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The relative phase of first (ω1) and third harmonics (ω3) extreme ultraviolet light pulses was varied to control the pop-
ulation of the 2s2 state in helium through the interference of ω1 +ω1 and ω3 −ω1 two-photon excitation paths. The
population was monitored by observing the total electron yield due to the 2s2 autoionization decay. Maximum yield
occurs when the relative phase of the two harmonics matches the phase difference of complex atomic amplitudes gov-
erning the two excitation paths. The calculated trend of atomic phase differences agrees well with the measured data in
the spectral region of the resonance, provided that time-reversed−ω1 +ω3 path is also taken into account. These results
open the way to accessing phase differences of two-photon ionization paths involving energetically distant intermediate
states and to perform interferometry in the extreme ultraviolet range by monitoring final state populations. © 2022

Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

With the advent of coherent light sources generating high-order
odd-harmonics (HHG) ω2n−1 of a driving infrared (IR) laser fre-
quency ω1 [1], two-photon above-threshold ionization (ATI) has
attracted much attention due to the attosecond temporal sensitiv-
ity displayed by the so-called reconstruction of attosecond beating
by interference of two-photon transitions (RABBITT) technique
[2–4]. This is based on beating of the photoelectron yield from an
atomic shell with ionization potential Tp at electron kinetic energy
ω2n − Tp due to interference of indistinguishable ω2n−1 +ω1

and ω2n+1 −ω1 two-photon ionization paths and is observed
by varying the delay of the phase-locked IR pulse with respect to
the pulse of the extreme ultraviolet (XUV) light emitted by the
HHG source. The measurement is done at many neighboring pairs
of odd harmonic frequencies simultaneously, and identification
of delays at which different electronic sidebands ω2n show their
maximum yield has allowed determination of Wigner time delay
difference for nonresonant photoionization of different atomic
subshells [5–7]. The established extraction procedure involves
subtraction of the so-called continuum–continuum phase from
the measured two-path phase difference [8]. This extra phase is

induced by the interaction of IR light with a photoelectron in the
region dominated by the Z = 1 Coulomb potential of the ion, and
can be handled for any atomic target by using analytical approx-
imations derived from the asymptotic form of the two-photon
matrix element.

In fact, the RABBITT scheme represents an extension of
all-optical coherent control experiments pioneered by Brumer,
Shapiro, and others [9–11], where one of the photons in the multi-
color excitation path is replaced by an XUV photon. The technique
is readily implemented by combining weak coherent XUV light
pulses with the laser probe of moderate intensity because of the
relatively strong interaction of IR light with the electronic con-
tinuum. An interesting and not yet fully analyzed situation arises
when the IR probe photons are substituted by XUV photons, lead-
ing, for example, to the simplestω1 +ω1 andω3 −ω1 RABBITT
type two-photon interference scheme involving XUV photons
only. As indicated by the ω−2 dependence of the electron kinetic
energy, the interaction of XUV photons with an electronic con-
tinuum is at least 2 orders of magnitude weaker than the IR photon
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interaction. Thus, to investigate the potential of such an XUV-
RABBITT scheme, multicolor and tunable sources of intense and
coherent XUV light are required.

The last decade has seen a rapid development of free-electron
laser (FEL) sources [12], and especially seeded FELs operating at
XUV wavelengths hold the potential to fulfill the above require-
ments [13]. This is indicated by several recent studies observing the
effects of the competing two-photon (ω1 +ω1) and one-photon
(ω2) ionization paths on the photoelectron angular distribution
[14,15]. Although the opposite parity transfer along the two
concurrent ionization paths prevents control of the final state
populations, these experiments already are an all-XUV upgrade
of similar optical studies from the 1990s [16–20] and have suc-
cessfully solved some technical challenges specifically emerging
at shorter wavelengths. For example, it is important to delay one
XUV light pulse with respect to the other with a temporal resolu-
tion equal to a fraction of one optical period of the higher frequency
in the two-color excitation scheme. At seeded FELs, the two XUV
harmonic components are produced by two distinct undulator
modules, and delay is provided by a small chicane that slightly
lengthens the path of the light-generating electron bunch between
the modules [21]. Using such a technique, 0.9 as resolution of delay
between theω1 andω2 light pulses was achieved, leading to 0.2 rad
phase sensitivity at 31.5 nm [14].

When dealing with two-color two-photon excitations, high
intensity of both XUV colors is required to balance the probabil-
ities of ω1 +ω1 and ω3 −ω1 ionization paths. Optimally, the
intensity I3 of the third harmonic needs to be higher than intensity
I1 of the fundamental in order to compensate for the lower photo-
ionization cross section at higher photon energy and for the weaker
interaction of the ω1 radiation field with the faster photoelectron.
However, the number of FEL undulators for generation of light of
each color is necessarily smaller than in the single-color case, and at
present, such experiments are feasible only when the final state is a
resonance embedded in the electronic continuum. Consequently,
the photon energy ω1 =ω3/3 is limited to the vicinity of Er /2,
where Er is the excitation energy of the selected resonant state, and
the phase difference of the two-photon ionization paths is strongly
affected by the nature of the quasi-bound final state. This is similar
to numerous (RAINBOW) RABBITT studies with one of the
XUV harmonics tuned to a specific group of intermediate bound
[22] or resonance states [23–27]. This situation prompted the
development of dedicated numerical models to interpret the data
[28–31], and the same applies for the present XUV-RABBITT
experiment with an extra challenge: the presence of two XUV
photons of different colors in one of the ionization paths reopens
the question of whether the contribution of the time-reversed
−ω1 +ω3 path remains negligible, as safely assumed for con-
ventional RABBITT experiments, with ω1 in the IR spectral
region [8].

We have employed the ω1 +ω1 and ω3 −ω1 interference
scheme to control the population of the 2s 2 1S e autoionizing state
in helium (He), which has a characteristic lifetime of 5 fs (Fig. 1).
The theoretical parametrization of such an XUV-RABBITT
process is given below together with the link establishing the corre-
spondence with the typical RABBITT analysis. The present report
continues with a brief description of the experimental setup and
methods to collect the data for comparison with the theory, first
looking at the single-color two-photon ionization profile of the
resonance, and finally presenting the two-color phase-sensitive
results.

2. THEORY

A. Parameterization of the Two-Photon Ionization Rate

To describe resonant two-photon ionization, we use the formalism
introduced by Fano [32], generalized to absorption of two photons
[33,34]. When an He atom is irradiated by the fundamental alone
(diagram A in Fig. 1), the two-photon ionization rate may be writ-
ten as

R< =
π

2

∣∣∣∣F 2
1µ

<
s

x + q<
x + i

∣∣∣∣2 + π2 |F 2
1µ

<
d |

2, (1)

where x = 2(2ω1 − Er )/0r , Er ≈ 2.12586 a.u. (57.848 eV) is
the excitation energy of 2s 2 1S e resonance, 0r ≈ 4.54× 10−3

a.u. (123 meV) the autoionization width [35], µ<s and µ<d are
the two-photon ω1 +ω1 transition amplitudes to the 1s εs and
1s εd continua, F1 is the slowly varying electric field envelope, and
q< is the (generalized) Fano parameter. The first term in Eq. (1)
describes the transition to the 1s εs continuum, in which the 2s 2

resonance state is embedded, and the second term describes the
transition to the nonresonant 1s εd continuum. Note that, in con-
trast with one-photon ionization, the Fano parameter is complex in
the present case [33,34].

When both the fundamental and the third harmonic are
present, the amplitudes in Eq. (1) are replaced with the sums of
the amplitudes corresponding to diagrams A, B, and B′ in Fig. 1.
Diagrams B and B′ depict, respectively, absorption of the third
harmonic, followed by stimulated emission of the fundamental
(ω3 −ω1), and stimulated emission of the fundamental, followed
by absorption of the third harmonic (−ω1 +ω3). The resulting
overall two-photon ionization rate is

R<> =
π

2
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s
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+ e iφF1 F3µ
>
s

x + q>
x + i
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+
π

2
|F 2

1µ
<
d + e iφF1 F3µ

>
d |

2, (2)

where q>, µ>s , and µ>d are the Fano parameter, and the 1s εs ,
and 1s εd transition amplitude associated with the sum of both

Fig. 1. Left, two-photon excitation to the 2s 2 autoionizing state in
He with the fundamental (ω1, short vertical arrow) and the third har-
monic (ω3, long vertical arrow). Path A, two-photon ω1 +ω1 excitation;
path B, two-photon ω3 −ω1 excitation; path B′ (time-reversed path
B): two-photon −ω1 +ω3 excitation; AI, autoionization decay. Right,
single-photon ionization of the ground-state He+ ion by the third har-
monic (path C). The kinetic energies of the ejected electrons are denoted
by E1, E2, E3, and Eq . The ionization thresholds of the He ground state
(g.s.) atom and He+ 1s ion are labeled by T1 and T2, respectively.
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diagrams B and B′. In Eq. (2), φ denotes the tunable phase shift
between the carrier waves of the fundamental and the third
harmonic, and F1 and F3 are the corresponding field envelopes.

The two-photon ionization of an He atom in the ground state is
described by the following set of parameter values (in atomic units)
in the energy region of the 2s 2 1S e resonance,

q< =−7.24− i5.43, (3a)

q> =−2.10+ i1.43, (3b)

|µ<s | = 0.47 a.u., (3c)

|µ<d | = 0.65 a.u., (3d)

µ>s /µ
<
s = 0.41+ i0.16, (3e)

µ>d /µ
<
d = 0.143+ i0.015. (3f)

The two-photon background ionization cross sections asso-
ciated with µ<s and µ<d are approximately 0.0033 a.u.(0.63×
10−52 cm4 s) and 0.0067 a.u. (1.28× 10−52 cm4 s). The above
parameters have been extracted from the partial photoioniza-
tion amplitudes, which have been obtained in a high-precision
first-principles calculation [36,37].

It should be stressed that in the two-color case, a gauge-
independent result was obtained only when amplitudes for both
diagrams (B and B′) were included in the calculation. In this case,
very good agreement between the length and velocity form [38]
was obtained for both the s and d partial waves. This is different
from the RABBITT scheme, where the contribution of the IR
emission–XUV absorption process is negligible compared to the
contribution from the time-reversed process [8], at least at laser
intensities where electrons mostly exchange a single photon with
the IR field [39]. Specifically, we have found that, in the He 2s 2 1S e

resonance region, the inclusion of the B′ amplitude causes a change
of up to 30–40% of the magnitude and phase of the two-color
two-photon matrix element.

Under the present experimental conditions, the incident pulses
are 50 fs (FWHM) long, so that the fields complete many optical
cycles, and their envelopes vary slowly on the time scale of the opti-
cal periods. Since the spectral width is small compared to 0r , the
electron yield may be calculated by multiplying rates R< and R<>
with the effective pulse duration (teff) because, in the present treat-
ment, field envelopes of the first- and the third-harmonic pulses
fully overlap in time. It should be noted that a description in terms
of a transition rate is applicable only when the transition is not
saturated. Indeed, two-photon Rabi flopping is suppressed in our
case because of strong one-photon ionization of the ground-state
atoms.

For each photon energy ω1, Eq. (2) enables the calculation
of the phase angle at which the two-path interference results in
the maximum electron yield from the autoionization. In fact, the
single-atom electron yield teff R<> can be written as

y (ω1, φ)= |F 2
1 M< + F1 F3e iφM>e−iδ

|
2, (4)

where M< and M> are positive quantities, and δ is a phase angle.
While a general expression for δ can be deduced from Eq. (2), note
that, in the 2s 2 1S resonance region, the electron yield is domi-
nated by the first term of Eq. (2). As a consequence, δ ≈ δs , where
δs denotes the phase difference between the one- (A) and two-color

Fig. 2. Electron yield y as a function of the fundamental frequency ω1

and phase differenceφ between the third and the first harmonic calculated
from Eq. (2) for pulse duration teff = 50 fs and harmonic intensities
I1 = I3 = 1013 W/cm2. The cosine-modulated yield yr (φ) (thin solid
curve, right axis) with ω1 set to the top of the 2s 2 resonance (thin dashed
line) is also plotted. At a given fundamental, the electron yield reaches
maximum value at φ = δ(ω1). The calculated δ (from Eq. (9), thick black
curve) practically coincides with the atomic phase difference δs in the
final electronic s wave channel (the first term in Eq. (2), thick dashed
curve) except at large frequency detuning where the nonresonant d wave
contribution becomes important.

(B and B′) complex atomic amplitudes of the s-wave channel
(Fig. 2). According to Eq. (9), the maximum yield is expected for
φ = δ. The calculated phase difference δ displays a 2π jump when
ω1 changes across the resonance (Fig. 2). It is clear that the interfer-
ence effects persist off-resonance in the 1s εs and 1s εd continuum,
but the electron yield there is expected to reach only about 1%
of the maximum on-resonance yield. Another consequence of
the interference is that the effective Fano parameter (i.e., the line
profile) depends on the tunable phaseφ.

While the phase angle δ does not depend on the light intensity
ratio I3/I1 = F 2

3 /F 2
1 , the visibility of interference does. This is

quantified in terms of the interference contrast,

η= (ymax − ymin)/ymax, 0≤ η≤ 1, (5)

which is derived from the maximum (ymax) and the minimum
(ymin) electron yield observed in a scan over φ. A higher contrast
means that the cosine modulation is more pronounced due to the
two-photon interference. When the excitation energy is tuned
to the top of the resonance, the maximum contrast (η= 1) is
expected when I3/I1 ≈ 60 because at equal intensities of the two
harmonics, ionization via pathway A is more probable than ioniza-
tion via pathways B+ B′ by the same factor, i.e., M</M> ≈

√
60

in Eq. (4). Away from the maximum, the contrast falls off steadily
and is predicted to stay above 10% in a range of I3/I1, spanning
5 orders of magnitude. An increase of the frequency detuning,
2ω1 − Er , shifts the maximum contrast toward higher value of the
intensity ratio.

B. Comparison of XUV-RABBITT with RABBITT and
the Hydrogen Limit

The continuum–continuum phase (φcc) refers to the phase shift
experienced by a quasi-free electron due to interaction with the
radiation field. It can be obtained from the exact phase of the
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two-photon ionization amplitude by subtracting the phase due
to the one-photon absorption in the first step of ionization [8].
When φcc can be reliably estimated, the phase difference between
single-photon ionization amplitudes can be extracted from the
phase difference between the two-photon ionization paths, which
is measured using the RABBITT technique. Dahlström and
coauthors [8] give a useful analytical approximation for φcc for the
hydrogen atom if the electron kinetic energy in the final Coulomb
continuum state is larger than the photon energy. We have repro-
duced their results with a fully numerical calculation (see Fig. 3
in Ref. [8]). There is also no doubt about the applicability of this
approximation to other targets too when dealing with 1.55-eV
photons from a typical RABBITT setup.

An interesting question is whether the φcc phase for He can
still be estimated by the continuum–continuum phase of the
equivalent nonresonant two-photon ionization amplitude in
hydrogen if the photon energy is in the XUV region. Here,
“equivalent” means that the frequencies of the two colors in
the ionization pathway of hydrogen are selected so that elec-
tron kinetic energies in the intermediate and final continuum
states match the corresponding kinetic energies in the selected
two-photon ionization pathway in He. Considering an extra
phase shift due to the short range atomic potential in He, these
two phases should be approximately equal because the second
(nonresonant) photoionization step connects approximately the
same initial and final continuum states. The difference in the
He and H 1s ionization potentials (1T = 10.982 eV) trans-
lates the ω1 +ω1 and ω3 −ω1 ionization pathways in He to the
equivalent two-color (ω1 −1T)+ω1 and (ω3 −1T)−ω1

pathways in hydrogen. The results of our calculations in

Fig. 3. Calculated continuum–continuum phases φ<cc(`) and φ>cc(`)

for pathway A and pathway(s) B+ B′ as functions of the kinetic energy of
the ejected electron (`= s , d ). The phases include a contribution from
autoionization of the 2s 2 1 S e resonance and are compared to φ<H(s ) and
φ>H(s ), the accurate continuum–continuum phases from the equivalent
two-photon ionization of hydrogen, and to analytical approximations
φ<HA(s ) and φ>HA(s ) given by Eq. (22) of Ref. [8]. The one-photon phases
of p electrons with kinetic energies ω1 −1T and ω3 −1T (see text) are
approximated by the Z = 1 Coulomb phases, σ<p and σ>p , respectively.
The magnitude of the associated short-range phase shift in He is smaller
than 0.05 rad. The inset shows the effect of neglecting the time-reversed
contribution (B′) to the s and d wave in two-color ionization (dotted
curve).

Fig. 3 show that φcc in He is indeed well reproduced by the
continuum–continuum phase from the equivalent hydrogen
case except, of course, in the resonance region, where the admixture
of the localized component (the discrete state) is strong; while the
nonresonant background is describable in the single active electron
approximation, this does not hold for a resonant continuum. We
note that the analytical formulas forφcc given previously {Eqs. (22)
and (30) in Ref. [8]} are not applicable in the present case because
the photoelectron in the intermediate state has relatively low
kinetic energy (<5 eV), and a fully numerical calculation of the
two-photon ionization amplitude is required for pathway A, even
for the hydrogen atom.

The calculations of two-photon ionization amplitude for He
show that the dominant contribution to the variation of the atomic
phase difference in the resonance region corresponds to diagram A.
Nevertheless, a significant phase correction originates in the B
and B′ pathways with the time-reversed process (B′) giving a non-
negligible contribution to the s -wave electronic channel. On the
other hand, the d -wave channel shows a smooth, nonresonant
behavior of the phase with some deviations from the Coulombic
approximation due to the onset of the nearby 1 De autoionizing
resonances centered at higher electron kinetic energies. Obviously,
the continuum–continuum phases corresponding to pathways
B and B′ and the nonresonant pathways are much smaller than
those related to pathway A and resonant ionization pathways.
Therefore, not only is the photon interaction with a more energetic
electron in the unstructured continuum less probable, but also the
corresponding phase contribution to the two-photon ionization
amplitude is lower.

3. EXPERIMENTAL RESULTS

To test our theoretical predictions, an experiment was performed
at the low-density matter (LDM) beamline [40] using XUV
pulses from the seeded FEL facility FERMI in Trieste, Italy. The
50 fs long, horizontally polarized light pulses propagated per-
pendicularly to the direction of the He gas pulses generated by an
Even–Lavie valve in the horizontal plane (Fig. 4). Electrons emit-
ted from the gas target were efficiently collected and observed by a
magnetic bottle electron spectrometer (MBES) mounted vertically
[41]. In the MBES, the electron trajectories are parallelized in the
direction of the strong magnetic field gradient, and the kinetic
energies of the electrons are determined by measuring their time of
flight in the spectrometer’s drift tube.

Fig. 4. Scheme of the experimental setup.
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A. Single-Path Two-Photon Resonant Ionization

The wavelength of the FEL light was first scanned in the vicin-
ity of 42.8 nm (28.9 eV) to locate the He 2s 2 resonance via the
two-photon ω1 +ω1 excitation path. The data points shown in
Fig. 5 were recorded with 70 µJ FEL pulses generated by tuning
all six FEL-1 undulators to ω1. The resonant part of the electron
signal originates from the autoionization decay of the 2s 2 state,

He(2s 2)→ e−(E2)+He+(1s ), (6)

and is given by the yield of the spectral line centered at elec-
tron kinetic energy E2 = 2ω1 − T1 ≈ 33.2 eV (Fig. 1), where
T1 = 24.587 eV is the ionization energy of the ground state He
atom. In this measurement, a retardation potential (Vr ) equal to
−14 V was applied to the spectrometer’s drift tube to block the
detection of electrons with energy E1 = 4.3 eV ejected by the
dominant one-photon ionization process of the neutral He atom.
A comparison with the calculated two-photon electron yield shows
that the measured spectral profile of the resonance features an
additional background and is slightly broader than the theoretical
Fano profile. Convolution with a 30 meV broad Gaussian spectral
function of the incoming light brings the calculated resonant
two-photon ionization cross section into good agreement with the
experimental shape, with the exception of the excess background.

The background signal in the resonance region is explained by
the contribution of two spectroscopically unresolved nonresonant
processes driven by the weak residual second- (ω2) and third-order
(ω3) light generated simultaneously with the intense fundamental
radiation at photon energy ω1: one-photon ionization with ω2

photons, and sequential double ionization of He with ω1 and ω3

photons. While ionization with ω2 light generates a flat electron
background at kinetic energies exactly coinciding with kinetic
energies E2 from the 2s 2 autoionization (11), the electrons emit-
ted in the second step of the sequential process have 0.9 eV lower
kinetic energy Eq =ω3 − T2 ≈ 32.3 eV, where T2 = 54.418 eV is
the ionization energy of He+(1s ) (Fig. 1).

Fig. 5. The ω1 +ω1 electron yield in the energy region of the 2s 2

resonance of He. The calculated electron yield [Eqs. (2) and (9), dashed
black curve] describes well the experimental data (points), fitted by the
Fano line shape (thin black curve). At the maximum experimental pulse
intensity (1015 W/cm2), the excess background level is reproduced by
assuming an estimated 4.5% admixture of the second and third harmonic,
and by considering the target volume effect.

B. Two-Path Two-Photon Resonant Ionization

In the second set of measurements, the population of the 2s 2 state
was observed while changing the phase of theω3 light with respect
to the ω1 light. To measure the interference effect, pulses with
energies of a few µJ for each of the two colors were delivered to the
target by tuning the first three FEL undulators to generateω1 light
and the last three undulators to generateω3 light (Fig. 6).

To study the wavelength dependence of the two-color two-
photon excitation, seven independent phase scans were made by
tuning twice the light frequencyω1 to five different positions along
the 2s 2 spectral profile. Phase ϕ of the electric field F3 of the third
harmonic was varied by delaying the light-generating electron
bunch in the magnetic chicane [21] before entering the second
set of undulators. A complete ϕ-phase scan consists of 21 electron
spectra that cover a 4π phase interval with equidistant sampling of
ϕ. In the final experimental configuration, electrons in the spec-
trometer’s drift tube were retarded by −29 V potential to resolve
the sequential ionization signal Pq from the autoionization signal
P2 (Fig. 7). The only remaining peak in the electron spectrum
was P3 due to one-photon ionization with ω3 light, resulting in

Fig. 6. The generation scheme of the coherent ω1 (red curve) and ω3

(blue curve) light pulses with a variable phase difference ϕ − ϕ3. The first
three FERMI FEL-1 undulator modules generated the ω1 light with elec-
tric field F1 together with the weak third-harmonic light and the last three
undulator modules generatedω3 light with adjustable phase ϕ of the elec-
tric field F3 set by the delay of the electron bunch in the magnetic chicane.

ϕ=0

π

π

π

π

Fig. 7. Examples of electron spectra recorded at high retardation
during a single phase scan with 2ω1 = 28.95 eV corresponding to the top
of the 2s 2 resonance. The spectra acquired at different phase angles ϕ are
vertically displaced. The FEL pulse energy at the target was approximately
10 µJ. The P2 and Pq contributions to the electron yield correspond to
electron kinetic energies E2 and Eq , respectively. These two contributions
are not resolved in the low-resolution electron spectra leading to the
wavelength-dependent electron yield in the one-color experiment (Fig. 5).
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ϕ (rad)

ϕ (rad)

ϕ3

ϕ−ϕ2)

ϕ2

Fig. 8. (a) Top, the measured P3 electron yield (triangles) and the
experimental Pq/P3 ratio, normalized to unity at ϕ = 0 (squares); bot-
tom, weighted difference P2 − 1.2Pq (circles). The yields have been
recorded at the center of the 2s 2 two-photon resonance. The P3 signal and
the interference yield reach their respective maxima at phase angles ϕ3 and
ϕ2. The dashed curve shows the cosine function with zero offset. (b) The
measured P2 yield (circles), decomposed into the direct and interference
contributions obtained by fitting Eq. (13) to the experimental data.

photoelectrons with high kinetic energy E3 =ω3 − T1 ≈ 62.1 eV
(Fig. 1).

A strong sinusoidal modulation of the P3 electron yield with
phase angle ϕ was observed [Fig. 8(a)]. This is due to the weak
residual ω3 light produced in the first three undulators that was
partially seeding the generation of ω3 light in the second set of
undulators. The intensity modulation of the emitted ω3 light is
proportional to cos(ϕ − ϕ3), where ϕ3 denotes the phase offset of
the residual component. The intensity of the emitted third har-
monic (I3) reaches its maximum when the seeding is most efficient,
i.e., when a delayed electron bunch generates light at a zero phase
difference with respect to the residual ω3 light. Our simulations
show that the small admixture of the third harmonic in the first
set of undulators is inphase with the fundamental radiation ω1.
The maximum of the P3(ϕ) signal then conveniently serves to
determine the phase angle ϕ3 (modulo 2π ) at which the phase
difference of emittedω1 andω3 light is zero.

The observed Pq electron yield closely follows the P3 yield
and also the intensity of the ω1 light, as expected for the signal
coming from a sequential double ionization with ω1 and ω3 pho-
tons. For long light pulses, for which the fields complete many
cycles, the sensitivity of Pq to the electric field phase difference
is lost, and the corresponding electron yield depends only on the
product of the intensities (I1 I3) [42]. This is different for the P2

signal because of the interference: according to Eq. (4), the 2s 2

autoionization yield for given values of I1 and I3 is

y =M2
< I 2

1 +M2
> I1 I3 + 2M<M>

√
I 3
1 I3 cos(φ − δ). (7)

The positive quantities M< and M> and the atomic phase δ
may be considered constant in a single phase scan using narrow-
bandwidth pulses with the frequency centered at ω1. As argued
above, in an arbitrary phase reference frame against whichϕ is mea-
sured, the phase difference of the emitted ω3 light with respect to
the emitted ω1 light is given by φ = ϕ − ϕ3, where ϕ3 denotes the
phase angle at which the P3 electron yield reaches a maximum. At
the same time, the theory predicts that atomic phase δ practically
coincides with the phase difference of the two-photon ionization
paths in the s -wave electronic channel in the resonance region.

The variation of light intensities during the phase scan, I3

in particular, prevents a direct visualization of the characteristic
shifted cosine dependence in the observed P2(ϕ) electron yield
[Fig. 8(b)]. To isolate the signal modulation caused by the two-path
interference, a data fit of the P2 yield is required that relies on the
simultaneously measured P3 and Pq electron yields,

P2 =A(Pq/P3)
2
+BPq + C(Pq/P3)

√
Pq cos(ϕ − ϕ2). (8)

The above form has four fitting parameters: weights
A,B, C > 0, which correspond to the three terms in Eq. (7),
and an offset phase angle, ϕ2 = ϕ3 + δ. The latter allows one to
uniquely determine the atomic phase δ when ϕ3 is known. The
offset angle ϕ3 is obtained from the fit of the scaled and vertically
offset cos(ϕ − ϕ3) function to the measured P3(ϕ) yield.

In the absence of target volume effects, the P3 signal is pro-
portional to the integral of intensity of the third harmonic over
the target volume and over the duration of the ω3 pulse, i.e., to
the total number of ω3-photons impinging on the target. On the
other hand, the experimental Pq/P3 ratio is proportional to the
number of ω1-photons in the spatiotemporal region of the target
that is occupied by ω3 photons too. When the light pulses overlap
only partially, the two-color light intensity ratio depends on time
differently in different parts of the target. Under such conditions,
weights A and B cannot be directly related to the probabilities of
the corresponding two ionization paths in the single-atom case.
For example, while the ω1 +ω1 ionization generates electrons in
the target volume crossed by the ω1 pulse, the electrons ejected by
the ω3 −ω1 ionization are emitted only from the pulse overlap
region. The interference weight (C) also depends on the pulse
overlap, but is more reliably determined due to the cosine factor
in the fitting function, which makes uncertainties in the represen-
tation of the average light intensities less important. The phase
offset parameter (ϕ2) does not depend on the local variations of
intensities and the atomic phase δ may be reliably extracted from
the fit provided the phase difference of the two colors does not
vary significantly in the pulse overlap target region. The fit of the
phase scan data taken on top of the 2s 2 resonance (Fig. 8) results in
weights and phase offsetsA+B= 1.09± 0.12,C = 0.26± 0.10,
ϕ3 =−0.94± 0.25 rad, and ϕ2 = 2.12± 0.35 rad, and leads to
atomic phase δ = 3.22± 0.60 rad.

The observed Pq/P3 trends indicate a relatively stable intensity
of the ω1 light during the phase scan, and a difference of up to a
factor of 4 between the different scans. The variation of the average
I3 light intensity differed by no more than a factor of 2 between
the scans, as shown by the P3 signal trends. The extraction of the
interference signal from the P2 data enables an estimation of the
interference contrast for each of the phase scans: the observed
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contrasts lie between 0.1 and 0.5 and are found to increase with the
average I3/I1 intensity ratio.

4. DISCUSSION

The atomic phases extracted from the fits are shown in Fig. 9 as
a function of photon frequency ω1. The measured points (blue
filled, and red open circles) shows some agreement with the cal-
culated curve (black curve), but there are some clear discrepancies
in offset that must be resolved. First, two out of the three data
points taken on the top of the resonance deviate from the measured
trend by an additional 1a = 1.1± 0.5 rad. The corresponding
two-phase scans were taken with the FEL light passing through a
gas attenuator filled with the nitrogen gas at 6.3× 10−3 mbar [43].
The 5 m long attenuator is located after the exit of the last undula-
tor module and before the target (Fig. 4) and was empty when the
other five phase scans were made. A straightforward calculation
of phase velocities in nitrogen shows that ω3 light acquires 1.3 rad
phase delay with respect to theω1 light in the attenuator, very close
indeed to the observed deviation1a (see Supplement 1 for details).
The observed phase shift corresponds to 9 as delay of the ω3 wave-
fronts with respect to the ω1 wavefronts and, if neglected, results
in a value of the experimental atomic phase that is too high by1a .
It is well known that phase shifts due to light passing through a
condensed matter play a major role in differential phase-contrast
imaging with hard x rays [44,45] and XUV radiation [46].

The remaining phase offset 1g = 1.1± 0.3 rad of the whole
experimental data set with respect to the calculated trend of atomic
phase differences (see Fig. 9) is most likely due to a mismatch of the
focal plane positions of the two light beams with different source
positions, but focused by the same pair of KB mirrors (Fig. 4).

Fig. 9. The atomic phase difference δ as a function of photon energy
ω1 in the vicinity of He 2s 2 1 S resonance. The two blue full circles refer
to the phase scans with the nitrogen-filled gas attenuator and the empty
red (gray) circles to the five phase scans made with an empty attenuator.
By compensating the measured differences with the constant phase offsets
due to the frequency-dependent light propagation velocity in the attenu-
ator (1a = 1.1 rad) and different focal point position of ω1 and ω3 light
(1g = 1.1 rad), the experimental atomic phase differences (black circles)
agree very well with the calculated data (black curve). The agreement
is worse if the calculation does not take into account the time-reversed
ω3 −ω1 path (dashed curve). 2s 2 resonance profile and the phase-scan-
averaged spectrum of ω1 light are depicted by black dotted and thin black
curves, respectively (see Supplement 1 for details).

Our ray-tracing calculations show that the ω1 light was focused
3± 1 mm before the target because the production of light by the
first set of undulators placed the source point of ω1 light upstream
with respect to the source point of the ω3 light generated by the
second set of undulators, which was focused right on the target.
Such a beam geometry leads to a Gouy phase delay of the ω3 light
with respect to the ω1 light, and for this reason, the experimental
trend of atomic phase differences appears too high by1g . Simple
considerations relying on the calculated beam profiles lead to an
effective 0.4 rad geometrical phase difference of the two colors at
the target (see Supplement 1 for details). We note that a consider-
able remaining difference from 1g does not invalidate a possible
geometrical origin of the observed phase offset because the uncer-
tainty of the estimate may still be larger due to notable deviations
of our ray-tracing results (not providing the beam phase profiles)
from the Gaussian beam propagation model, as well as due to not
precisely known focal point positions with respect to the target.

Still, the above analysis provides confidence in the above inter-
pretation, and permits a comparison of the measured interference
contrast with the theoretical prediction. Experimentally, the con-
trast is found to increase with the ratio of the total number of ω3

and ω1 photons impinging on the target. However, this ratio was
determined only on a relative scale, by monitoring the yield of ω1

light pulses captured by the XUV spectrometer and by measur-
ing the electron yield P3 due to photoionization of He with ω3

photons. In the absence of target saturation effects and for light
pulses with equal shapes sharing the same focal plane, the photon
number ratio is proportional to the ratio of peak intensities I3/I1

of the two light pulses at the target. A single scaling factor needed
for absolute calibration of the experimental photon number ratio
was obtained by matching the experimental trend to the calculated
I3/I1 dependence of the interference contrast for the Gaussian-
shaped beams. Relying on the measured ω1 pulse energies and on
the estimated defocusing of theω1 beam at the target (2.5 times the
beam waist diameter), the calibration procedure results in reason-
able values of I3 up to about 1013 W/cm2 when I3/I1 ≈ 0.8. Since
I1 was not higher than 3× 1013 W/cm2, the target saturation
effects in our two-color measurements were indeed negligible (see
Supplement 1 for details).

5. CONCLUSIONS

Using the intense, tunable, and coherent XUV light pulses pro-
vided by the FERMI FEL, and owing to the efficient electron
collection, filtering, and spectral resolution of the magnetic bottle
spectrometer, we have measured the spectral profile of the 2s 2 1S e

autoionizing resonance in He. The state was populated by one-
color two-photon absorptionω1 +ω1, and the acquired spectrum
agrees very well with the calculated two-photon ionization yield
in the energy region of the resonance. By adding the ω3 −ω1

two-photon path to the excitation scheme and by varying the
relative phase of ω1 and ω3 photon fields, the population of the
resonance state was modulated by the two-path interference. The
phase difference at which the two paths interfere constructively is
characterized by a maximum population of the resonance state and
equals the phase difference of the two-photon atomic amplitudes.
The observed trend of atomic phase differences in the resonance
spectral region agrees very well with the calculated trend when a
small phase velocity mismatch of the two colors in the gas atten-
uator is considered and the theory accounts for the time-reversed
−ω1 +ω3 excitation path. Good agreement with the theory on

https://doi.org/10.6084/m9.figshare.19803571
https://doi.org/10.6084/m9.figshare.19803571
https://doi.org/10.6084/m9.figshare.19803571
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an absolute scale is obtained only when the experimental data
are corrected with a constant phase offset stemming from different
focusing of theω1 andω3 beams in the target region. The presented
approach is a development of previous all-optical coherent-control
experiments and RABBITT experiments, entering the XUV wave-
length range, and demonstrates the possibility of calculating and
measuring the phase difference of multiphoton excitation paths
connecting energetically distant intermediate states by observing
final state populations only.

Finally, the two-path experimental configuration forms an
atomic XUV interferometer, where an ensemble of atoms delivers
a maximum response in terms of the emitted electron yield when
the phase difference of theω1 andω3 light equals an atom-specific
value for the selected pair of light frequencies. When an optical
element is inserted into the light path and causes an extra phase dif-
ference of the two colors, the generated phase shift can be measured
by observing a displacement of the maximum of the interference
signal in the same phase reference frame. Since the interference
of the ω1 +ω1 and ω3 −ω1 paths persists in the unstructured
electronic continuum, such an atomic interferometer enables mea-
surements also at frequencies far away from the resonant condition
(although with a considerable experimental effort) because of the
lower electron yields. The atomic phase difference does not depend
on light intensities, but the electron yield does, and it is important
to monitor single-color light intensities during the phase scan to
reliably identify the phase angle with the maximum interference
contribution to the yield. Similar to other interferometric setups,
the quality and precision of these experiments essentially depends
on the definition and stability of the spatiotemporal overlap of the
ω1 andω3 light pulses in the target.
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