)

∗ xi ≃ xj).
wpc(∃xxx.(ϕ ∗ x 7→ (x1, . . . , xκ)), y := x.i) def= ∃xxx.((ϕ ∗ x 7→ (x1, . . . , xκ)){y ← xi}) if
x ̸= y. The case where x = y is handled by encoding the action x := x.i as the sequence
z := x;x := z.i, where z is a special variable in V⋆ not occurring in the considered
transition system.
Otherwise, wpc(α, a) is undefined.

▶ Example 31. For instance, we have:

wpc(x 7→ (y, z), x.1 := x) = ∃x′.(x 7→ (x′, z) ∗ y ≃ x)
wpc(x 7→ (y, z), x := y) = y 7→ (y, z)
wpc(x 7→ (y, z), alloc(x)) = y ≃ x ∗ z ≃ x

Both wpc(x 7→ (y, z), free(y)) and wpc(lseg(x, y), x.1 := y) are undefined.

▶ Lemma 32. Let ϕ be a symbolic heap and let a be an action. If wpc(ϕ, a) is defined then
for every structure (s, h) such that (s, h)[a] is defined, we have (s, h) |=R wpc(ϕ, a) ⇐⇒
(s, h)[a] |=R ϕ.

Proof. By inspection of the different cases. ◀

Intuitively, the weakest pre-conditions will be used to propagate towards the initial time
all the constraints occurring along the run, while strongest post-conditions will be used to
ensure that, at any time, the shape of the heap can be described as a symbolic heap, so that
all the conditions that hold along the run can be embedded in a heap constraint.

TIME 2022

7:10 Reasoning on Dynamic Transformations of Symbolic Heaps

7 Context Predicates

As shown in the previous section, post and preconditions cannot be defined for all symbolic
heaps. Indeed, in some cases, the conditions can be computed only if the consider formula
contains some specific points-to atom(s) x 7→ (. . .), where x is some variable involved in
the action (for instance for actions x.i := y). In this section we devise an algorithm that,
given a symbolic heap ϕ and a variable x, returns a disjunction of symbolic heaps equivalent
to ϕ (on structures that allocate x), and such that all symbolic heaps contain a points-to
atom of the form x 7→ (yyy). The latter condition will enable the computation of post and
preconditions. To this aim, we consider so-called context predicates (adapted from [5]). For
every pair of predicates p, q with arity(p) = n and arity(q) = m, we define a predicate
(q −−• p) of arity n + m in such a way that (q −−• p)(x1, . . . , xn, y1, . . . , ym) is satisfied by
all (non empty) structures that will satisfy p(x1, . . . , xn) after a disjoint heap satisfying
q(y1, . . . , ym) is added to the current heap. Intuitively, the rules of (q −−• p) are defined
exactly as those of p, except that exactly one call to q(y1, . . . , ym) is removed. More formally,
for each rule p(u1, . . . , un)⇐ ∃www.(u1 7→ (yyy) ∗ p′(zzz) ∗ ψ) in R we introduce two rules:

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐ ∃www.(u1 7→ (yyy) ∗ (q −−• p′)(zzz, v1, . . . , vm) ∗ ψ)

(q −−• p)(u1, . . . , un, v1, . . . , vm)⇐ ∃www.(u1 7→ (yyy) ∗ zzz ≃ (v1, . . . , vm) ∗ ψ) if q = p′

It is easy to check that these rules fulfill the conditions of Definition 6. Note that the −−•
operation may be nested, e.g., one may consider predicates such as (lseg −−• (lseg −−• lseg)).
Thus R is actually infinite, and the rules must be computed on demand.

▶ Example 33. For instance (lseg −−• lseg) is defined by the rules:

(lseg −−• lseg)(x, y, u, v)⇐ ∃z.(x 7→ (z) ∗ z ≃ u ∗ v ≃ y)

and

(lseg −−• lseg)(x, y, u, v)⇐ ∃z.x 7→ (z) ∗ (lseg −−• lseg)(x, z, u, v)

The proposed transformation algorithm relies on the use of these context predicates. The
idea is that, by Definition 6, a variable x is allocated in a structure validating a predicate atom
ϕ iff the corresponding unfolding of ϕ contains a predicate atom of the form q(z1, . . . , zm),
for some q ∈ P, where z1 has the same value as x. Using context predicates it is possible to
transform the formula in a way that this atom occurs explicitly in it, since a predicate atom
p(yyy) calling q(zzz) is equivalent to q(zzz) ∗ (q −−• p)(zzz,yyy). Then, it suffices to unfold this atom
once to get a points-to atom of the form x 7→ (. . .). More formally:

▶ Definition 34. (Computation of ⟨ϕ⟩x) Let ϕ be a symbolic heap and let x ∈ V⋆. The set
⟨ϕ⟩x is defined as follows:
1. If x ∈ v 7→(ϕ) then ⟨ϕ⟩x

def= {ϕ}.
2. Otherwise, ⟨ϕ⟩x is the set of formulas that are of one of the following forms:

a. ∃uuu.(x ≃ x′ ∗ x 7→ (yyy) ∗ ψ) where ϕ is of the form ∃uuu.(x′ 7→ (yyy) ∗ ψ).
b. ∃uuu∃vvv.(x ≃ x′ ∗ ψ′ ∗ ψ) where ϕ is of the form ∃uuu.(p(x′, yyy) ∗ ψ) and p(x,yyy)⇐R ∃vvv.ψ′.
c. ∃uuu∃vvv∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm) ∗ z1 ≃ x ∗ ψ′ ∗ ψ) where ϕ is of the form
∃uuu.(p(yyy) ∗ψ), q ∈ P, m = arity(q), z1, . . . , zm are pairwise distinct fresh variables and
q(x, z2, . . . , zm)⇐R ∃vvv.ψ′.

N. Peltier 7:11

Item 1 corresponds to the trivial case where ϕ already contains an atom x 7→ (. . .). Item 2a
corresponds to the case where ϕ contains an atom x′ 7→ (. . .) where x ≃ x′ holds. Item 2b
handles the case where ϕ contains an atom p(x′, yyy) that (immediately) allocates x (by the
progress condition this happens iff x ≃ x′ holds). Finally, Item 2c tackles the general case,
where ϕ contains an atom p(yyy) which (eventually) calls an atom q(z1, z2, . . . , zm) that allocates
x. For instance ⟨lseg(x, y)⟩z contains the symbolic heaps: ∃u.(z 7→ (u) ∗ lseg(u, y) ∗ x ≃ z)
and ∃u, v, w.(lseg −−• lseg)(x, y, u, v) ∗ z 7→ (w) ∗ lseg(w, v) ∗ u ≃ z). Note that both
formulas contain a points-to atom of the form z 7→ (. . .). The following lemmata state that
⟨ϕ⟩x fulfills all the expected properties.

▶ Lemma 35. Let ϕ be a symbolic heap and let x ∈ V⋆. For every formula ϕ′ ∈ ⟨ϕ⟩x,
x ∈ v 7→(ϕ′). Thus if (s, h) |=R ϕ′ then s(x) ∈ dom(h).

Proof. Let ϕ′ ∈ ⟨ϕ⟩x. If x ∈ v 7→(ϕ) then ⟨ϕ⟩x = {ϕ} thus ϕ′ = ϕ and x ∈ v7→(ϕ′). In all
other cases in Definition 34, either ϕ′ contains a points-to atom x 7→ (yyy), or ϕ′ contains a
formula ψ′ such that there exists an atom α of root x (α is either p(x,yyy) or q(x, z2, . . . , zm))
such that α⇐R ∃vvv.ψ′. By the progress condition necessarily x ∈ v7→(ψ′), so that x ∈ v7→(ϕ′).
The second part of the lemma follows immediately from the definition of the semantics. ◀

▶ Lemma 36. Let ϕ be a symbolic heap and let x ∈ V⋆. For every formula ψ ∈ ⟨ϕ⟩x and for
all SL structures (s, h): (s, h) |=R ψ =⇒ (s, h) |=R ϕ.

▶ Lemma 37. Let ϕ be a symbolic heap and let x ∈ V⋆. For every SL structure (s, h) such
that s(x) ∈ dom(h) and (s, h) |=R ϕ, we have (s, h) |=R ψ, for some ψ ∈ ⟨ϕ⟩x.

8 Axioms

Building on the previous results, we define LTL axioms ensuring that an LTL interpretation is
compatible with some SL structure, for a given transition system S = (Q,R, qI). The axioms
are obtained by embedding all the previous definitions and properties in LTL (a, ϕ, γ and x

range over the set of actions, symbolic heaps, conditions and variables in V⋆, respectively
and t, s are terms).

1. GGG(x.i ≈ s⇒ A(x)) for all i ∈ {1, . . . , κ}.
2. GGG(a⇒ (ψ ⇒XXX spc(ψ, a))) (if spc(ψ, a) is defined).
3. GGG(a⇒ (wpc(ψ, a)⇔XXX ψ)) (if wpc(ψ, a) is defined).
4. GGG(A(x)⇒ (ψ ⇔

∨
ξ∈⟨ψ⟩x

ξ)) ∧GGG(ψ ⇒
∧
y∈v 7→(ψ) A(y)).

5. GGG(∃uuu.(x 7→ (x1, . . . , xκ) ∗ψ)⇒ (x.i ≈ y ⇔ ∃uuu.(x 7→ (x1, . . . , xκ) ∗ψ ∗xi ≃ y))), if y ∈ V⋆.
6. GGG(∃uuu.(x 7→ (x1, . . . , xκ)∗y 7→ (y1, . . . , yκ)∗ψ)⇒ (x.i ≈ y.j ⇔ ∃uuu.(x 7→ (x1, . . . , xκ)∗y 7→

(y1, . . . , yκ) ∗ ψ ∗ xi ≃ yj))).
7. GGG ((∃uuu.ψ)⇒ (x ≈ y ⇔ ∃uuu.(ψ ∗ x ≃ y))).
8. GGG((pass ∨ t := s ∨ test(γ))⇒ (A(x)⇔XXX A(x))), where t ̸= x.
9. GGG(free(x)⇒

∧
y∈V⋆((x ≈ y ⇒XXX ¬A(y))) ∧ (x ̸≈ y ⇒ (A(y)⇔XXX A(y)))).

10. GGG(alloc(x)⇒
∧
y∈V⋆((x ≈ y ⇒XXX A(y))) ∧ (x ̸≈ y ⇒ (A(y)⇔XXX A(y)))).

11. GGG(¬x ∨ ¬y), if x ̸= y and (either x, y are both actions, or {x, y} ⊆ Q).
12. GGG(q ⇒

∨
(q,a,q′)∈R(a ∧XXX q)).

13. GGG(a⇒ pre(a)).
14.

∧
ψ∈S+ ϕ ∧

∧
x∈V ¬A(x) ⇒

∨
ξ∈S− ϕ, if (S+, S−, X) is a unsatisfiable heap constraint.

This formula is denoted by Γ(S+, S−, X) in the following.

TIME 2022

7:12 Reasoning on Dynamic Transformations of Symbolic Heaps

This set of axioms is infinite, as the set of symbolic heaps is infinite. To ensure termination,
we need to further restrict the axioms. To this aim, we define (given a symbolic heap ϕ) two
sets Fw(S, ϕ) and Bw(S, ϕ,Φ), which, informally, contain triples (ψ, q,X), where ψ denotes a
symbolic heap obtained by (forward or backward) propagation along the runs in S (starting
from formulas occurring in the initial entailment), and q is the corresponding state. The set
X contains variables that either occur in v 7→(ϕ) or are known to be non allocated at state q
(this information is essential for finiteness because it allows one to “block” some generation
rules). The sets are defined inductively as follows:

(ϕ, qI , ∅) ∈ Fw(S, ϕ), and if q ∈ Q and ψ occurs in Φ then (ψ, q, ∅) ∈ Bw(S, ϕ,Φ).
If (ψ, q,X) ∈ Fw(S, ϕ), (q, a, q′) ∈ R and ϕ′ = spc(ψ, a) then (ψ′, q′, X ′) ∈ Fw(S, ϕ), where
X ′ = X if a is not of the form x := t with x ∈ V⋆ and otherwise X ′ = ∅.
If (ψ, q′, X) ∈ Bw(S, ϕ,Φ), (q, a, q′) ∈ R and ϕ′ = wpc(ψ, a) then (ϕ′, q,X ′) ∈ Bw(S, ϕ,Φ),
where X ′ = ∅ if a is of the form x := t with x ∈ V⋆, and X ′ = X otherwise.
If (ψ, q,X) ∈ Fw(S, ϕ) (resp. (ψ, q,X) ∈ Bw(S, ϕ,Φ)) and ξ ∈ ⟨ψ⟩x with x ∈ V⋆ \X then
(ξ, q,X ∪ {x}) ∈ Fw(S, ϕ) (resp. (ξ, q,X ∪ {x}) ∈ Bw(S, ϕ,Φ)).
If (∃uuu.ψ, q,X) ∈ Fw(S, ϕ) then (∃uuu.(ψ∧x ≃ y), q,X) ∈ Bw(S, ϕ,Φ), for all x, y ∈ fv(ψ)∪V⋆.

The sets Fw(S, ϕ) and Bw(S, ϕ,Φ) are finite (up to some simplifications) if S is oriented
(see Lemma 41 in Appendix D). We denote by A(R,S, ϕ) the set of axioms satisfying the
following conditions. For Axiom 3 we require that the considered symbolic heap ψ occurs in
some triple in Bw(S, ϕ,Φ). For Axiom 14 all the symbolic heaps in S+ and S− must occur in
Bw(S, ϕ,Φ). For Axiom 4, ψ must occur in either Fw(S, ϕ) or Bw(S, ϕ,Φ). For 5, 6 and 7, the
symbolic heap at the left-hand side of ⇒ must occur in Fw(S, ϕ) (which entails that the one
occurring at the right-hand side occurs in Bw(S, ϕ,Φ)). The following theorems relate the
considered entailment problem with standard LTL satisfiability.

▶ Theorem 38. Every LTL model I that is compatible with (s, h) and S w.r.t. all symbolic
heaps occurring in A(R,S, ϕ) ∪ {ϕ, qI ,Φ} satisfies A(R,S, ϕ) ∪ {ϕ, qI ,Φ}.

Proof. (Sketch) The soundness of Axioms 2 and 3 stems from Lemmata 29 and 32, respectively.
The soundness of Axiom 13 stems from Proposition 26. Axioms 12 and 11 encode the semantics
of actions and states, according to the transition system S. The soundness of Axiom 4 is a
consequence of Lemmata 36 and 37. The soundness of Axioms 14 follows from the semantics
of heap constraints. The soundness of Axioms 8,9, 10 is a consequence of Definition 11.
Finally, the soundness of Axioms 1, 5, 6 and 7 stems from the semantics of atomic conditions
(Axioms 5, 6 and 7 embed conditions of the form t ≃ s into symbolic heaps). ◀

▶ Theorem 39. If A(R,S, ϕ)∪{ϕ, qI ,Φ} admits an LTL model I then there exists a structure
(s, h) such that I is compatible with (s, h) and S, w.r.t. ϕ and all symbolic heaps in Φ.

9 Proof Procedure

Even if S is oriented, the set A(R,S, ϕ) is exponential w.r.t. the size of R, ϕ and S, and
only a small part of this set will be relevant, hence computing all axioms explicitly is not
practical. Algorithm 1 computes these axioms on demand, in the spirit of the well-known
DPLL(T) procedure (see, e.g., [9]) by calling external tools to solve LTL and SL satisfiability
problems. The idea is to construct an LTL interpretation and to refine it incrementally by
adding relevant axioms until we get either a model that is compatible with some SL structure,
or a set of axioms that is unsatisfiable (in LTL). For all LTL interpretations I, rI is the
sequence (qi, ai)i∈N (if it exists) such that qi is the unique state in Q (resp. the only action)
with I(qi, i) = true (resp. I(ai, i) = true).

N. Peltier 7:13

Algorithm 1 Entailment Checking Algorithm

Require: A progressing, connected and established SID R, an oriented transition system S,
Require: a symbolic heap ϕ and an LTL formula Φ
A ← {ϕ, qI ,¬Φ}
while A admits an LTL interpretation I do
S+ ← {ϕ ∈ AS | I(ϕ, 0) = true, ϕ is a symbolic heap}
S− ← {ϕ ∈ AS | I(ϕ, 0) = f alse, ϕ is a symbolic heap}
X ← {x ∈ V⋆ | I(ϕ, 0) ̸|= A(x) }
if (S+, S−, X) is unsatisfiable {This test is decidable by Lemma 9} then
A ← A∪ Γ(S+, S−, X)

else
Let (s, h) be an R-model of (S+, S−, X)
if rI is defined and (s, h) |=S/rI

R ¬Φ {the test is decidable by Lemma 22} then
Return (s, h)

else
Let Ψ be a formula in A(R,S, ϕ) s.t. (s, h) ̸|=S

R Ψ {Ψ exists by Theorem 39}
A ← A∪ {Ψ}

end if
end if

end while
Return ⊤

▶ Theorem 40. If Algorithm 1 returns ⊤ then the entailment ϕ |=S
R Φ holds. If it returns

an SL structure (s, h) then (s, h) |=R ϕ and (s, h) ̸|=S
R Φ. Moreover, if S is oriented then the

algorithm always terminates.

Proof. Termination is immediate (if S is oriented) since at each iteration one new formula
from A(R,S, ϕ) is added in A and the set A(R,S, ϕ) is finite (as Bw(S, ϕ,Φ) and Fw(S, ϕ)
are both finite). If ⊤ is returned then by definition of the algorithm A(R,S, ϕ)∪ {qI , ϕ,¬Φ}
is unsatisfiable thus the entailment ϕ |=S

R Φ is valid by Theorem 38. If the algorithm returns
a structure (s, h) then by definition (s, h) |=S/(qi,ai)i∈N

R ¬Φ for some sequence (qi, ai)i∈N, thus
there is a run (qi, si, hi, ai)i∈N and a compatible LTL interpretation I such that I ̸|= Φ. ◀

10 Discussion

A natural issue is to determine whether Algorithm 1 is complete for refutation (when S is not
oriented), i.e., whether it always returns a counter model if the entailment is not valid (by
Theorem 23 it cannot be complete for validity). Another natural continuation is to extend
the expressive power of the logic by considering more complex temporal connectives (to allow
for quantification over paths). It would also be interesting to extend the language in order to
handle more complex (possibly non deterministic) actions. For instance, it should be noticed
that actions in our framework cannot create new locations (as evidenced by Proposition
13). This is important, because, otherwise, since universal quantification is not allowed, the
corresponding pre/post-conditions could not be expressed in the language. This entails that
C-like allocations for instance are not built-in: they must be performed by handling a stack
of available locations, allocated in the symbolic heap describing the initial state of the system
by an atom such as lseg(x, y) (an instruction such as malloc(z) can be simulated by two
actions z := x and x := x.1). The complexity of the entailment problem for oriented systems

TIME 2022

7:14 Reasoning on Dynamic Transformations of Symbolic Heaps

also deserves to be precisely identified (it is 2-EXPTIME hard by [4]).

References
1 Callum Bannister, Peter Höfner, and Gerwin Klein. Backwards and forwards with separation

logic. In Jeremy Avigad and Assia Mahboubi, editors, ITP 2018, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings, volume 10895 of LNCS, pages 68–87. Springer, 2018.

2 Rémi Brochenin, Stéphane Demri, and Étienne Lozes. Reasoning about sequences of memory
states. In Sergei N. Artëmov and Anil Nerode, editors, LFCS 2007, New York, NY, USA,
June 4-7, 2007, Proceedings, volume 4514 of LNCS, pages 100–114. Springer, 2007.

3 James Brotherston, Carsten Fuhs, Juan Antonio Navarro Pérez, and Nikos Gorogiannis. A
decision procedure for satisfiability in separation logic with inductive predicates. In Thomas A.
Henzinger and Dale Miller, editors, CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
25:1–25:10. ACM, 2014.

4 Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment checking in separation logic
with inductive definitions is 2-exptime hard. In LPAR 2020, Alicante, Spain, May 22-27, 2020,
volume 73 of EPiC Series in Computing, pages 191–211. EasyChair, 2020.

5 Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Decidable entailments in separation logic
with inductive definitions: Beyond establishment. In CSL 2021, EPiC Series in Computing.
EasyChair, 2021.

6 Didier Galmiche and Daniel Méry. Labelled tableaux for linear time bunched implication logic.
In ASL 2022 (Workshop on Advancing Separation Logic), 2022.

7 Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width of separation logic with
recursive definitions. In Proc. of CADE-24, volume 7898 of LNCS, 2013.

8 Norihiro Kamide. Temporal BI: proof system, semantics and translations. Theor. Comput.
Sci., 492:40–69, 2013.

9 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53(6):937–977, 2006.

10 Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bull. Symb. Log.,
5(2):215–244, 1999.

11 Jens Pagel, Christoph Matheja, and Florian Zuleger. Complete entailment checking for
separation logic with inductive definitions, 2020. URL: https://arxiv.org/abs/2002.01202.

12 Jens Pagel and Florian Zuleger. Beyond symbolic heaps: Deciding separation logic with
inductive definitions. In LPAR-23, volume 73 of EPiC Series in Computing, pages 390–408.
EasyChair, 2020.

13 Amir Pnueli. The temporal logic of programs. In FOCS, Providence, Rhode Island, USA,
pages 46–57. IEEE Computer Society, 1977.

14 J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, 2002.

https://arxiv.org/abs/2002.01202

N. Peltier 7:15

A Proof of Lemma 9

We use the algorithm developed in [5] to test the validity of entailments between SL formulas (if
the considered SID is progressing, connected and established), combined with the technique
devised in [12] to cope with conjunctions (see also [11]). Let X = {x1, . . . , xn}, where
the order on the xi is arbitrary. For every i = 1, . . . , n, we denote by Ψi the formula:
(
∨i−1
j=1 xi ≃ xj)∨ xi 7→ (xi, . . . , xi). Let Ψ = Ψ1 ∗ · · · ∗Ψn. By definition, if (s, h′) |=R Ψ then

dom(h′) = {s(x) | x ∈ X}, hence, for every structure (s, h), there is at most one heap h′ ⊆ h

with (s, h′) |=R Ψ. Moreover, for all stores s, we have (s, hs) |=R Ψ, where hs denotes the
heap: {(ℓ, . . . , ℓ) | ∃x ∈ X s.t. ℓ = s(x)}. Let Φ =

∧
ϕ∈S+(Ψ ∗ ϕ) ∧ ¬(

∨
ϕ∈S−(Ψ ∗ ϕ)). Note

that since S+ is not empty, Φ is a guarded formula (as defined in [12, Fig. 1]), except that
it contains existential quantifiers (the fact that S+ is non empty is essential, as otherwise
the negation would not be guarded). The satisfiability of Φ can be tested by combining the
techniques devised in [12] and [5]. The idea is to compute an abstraction of the possible
models of Φ bottom-up. Points-to atoms, inductive predicates, separating conjunctions and
existential quantifications can be handled as explained in [5], whereas conjunctions and
guarded negations are handled as it is done in [12]. We prove that (S+, S−, X) is satisfiable
iff Φ is satisfiable:

Assume that (s, h) |=R (S+, S−, X). Then (s, h) |=R ϕ for all ϕ ∈ S+, (s, h) ̸|=R ϕ for
all ϕ ∈ S−, and s(x) ̸∈ dom(h) for all x ∈ X. Then hs and h are disjoint, thus we get
(s, h⊎ hs) |=R ϕ ∗Ψ for all ϕ ∈ S+. If (s, h⊎ hs) |=R ϕ ∗Ψ for some ϕ ∈ S− then since hs
is the unique heap such that (s, hs) |=R Ψ, we deduce that we must have (s, h) |=R ϕ,
which contradicts our assumption. Thus (s, h ⊎ hs) |=R Φ.
Assume that (s, h) |=R Φ. Then, we get (s, h) |=R ϕ ∗Ψ, for all ϕ ∈ S+. Since hs is the
unique heap such that (s, hs) |=R Ψ, this entails that (s, h′) |=R ϕ, with h′ = h \ hs. Since
dom(hs) = {s(x) | x ∈ X} we get s(x) ̸∈ dom(h′), for all x ∈ X. If (s, h′) |=R ϕ, for some
ϕ ∈ S− then we deduce (s, h′ ⊎ hs) |=R ϕ ∗Ψ, which contradicts our hypothesis. Thus
(s, h′) |=R (S+, S−, X).

B Proof of Lemma 36

Assume that (s, h) |=R ψ. We show, by induction on |h|, that (s, h) |=R ϕ. If x ∈ v7→(ϕ) then
⟨ϕ⟩x = {ϕ} thus ϕ = ψ and the proof is immediate. Otherwise, we distinguish the following
cases, following Definition 34:

ϕ′ = ∃uuu.(x ≃ x′ ∗ x 7→ (yyy) ∗ ψ) and ϕ = ∃uuu.(x′ 7→ (yyy) ∗ ψ). It is clear that ϕ′ |=R ϕ.
ϕ′ = ∃uuu∃vvv.(x ≃ x′ ∗ψ′ ∗ψ), and ϕ = ∃uuu.(p(x′, yyy) ∗ψ) with p(x,yyy)⇐R ∃vvv.ψ′. In this case,
we get ϕ′ |=R ∃uuu.(x ≃ x′ ∗ p(x,yyy) ∗ ψ), thus ϕ′ |=R ∃uuu.(p(x′, yyy) ∗ ψ) = ϕ.
ϕ′ = ∃uuu∃vvv∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm)∗z1 ≃ x∗ψ′ ∗ψ) and ϕ = ∃uuu.(p(yyy)∗ψ), with
q(x, z2, . . . , zm) ⇐R ∃vvv.ψ′. Then we get ϕ′ |=R ∃uuu∃z1 . . . ∃zm.((q −−• p)(yyy, z1, . . . , zm) ∗
z1 ≃ x ∗ q(x, z2, . . . , zm) ∗ ψ), and by definition of the rules associated with the predicate
(q −−• p), one of the following conditions holds (with yyy = (y1, . . . , yn)):

ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃www∃vvv.(y1 7→ (yyy′) ∗ (q −−• p′)(zzz′, z1, . . . , zm) ∗ ψ′′ ∗ z1 ≃ x ∗ ψ′ ∗ ψ)
with p(yyy) ⇐R y1 7→ (yyy′) ∗ p′(zzz′) ∗ ψ′′. This entails that there exists a store s′

coinciding with s with all the variables not occurring in uuu, z1, . . . , zm,www,vvv and disjoint
heaps h′, h′′ such that h = h′ ⊎ h′′, (s′, h′) |=R y1 7→ (yyy′) ∗ ψ′′ and (s′, h′′) |=R (q −−•
p′)(zzz′, z1, . . . , zm)∗z1 ≃ x∗ψ′∗ψ. This entails that h′ ̸= ∅ thus |h| > |h′′|. By definition,
(q −−• p′)(zzz′, z1, . . . , zm)∗z1 ≃ x∗ψ′∗ψ ∈ ⟨p′(zzz′)∗ψ⟩x, hence by the induction hypothesis
we get (s′, h′′) |=R p′(zzz′) ∗ ψ, so that (s′, h) |=R y1 7→ (yyy′) ∗ ψ′′ ∗ p′(zzz′) ∗ ψ, hence
(s, h) |=R ∃uuu.(p(yyy) ∗ ψ) = ϕ.

TIME 2022

7:16 Reasoning on Dynamic Transformations of Symbolic Heaps

ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃vvv∃www.(y1 7→ (yyy′) ∗ zzz′ ≃ (z1, . . . , zm) ∗ ψ′′ ∗ z1 ≃ x ∗ ψ′ ∗ ψ) with
p(yyy)⇐R ∃www.(y1 7→ (yyy′) ∗ q(zzz′) ∗ ψ′′). Since q(x, z2, . . . , zm)⇐R ∃vvv.ψ′, we deduce that
ϕ′ |=R ∃uuu∃z1 . . . ∃zm∃www.(y1 7→ (yyy′)∗zzz′ ≃ (z1, . . . , zm)∗ψ′′∗z1 ≃ x∗q(x, z2, . . . , zm)∗ψ),
thus ϕ′ |=R ∃uuu∃www.(y1 7→ (yyy′) ∗ ψ′′ ∗ q(zzz′) ∗ ψ), hence ϕ′ |=R ∃uuu.(p(yyy) ∗ ψ) = ϕ.

C Proof of Lemma 37

Assume that (s, h) |=R ϕ and that s(x) ∈ dom(h). We show, by induction on |h|, that
(s, h) |=R ψ, for some ψ ∈ ⟨ϕ⟩x. The symbolic heap ϕ is necessarily of the form ∃uuu.(ϕ1∗· · ·∗ϕk),
where the ϕ1, . . . , ϕk are atoms. We assume by α-renaming that x does not occur in uuu. By
definition of the semantics of SL, there exists a store s′ (coinciding with s on all variables
not occurring in uuu) and disjoint heaps hi such that (s′, hi) |=R ϕi (for all i = 1, . . . , n) and
h = h1 ⊎ . . . ⊎ hk. Since s(x) ∈ dom(h), necessarily s(x) ∈ dom(hi) for some i = 1, . . . , k, say
i = 1. Let ϕ′ = ϕ2 ∗ · · · ∗ ϕk. We distinguish several cases.

Assume that ϕ1 is a points-to atom x′ 7→ (yyy). If x = x′, then x ∈ v7→(ϕ), so that
⟨ϕ⟩x = {ϕ}, hence the proof is immediate. Otherwise, since (by definition of the semantics
of SL) dom(h1) = {s′(x′)} and s(x) ∈ h1 we must have s(x′) = s(x) = s′(x). By
Definition 34 (2a), ⟨ϕ⟩x contains a formula of the form ∃uuu.(x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′). We
have (s′, h) |=R x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′, so that (s, h) |=R ∃uuu.(x 7→ (yyy) ∗ x ≃ x′ ∗ ϕ′).
Assume that ϕ1 is a predicate atom p(x′, yyy) and that s′(x′) = s(x). Then we get
(s′, h) |=R p(x,yyy)∗x ≃ x′∗ϕ′, so that (s′, h) |=R ∃vvv.(ψ′∗x ≃ x′∗ϕ′) with p(x,yyy)⇐R ∃vvv.ψ′.
Thus (s, h) |=R ∃uuu∃vvv.(ψ′ ∗ x ≃ x′ ∗ ϕ′), and by Def. 34 (2b), this formula is in ⟨ϕ⟩x.
Finally, assume that ϕ1 is a predicate atom p(x′, yyy) and that s′(y1) ̸= s(x). Necessarily,
p(x′, yyy)⇐R ∃vvv.(x′ 7→ (yyy′)∗ψ) with (s′′, h1) |=R x′ 7→ (yyy′)∗ψ, for some store s′′ coinciding
with s′ on all variables not occurring in vvv. Since s′(y1) ̸= s(x) and s(x) ∈ dom(h1), ψ must
be of the form p′(zzz) ∗ ψ′ (with possibly ψ′ = emp) and there exist disjoint heaps h′, h′′

such that h1 = h′ ⊎ h′′, (s′′, h′) |=R x′ 7→ (yyy′) ∗ψ′ and (s′′, h′′) |=R p′(zzz). This entails that
h′ ̸= ∅, thus |h′′| < |h|, and by the induction hypothesis, we deduce that ⟨p′(zzz)⟩x contains
a formula ψ′′ such that (s′′, h′′) |=R ψ′′. We get (s, h) |=R ∃uuu∃vvv.(x′ 7→ (yyy′) ∗ ψ′′ ∗ ψ′ ∗ ϕ′).
By Definition 34, ψ′′ is of one of the following forms:

2b ψ′′ = ∃www.(ξ ∗ z1 ≃ x), with zzz = (z1, . . . , zm) and p′(x, z2, . . . , zm) ⇐R ∃www.ξ. Then
we get (s, h) |=R ∃uuu∃vvv∃www.(x′ 7→ (yyy′) ∗ ξ ∗ z1 ≃ x ∗ ψ′ ∗ ϕ′). By definition of the rules
defining (p′ −−• p), we have: (p′ −−• p)(x′, yyy,zzz))⇐R ∃vvv.(x′ 7→ (yyy′) ∗ ψ′ ∗ zzz ≃ zzz), so that
(s, h) |=R ∃uuu∃www.((p′ −−• p)(x′, yyy,zzz)) ∗ ξ ∗ z1 ≃ x ∗ ϕ′), hence (s, h) |=R ∃uuu∃www∃zzz′.((p′ −−•
p)(x′, yyy,zzz′)) ∗ ξ ∗ z′

1 ≃ x ∗ ϕ′), where zzz′ = (z′
1, . . . , z

′
m) is a vector of fresh pairwise

distinct variables. By Definition 34 (2c), the latter formula occurs in ⟨ϕ⟩x.
2c ψ′′ = ∃z′

1, . . . , z
′
m.((q −−• p′)(zzz, z′

1, . . . , z
′
m)∗z′

1 ≃ x∗ξ), with q(x, z′
2, . . . , z

′
m)⇐R ξ. We

get (s, h) |=R ∃uuu∃vvv∃z′
1, . . . , z

′
m.(x′ 7→ (yyy′)∗ (q −−• p′)(zzz, z′

1, . . . , z
′
m)∗ z′

1 ≃ x∗ ξ ∗ψ′ ∗ϕ′).
By definition of the rules defining (q −−• p), we have (q −−• p)(x′, yyy, z′

1, . . . , z
′
m) ⇐R

∃vvv.(x′ 7→ (yyy′) ∗ (q −−• p′)(zzz, z′
1, . . . , z

′
m) ∗ ψ′), thus (s, h) |=R ∃uuu∃z′

1, . . . , z
′
m.((q −−•

p)(x′, yyy, z′
1, . . . , z

′
m) ∗ z′

1 ≃ x ∗ ξ ∗ ϕ′). By Definition 34 (2c), this formula is in ⟨ϕ⟩x.

D Finiteness of Bw(S, ϕ, Φ) and Fw(S, ϕ)

We write ϕ→s ψ if ψ is obtained from ϕ by using one of the above simplification rules.

C≃ : ∃uuu.(x ̸≃ x∗ ξ)→ ⊥ E̸≃ : ∃uuu∃x.(x ̸≃ x1 ∗ . . . x ̸≃ xn ∗ ξ)→ ∃uuu.ξ if x ̸∈ fv(ξ) ∪ {x1, . . . , xn}

C∗ : ∃uuu.(x 7→ (yyy) ∗ x 7→ (zzz) ∗ ξ)→ ⊥ E≃ : ∃uuu∃x.(x ≃ y ∗ ξ)→ ∃uuu.ξ{x← y}

It is easy to verify that →s is well-founded, and that ϕ→s ψ =⇒ ϕ ≡R ψ.

N. Peltier 7:17

▶ Lemma 41. If S is oriented then the sets Bw(S, ϕ,Φ) and Fw(S, ϕ) are finite (up to
associativity and commutativity of ∗, α-renaming and equivalence w.r.t. →s).

Proof. We assume that all symbolic heaps are in normal form w.r.t. →s. Let S = (Q,R, qI).
We give the proof for Bw(S, ϕ,Φ), the set Fw(S, ϕ) can be handled in a similar way (the only
difference is that one must consider the order ⪯S instead of ⪰S , and that Fw(S, ϕ) does
not depend on Bw(S, ϕ,Φ), while Bw(S, ϕ,Φ) depends on Fw(S, ϕ)). If Bw(S, ϕ,Φ) is infinite
then by definition (assuming that Fw(S, ϕ) is finite) by Köning’s lemma there must exist an
infinite sequence of pairwise distinct triples (ϕi, qi, Xi) (i ∈ N) such that X0 = ∅ and for
every i ∈ N, one of the following conditions holds:

there exists an action ai such that (qi+1, ai, qi) ∈ R and ϕi+1 = wpc(ϕi, ai), where
Xi+1 = Xi \ {xi} if ai is of the form xi := ti with xi ∈ V⋆, and Xi+1 = ∅ otherwise, or;
ϕi+1 = ψi with ψi ∈ ⟨ϕi⟩xi

for some variable x ∈ V⋆ \Xi, qi+1 = qi and Xi+1 = Xi∪{xi}.
In both cases we have qi+1 ⪰S qi, by definition of ⪰S (see Definition 14). Since the set of
states Q is finite, necessarily there exists a natural number k such that, qi+1 ̸≻S qi holds
for all i ≥ k. Since by hypothesis S is oriented, this entails that R contains no transition of
the form (qi+1, xi := ti, qi) with xi ∈ V⋆ and i ≥ k. Consequently, we must have Xi+1 ⊇ Xi,
for all i ≥ k. By definition of Bw(S, ϕ,Φ), Xi ⊆ V⋆ for all i ∈ N, and since V⋆ is finite we
deduce that there exists l ∈ N such that l ≥ k and Xi = Xi+1 for all i ≥ l. By definition of
Bw(S, ϕ,Φ), this entails that ϕi+1 must be of form wpc(ϕi, ai), for all i ≥ l, and ai is not of
the form xi := ti. Note that this implies that all the predicates symbols occurring in ϕi occur
in ϕl (since all the predicates in wpc(ϕi, ai) must occur in ϕi). For all i ≥ l, we denote by ni
the number of atoms in ϕi that are not equational and not of the form x 7→ (yyy) with x ∈ V⋆.
By inspection of the different cases in Definition 30 (taking into account the fact that ai
is not of the form xi := ti), it is easy to check that ni+1 = ni holds for all i ≥ l. Indeed,
the only case in which wpc(ϕi, ai) contains an atom that does not occur in ϕi is when this
atom is either an equation or a points-to atom with a left-hand side in V⋆ (furthermore, the
simplification rules in →s cannot add new atoms in the formula). By irreducibility w.r.t. the
rule C∗, this entails that the number of spatial atoms in ϕi (for i ≥ l) is at most card(V⋆)+nl.
Assume that ϕi contains an existential variable x that does not occur in a spatial atom. By
irreducibility w.r.t. the rule E≃, x cannot occur in an equation. By irreducibility w.r.t. C≃,
it cannot occur in a disequation x ̸≃ x. Thus the only atoms in which x occurs are of the
form x ̸≃ xi, with xi ̸= x, and the rule E̸≃ applies, which contradicts the fact that ϕi is in
normal form w.r.t. →s. Consequently, all the existential variables in ϕi occur in a spatial
atom. Since the number of such atoms is bounded, necessarily the number of existential
variables is bounded. As both the set of free variables V⋆ and the set of predicate symbols in
ϕi is finite, this entails that there exist finitely many symbolic heaps ϕi (with i ≥ l), which
contradicts our assumption. ◀

E Proof of Theorem 39

We construct a run (qi, si, hi, ai)i∈N, and a corresponding sequence of triples (ϕ′
i, qi, Xi)i∈N

by induction on i, with (s0, h0) |=R ϕ. We simultaneously establish the following inductive
invariant:
a The equivalence I(ξ, i) = true ⇐⇒ (si, hi) |=R ξ holds for all atomic conditions
ξ, and also for all symbolic heaps ξ such that there exists q ∈ Q and X ⊆ V⋆ with
(ξ, q,X) ∈ Bw(S, ϕ,Φ), for all x ∈ X \ v 7→(ξ).

b For all q ∈ Q and for all actions a, I(q, i) = true iff q = qi and I(a, i) = true iff a = ai.

TIME 2022

7:18 Reasoning on Dynamic Transformations of Symbolic Heaps

c (ϕ′
i, qi, Xi) ∈ Fw(S, ϕ) with I(ϕ′

i, i) = true and ∀x ∈ Xi \ v7→(ϕ′
i) : si(x) ̸∈ dom(h) ∧

(si, hi) ̸|= A(x).
Note that the invariant entails in particular that I is compatible with (qi, si, hi, ai)i∈N, w.r.t.
all symbolic heaps occurring in Φ. Indeed, by definition of Bw(S, ϕ,Φ), (ψ, q, ∅) ∈ Bw(S, ϕ,Φ)
for all symbolic heaps occurring in Φ and for all states q.

Base case (i = 0). Let q0
def= qI , ϕ′

0
def= ϕ and X0

def= ∅. Let S+ (resp. S−) be the set
of symbolic heaps ψ occurring in A(R,S, ϕ), {ϕ} or Φ such that I(ψ, 0) = true (resp.
I(ψ, 0) = f alse). By hypothesis, Φ ∈ S+, thus S+ ≠ ∅. Let X be the set of variables
x such that I(A(x), 0) = f alse. By definition, I ̸|= Γ(S+, S−, X), thus, by Axiom
14, (S+, S−, X) cannot be unsatisfiable, and there exists a structure (s0, h0) such that
(s0, h0) |=R (S+, S−, X). By construction, I(ξ, 0) = true ⇐⇒ (s0, h0) |=R ξ holds for all
symbolic heaps ξ occurring in A(R,S, ϕ), {ϕ} or Φ, and in particular, (s0, h0) |=R ϕ. Still
by construction, I(A(x), 0) = f alse =⇒ (s0, h0) ̸|=R A(x). Conversely, if I(A(x), 0) =
true, then by Axiom 4, necessarily (I, 0) |= ξ, for some ξ ∈ ⟨ϕ⟩x, thus (s0, h0) |=R ξ and
by Lemma 35, we get (s0, h0) |=R A(x). Thus Property a holds for all symbolic heaps
and for all conditions of the form A(x).
By hypothesis we have (I, 0) |= qI , and, by Axiom 11, (I, 0) |= ¬q, for all states q ̸= qI .
By Axioms 12 and 11, there exists a unique action a0 such that (I, 0) |= a0. Thus
Property b holds.
By definition of Fw(S, ϕ) we have (ϕ, qI , ∅) ∈ Fw(S, ϕ) thus Property c holds.
It only remains to prove that Property a holds for all atomic conditions (other than those
of the form A(x)). Consider any atomic condition α, and assume that I(α, 0) = true (the
case whether I(α, 0) = f alse is handled in a similar way). We show that (s0, h0) |= α.
Assume that α is of the form x ≈ y, with x, y ∈ V⋆. By definition ϕ′

0 is of the form
∃uuu.ϕ′, for some symbolic heap ϕ′ containing no quantifier. By definition of Bw(S, ϕ,Φ)
we have (∃uuu.(ϕ′ ∗ x ≃ y), q0, X0) ∈ Bw(S, ϕ,Φ). By Axiom 7, since I(ϕ′

0, 0) = true,
we get I(∃uuu.(ϕ′ ∗ x ≃ y), 0) = true, thus (s0, h0) |=R ∃uuu.(ϕ′ ∗ x ≃ y) (by Property
a, which has already been established for symbolic heaps). Thus s0(x) = s0(y) and
therefore (s0, h0) |=R x ≈ y. Assume that α is of the form x.i ≈ y, with x, y ∈
V⋆. By Axiom 1 we must have I(A(x), 0) = true, hence by Axiom 4 we deduce that
I(ψ, 0) = true, for some ψ ∈ ⟨ϕ′

0⟩x (note that, by definition of Fw(S, ϕ), we have
(ψ, q0, X0 ∪ {x}) ∈ Fw(S, ϕ)). By Lemma 35, ψ is of the form ∃vvv.(x 7→ (x1, . . . , xκ) ∗ ψ′).
We have (∃vvv.(x 7→ (x1, . . . , xκ)∗ψ′ ∗xi ≃ y), q0, X0∪{x}) ∈ Bw(S, ϕ,Φ), thus by Axiom 5
we deduce that I(∃vvv.(x 7→ (x1, . . . , xκ)∗ψ′∗xi ≃ y), 0) = true, so that (s0, h0) |=R x.i ≈ y.
The proof is similar if α is of the form x.i ≈ y.j (using Axiom 6).
Inductive case. Assume that (qi, si, hi, ai) has been constructed and that the invariant
above holds for all i ≤ k. As I(ak, k) = true, by Axiom 13, we have (I, k) |= pre(ak),
hence (sk, hk) |=R pre(ak) (by Property a). By Proposition 26, we deduce that (sk, hk)[ak]
is defined. Let (sk+1, hk+1) = (sk, hk)[ak]. By Axioms 12 and 11, there exist a unique
action ak+1 and state qk+1 such that I(ak+1, k + 1) = I(qk+1, k + 1) = true, with
(qk, ak, qk+1) ∈ R.
We show that Property a is satisfied for k + 1. We first observe that, if ak is not of the
form x := s, then, using Axioms 8, 9 and 10, it is easy to check that I(A(x), k+1) holds iff
sk+1(x) ∈ dom(hk+1), i.e., that Property a holds if ξ = A(x). Indeed, if ak is of the form
free(x) (resp. alloc(x)) then we have by Axiom 9 (resp. Axiom 10), I(A(y), k+1) = f alse
(resp. I(A(y), k+1) = true) if I(x ≃ y, k) = true and I(A(y), k+1) = I(A(y), k) otherwise.
Furthermore, by Axiom 8, I(A(y), k + 1) = I(A(y), k) holds for all y ∈ V⋆ if ak is not of
the above forms.

N. Peltier 7:19

Consider a triple (ψ, q,X) ∈ Bw(S, ϕ,Φ) such that for all x ∈ X \ v7→(ψ), sk+1(x) ̸∈
dom(hk+1) (†). If ak contains a term x.i where x ̸∈ v 7→(ψ), then (by definition of
(sk, hk)[ak]) sk+1(x) ∈ dom(hk+1), so that x ̸∈ X. Thus, by definition of Bw(S, ϕ,Φ),
(ξ, q,X ∪ {x}) ∈ Bw(S, ϕ,Φ), for all ξ ∈ ⟨ψ⟩x. Note that (since actions of the form
x := x.i are forbidden) we must have I(A(x), k + 1) ⇔ sk+1(x) ∈ dom(hk+1), hence
I(A(x), k+1) = true and by Axiom 4, necessarily (I, k+1) |= ψ ⇔

∨
ξ∈⟨ψ⟩x

ξ. By Lemma
35, x ∈ v7→(ξ), for all ξ ∈ ⟨ψ⟩x. By repeating this process (if needed) on any other variable
y such that that the condition above holds (in case ak contains another occurrence of a term
y.j), we eventually obtain a set of symbolic heaps S such that (I, k + 1) |= ψ ⇔

∨
ξ∈S ξ,

for all ξ ∈ S, wpc(ξ, ak) is defined, and there exists X ′ such that (ξ, qk, X ′) ∈ Bw(S, ϕ,Φ),
with X ′ = X ∪ Y , for some set of variables Y ⊆ v7→(ξ). This entails (by definition of
Bw(S, ϕ,Φ)) that, for all ξ ∈ S, (wpc(ξ, ak), qk+1, X

′′) ∈ Bw(S, ϕ,Φ), for some X ′′ that
is either empty (if ak is of the form x := t with x ∈ V⋆) or identical to X ′ (otherwise).
Furthermore, we have (sk+1, hk+1) |=R ψ ⇐⇒ ∃ξ ∈ S s.t. (sk+1, hk+1) |=R ξ, by
Lemmata 36 and 37. By Property a in the inductive invariant (at rank k) the equivalence
I(wpc(ξ, ak), k) = true ⇐⇒ (sk, hk) |=R wpc(ξ, ak) holds for all ξ ∈ S. Indeed, we have
∀x ∈ X ′′ \ v7→(wpc(ξ, ak)), sk(x) ̸∈ dom(hk): if the condition is not fulfilled, then ak
cannot be of the form x := t (otherwise X ′′ = ∅) and either ak is of the form free(x)
and x must occur in v7→(wpc(ξ, ak)), by definition of wpc(ξ, ak); or x must be allocated in
(sk+1, hk+1), and then (by †, since X ′′ ⊆ X∪Y ⊆ X∪v7→(ξ)) x ∈ v 7→(ψ) ⊆ v7→(ξ), so that
x ∈ v7→(wpc(ξ, ak)) by definition of wpc(ξ, ak) (as ak ̸= alloc(x), since sk(x) ∈ dom(hk)).
By Lemma 32 we get I(wpc(ξ, ak), k) = true ⇐⇒ (sk+1, hk+1) |=R ξ, and by Axiom 3,
this yields: I(ξ, k + 1) = true ⇐⇒ (sk+1, hk+1) |=R ξ, so that I(ψ, k + 1) = true ⇐⇒
(sk+1, hk+1) |=R ψ.
We now show that Fw(S, ϕ) contains a tuple (ϕ′

k+1, qk+1, Xk+1) such that I(ϕ′
k+1, k+1) =

true. Let Y be the set of variables y such that ak contains a term of the form y.i (for
some i ∈ N) and y ̸∈ v7→(ϕ′

k). By applying the function ⟨⟩x on all variables in Y , we
get a set S of symbolic heaps such that (I, k) |= ϕ′

k ⇔
∨
ξ∈S ξ. Furthermore, for all

variables y ∈ Y , we have s(y) ∈ dom(hk) (since (sk, hk)[a′
k] is defined), thus y ̸∈ Xk. By

definition of Fw(S, ϕ), we deduce that for all ξ ∈ S, (ξ, qk, Xk ∪ Y) ∈ Fw(S, ϕ). Moreover,
by Lemma 35, we have Y ⊆ v7→(ξ), and spc(ξ, ak) is defined for all ξ ∈ S. Then we
get by Axiom 2, (I, k + 1) |= spc(ξ, ak), for some ξ ∈ S. We define: ϕ′

k+1
def= spc(ξ, ak).

By definition of Fw(S, ϕ), (spc(ξ, ak), qk+1, Xk+1) ∈ Fw(S, ϕ) for some set Xk+1. Let
x ∈ x ∈ Xk+1 \ v 7→(ϕ′

k+1). Assume that sk+1(x) ∈ dom(h). By definition of Fw(S, ϕ), ak
cannot be of the form z := t, where z ∈ V⋆ (otherwise Xk+1 would be empty). Thus
Xk+1 = Xk ∪ Y . Since x ∈ dom(sk+1), we have ak ̸= free(x). Since x ̸∈ v 7→(ϕ′

k+1), we
have ak ̸= alloc(x), by definition of spc(ξ, ak). Thus ak is of the form t := s where t is
not a variable, and we must have x ∈ dom(hk), and v7→(ϕ′

k+1) = v7→(ξ) ⊇ Y . This entails
that x ∈ Xk, which contradicts Property c at rank k.
Finally, using the symbolic heap ϕ′

k+1, the equivalence I(α, k + 1) = true ⇐⇒
(sk+1, hk+1) |=R α can be established for all atomic conditions α exactly as for the
base case. The case where α = A(x) and ak is of the form x := t is handled by noting
that we have both (sk+1, hk+1) |= A(x)⇔

∨
ξ∈⟨ϕ′

k+1⟩x
ξ (since (sk+1, hk+1) |= ϕ′

k+1, using
Lemmata 35, 36 and 37) and (I, k + 1) |= A(x)⇔

∨
ξ∈⟨ϕ′

k+1⟩x
ξ (by Axiom 4).

TIME 2022

	1 Introduction
	2 Separation Logic
	3 Actions Operating on SL Structures
	4 Transition Systems
	5 Temporal Formulas
	6 Symbolic Execution of Actions
	7 Context Predicates
	8 Axioms
	9 Proof Procedure
	10 Discussion
	A Proof of Lemma 9
	B Proof of Lemma 36
	C Proof of Lemma 37
	D Finiteness of Bw(S,,) and Fw(S,)
	E Proof of Theorem 39

