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Virtual Path Layouts in Simple ATM Networks*

Jean-Claude Bermond’  Nausica Marlin' David Peleg ¥ Stéphane Perennes’

Abstract

In an ATM network, Virtual Paths (VPs) are built on top of the physical network and
form a virtual network. Routing is done using these VPs. The sum of the bandwidths of
the VPs that share a physical link constitutes the load of this link, which is limited by its
cepacity. The number of VPs used along a connection is defined as the hop count of that
connection. Naturally, the hop count should be kept as low as possible so as to guarantee
the efficiency of the virtual channels.

In its most general formulation, the Virtuel Path Layout problem is an optimization
problem in which, given certain communication demands between ordered pairs of nodes
and constraints on the capacity and hop count, it is first required to design a system of VPs
satisfying the constraints, and then minimizing some function of the load and hop count.

As the general problem is NP-hard, hence difficult to solve, we consider here a more
restrictive version, in which all VPs have equal bandwidths, communication demands are
uniform (namely, all pairs of nodes are equally required to communicate), and all physical
links have equal capacity.

In practice, physical links based on optical fibers and cables are directed, and the amounts
of information flowing in the two directions of a connection are not necessarily identical
(consider, for example, a video-on-demand application). However, traditional research on
this problem has focused on the undirected model. In this paper, we investigate the problem
of designing directed VPs in a directed ATM model. Our aim is to minimize the maximum
hop-count for a given capacity. We present good VP Layouts for some of the most popular
types of simple networks, namely cycles, tori, and general trees. Our constructions are the
best possible, up to a constant. In general, it turns out that the directed model admits better

VP Layouts than the undirected one.
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1 Introduction

Recent developments in the field of communication, such as the appearance of fiber optic based
communication and the ATM network architecture [De 95, KG98], have thoroughly changed the
way messages are routed in today’s new communication networks. In ATM, data is transferred
in fixed length packets, each routed independently. The routes are composed of two types of
simple paths in the network, namely, virtual paths (or VPs), and virtual channels (or VCs).

The VPs can be thought of as predetermined path segments, built out of ordinary links,
and used as a collection of fixed “expressways” for passing messages over large distances in the
network. The VCs, on the other hand, are ad-hoc routes established in response to specific
requests for connecting network users (e.g., telephone calls). The purpose of defining a fixed
collection of VPs in the network is to simplify network management and make it easier to select
the VC routes; the route of a VC is obtained as a concatenation of a number of complete VPs

(see Fig. 1).

For example, let us consider setting up two Virtual Circuits, one connecting A to B and one
connecting B to C. The first of these connections can be obtained by concatenating the VPs
(Ada), (abf) and (fgB), yielding the route (AdabfgB). Similarly, the second connection can be
built along the VPs (Bgc), (cfbe) and (edC), yielding the route (BgcfbedC).

Figure 1: A network and a collection of VPs on it. Note that the physical links are symmetric

(bi-directed), yet the VPs are directed.

A major problem in this framework is the one of defining the set of VPs in such a way that
some good properties are achieved. The following considerations are involved. A capacity (or
bandwidth) is assigned to each VP. The sum of the capacities of the VPs that share a physical
link constitutes the load of this link. (In the above example, each directed link carries a load of
1 unit, although some links carry 1 load unit in both directions.) Naturally, this load must not
exceed the link’s capacity, namely, the amount of data it can carry. The sum of the capacities

of all the physical links is a major component in the cost of the network, and should be kept as
low as possible.

At the same time, a second important parameter is the maximum number of VPs in a virtual



channel, termed hop count in the literature. (In the above example, both VCs have hop count
3.) This parameter should also be kept as low as possible so as to guarantee low set up times for

the virtual channels.

In its most general formulation, the Virtual Path Layout (VPL) problem is an optimization
problem in which, given a certain communication demand between pairs of nodes and constraints
on the maximum load and hop count, it is first required to design a system of VPs satisfying the

constraints and then minimizing some given function of the load and hop count.

We employ a restricted model similar to the one presented by Cidon, Gerstel and Zaks in
(GZ94]. In particular, we assume that all VPs have equal capacities, normalized to 1. Hence the

load of a physical link is simply the number of VPs that share this link.

Although links based on optical fibers and cables are directed, traditional research uses an
undirected model. Indeed, this model imposes the requirement that if there exists a VP from
u to v then there exists also a VP from v to u. In fact, that is the way ATM networks are
implemented at the present time. However, the two VPs (the one from u to v and the one in
the other direction) do not need to have the same capacity. Indeed, in many applications the
flows on the VPs are not equal. For example, in a video application where u is a server and v
a consumer there is a VP from u to v using a large capacity (transmission of video data) and
a VP from v to u used only for control or acknowledgments with a very small capacity which
can be considered as negligible. Therefore, it seems more reasonable to use a directed model like
the one introduced by Chanas and Goldschmidt in [CG98]. This would allow us to model the

situation described above by a single VP of capacity 1 in the main direction.

[t is convenient to represent the structure of VPs constructed for the communication network
GG by a virtual directed graph H defined on the top of the physical network over the nodes of
G, whose arcs represent the VPs defined in the network. Specifically, H contains an arc (a, b)
precisely if there exists a VP leading from a to b. This virtual digraph H provides a directed VP
layout (DVPL) for the physical graph. The virtual graph H, along with the accompanying VP
layout, is called an admissible virtual digraph for the physical network G, if it doesn’t load any

arc more than its capacity.

In this framework, each VC in GG can be viewed as a simple dipath in the virtual digraph H.
Therefore, for a given source-destination pair A, B, the hop count of any VC connecting A to B

must be at least the distance from A to B in H.

In this article, we focus on the all-to-all problem (i.e., all pairs of nodes are equally likely to
communicate). Thus, the resulting maximum hop count can be viewed as the diameter of the
virtual graph H induced by the VPs. Consequently, we consider the central problem of finding
a tradeoff between the maximum load and the virtual diameter. In particular, we address the

following problem: Given a capacity on each physical arc, minimize the diameter of an admissible

virtual graph H.

Related Work The problem has been considered in the undirected case, for example, in
(GZ94, GWZ95, SV96, GCZ96, KKP97, EFZ97]. The problem of minimizing the maximum load
over all VPL with bounded hop-count is studied in [FZ97, BBGG97], and minimizing also the
average load is considered in [GWZ95]. The one-to-many problem is handled in [FZ97, GWZ95],



where the focus is on minimizing the eccentricity of the virtual graph from a special node called
the root (this problem is the rooted VP layout problem) rather than minimizing the diameter of
the virtual graph. A duality in the chain network between the problem of minimizing the hop-
count knowing the maximum load, and the one of minimizing the load, knowing the maximum
hop-count, is established in [FZ97]. The reader can find an excellent survey of the results in the

undirected model in [Zak97].

Our Results The following table summarizes the results, giving upper bounds on the virtual
diameter (the minimum diameter of an admissible virtual digraph) as a function of the number
of vertices n in the physical graph, its diameter D¢, its maximum in- and out-degree d, and the
capacity c considered as a constant. For lack of space, we only present upper bounds on the
virtual diameter for the cycle, the grid and the arbitrary tree. All the proofs can be found in the
full version [BMPP98|. As shown therein, all the layouts proposed here are near-optimal. The
results mentioned in the table for the path in the special case of ¢ = 1 are due to [Cha98, BCG98].
We use their optimal layout in the path to build our layout in the arbitrary tree.

[— ‘ Gr;ph G l Capéc;ty [ Uppe.r_ Bo{md‘—l
I Path P, [ oe=1 (2] + ogn]
c=0(1) (’)(c-nJ——l)
Cycle C, - c=1 2V/2n + 0(1)

L - c=0(1)| Ofc-nx)
Torus T'M(a,b),a <b c=0(1) O(a - b1/2e)

| Mesh M(a,), logh<a<b|c=001)] Oflogn) |
D(PDT,C)
Arbitrary Tree T . c=1 26(log?(n))
c==2 32.nl/3
D3 logn

o= 0(1) 8¢ - n1/(2c-1)
DGI/(QC—I) . logn
| Complete binary Tree T ] e=2 Dg/2+2 |

2 The Cycle

.., FiguresIFIP 2 and 3 show VP layouts on the symmetric directed cycle with capacity 1 and 2
on each physical link. The label on a VP is its dilation, i.e., the number of physical links used

in this VP.

Let us describe the construction for capacity 1 in more detail. We refer to the “long” (dilation
m) VPs as highways, and call the starting nodes of the highways main nodes. To route from
a vertex x to a vertex y, one can either use only counterclockwise “short” (dilation 1) VPs, or
go from the node x counterclockwise to the nearest main node [in at most m — 1 steps], then
clockwise using highways till the first main node after y [in at most n/m — 1 steps], and then
counterclockwise again to y [in at most m — 1 additional steps]. The maximum hop count is



2m +n/m — 3. Choosing m = (521)1/2, we obtain an upper bound of 2v/2n — 3 on the maximum

hop count.

Figure 3: C,, c =2, m = (3)/4

Similarly, for capacity 2, let us classify the VPs into classes by their length, referring to VPs
of dilation m! (fori = 1, 2, 3) as type-i highways, and call the starting nodes of a type-i highway
main nodes of type i. Note that a main node of type ¢ is also of type i — 1. Now, to route from
a node x to a node y, proceed as follows. Using counterclockwise VP of dilation 1, one reaches
the first main node counterclockwise from x of type 1 [in at most m — 1 steps]. Then using
clockwise VPs of dilation m, reach the first main node of type 2 [in at most m?/m -1 = m -1
steps|. Next, using counterclockwise VPs of dilation m?, reach the first main node of type 3
[in m — 1 steps]. From this node of type 3, one reaches the first node of type 3 just after y [in
n/m —1 = 2m — 1 steps]. Then one symmetrically reached y going down [3 x (m — 1) steps].

The upper bound established on the maximum hop count is 8m — 7 < 4 x 2 x ('2—’)1/4.

. . . : L
This construction can be generalized to obtain an upper bound of 4c(75)2 for any constant

capacity ¢ on the physical links.



3 The Toroidal Mesh

The physical digraph G is the toroidal mesh of dimensions a x b, TM(e,b). Recall that
TM(a,b) = C,0OC}, the Cartesian sum (also called product) of two cycles.

Figure 4 depicts the entire torus TM (2, b) with a quasi-optimal layout for capacity 1; compare
with the layout given earlier for the cycle with capacity 2. The internal cycle of length b is used
for setting up VPs of dilation 1 and VPs of dilation m = (%)'/%. The external cycle of length b is
used for VPs of dilation m? and m®. To route from a node z to a node y, we use the same path
as on the cycle Cp with capacity 2, except that we might have to use a transversal arc four times:
at the beginning - if z is on the external cycle; then from the type 2 node of the internal cycle
to the external cycle in order to use VPs of dilation m? and m?; and in the opposite direction

to reach y.

Figure 4: TM(2,b), c=1, m = (%)1/4

Again, this idea can be generalized to obtain a layout for capacity ¢ with hop-count

a 1/2¢-1 b 1/2ac
3c - (§> +2a+1+(4ac—l)(§) .

On the cycles of length b, we apply the optimal layout for the cycle with capacity a x ¢. On the
cycles of length a, we apply the optimal layout for the cycle with capacity ¢ — 1, and we also put
VPs of dilation 1 in both directions. In one direction, these VPs come from the optimal layout

for the cycle with capacity ¢ — 1; in the other direction, we build VPs of dilation 1 using the

remaining capacity unit.



4 The Arbitrary Tree

To construct good VP layouts for an arbitrary tree with capacity ¢, we use induction.

As shown on figure 5, a subtree hanging from a node is a tree rooted at this node such that
the degree of the root in the subtree is one. A middle node m of a tree T is a node such that

the subtrees hanging from m contain at most [%] nodes.

Any tree admits at least one middle node. For proof, take @ a node of T. Let M (x) be the
size of the larger subtree hanging from z. If M(z) > [%] + 1 then, all together, other subtrees
hanging from z contain at most [§] — 1 nodes. We replace x by its neighbor 2’ in the largest
subtree. Since M(z') < M(z) — 1, the process stops at a middle node.

For a given rooted tree (T,7), we define our VPL inductively.

Let m be a middle node for T. We use the best known VPL on the path P between r and
m (maximum hop count O(cn§c_l—_l)) We consider T;, the subtrees hanging from a node of the
path P and we apply the construction to theses trees T; rooted at the node they are hanging
from. Note that, since m is a middle node, if T" has n nodes then 7; has at most n/2 nodes.

Figure 5: The tree T; hanging from 7; (7; is the root of 7;). The VP Layout on T'.

For this layout, let h(7,r) be the maximum hop count from any node to the root or from
the root to any node. Let f(n) be the maximum of h(7T',r) taken over all the rooted trees with

n nodes.
Consider a vertex x € T located in one of the subtrees T;. To go from x to the root r, one
first reaches some node of the path P, so doing we are moving inside the subtree 7;, then we

have to move on the path P to reach r. Hence h(T,r) is at most f(n/2) plus the maximum hop
1
count in a path of length n/2. Let us recall that for any c this last value is O(c.n%-1) and for

¢ =1 it is improved to [%] + [log(n/2)].
For ¢ =1, we get
f(n) < f(In/21) + [n/4] + [log(n/2)] .
Thus by summing f(n) < n/2 + log?(n)

The last trick is to remark that for a given tree T', we can choose the first root as we want.
We choose r = m and, if T has ng nodes, we get: h(T,m) < f(ng/2) < no/4 + log2(no/2). The



maximum hop count is at most 2.h(T,m) that is at most n/2 + 2.log?(n).

For capacity ¢, the same computation leads to O(c.n'/(2¢=1),

5 Conclusions

The main idea behind our construction is to prudently partition the capacity available to us
on the links, and use it for setting up a hierarchy of “expressways” of various “speeds.” This
allows us to significantly reduce the resulting hop counts, by enabling messages routed to large
distances to perform large “jumps” efficiently covering significant portions of their route, and
use “slower roads” only at the initial and final segments of their trip. We expect this idea to
be applicable and useful also for other kinds of topologies, and in principle also in networks of

arbitrary topology, and we intend to explore this idea further in the future.
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