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Directed Virtual Path Layouts in ATM Networks”
(Extended Abstract)

Jean-Claude Bermond, Nausica Marlin **  David Peleg ***,, and
Stéphane Perennes**

Abstract. This article investigates the problem of designing virtual di-
paths (VPs) in a directed ATM model, in which the flow of information
in the two directions of a link are not identical. On top of a given physi-
cal network we construct directed VPs. Routing in the physical network
is done using these VPs. Given the capacity of each physical link (the
maximum number of VPs that can pass through the link) the problem
consists in defining a set of VPs to minimize the diameter of the virtual
network formed by these VPs (the maximum number of VPs traversed
by any single message). For the most popular types of simple networks,
namely the path, the cycle, the grid, the tori, the complete k-ary tree,
and the general tree, we present optimal or near optimal lower and upper
bounds on the virtual diameter as a function of the capacity.

Keywords : ATM, Virtual path layout, diameter, Embedding,

1 Introduction

The advent of fiber optic media has changed the classical views on the role and struc-
ture of digital communication networks. Specifically, the sharp distinction between tele-
phone networks, cable television networks, and computer networks has been replaced
by a unified approach. The most prevalent solution for this new network challenge is
Asynchronous Transfer Mode (ATM for short), which is thoroughly described in the
literature [6,15). The transfer of data in ATM is based on packets of fixed length,
termed cells. Each cell is routed independently, based on two routing fields at the cell
header, called virtual channel identifier (VCI) and virtual path identifier (VPI). This
method effectively creates two types of predetermined simple routes in the network,
namely, routes which are based on VPIs (called virtual paths or VPs) and routes based
on VClIs and VPIs (called virtual channels or VCs). VCs are used for connecting net-
work users (e.g., a telephone call); VPs are used for simplifying network management -
routing of VCs in particular. Thus the route of a VC may be viewed as a concatenation

of complete VPs.
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A major problem in this framework is the one of defining the set of VPs in such a
way that some good properties are achieved.

1. A capacity (or bandwidth) is assigned to each VP. The sum of the capacities of
the VPs that share a physical link constitutes the load of this link. Naturally, this
load must not exceed the link’s capacity, namely, the amount of data it can carry.
The sum of the capacities of all the physical links is a major component in the cost
of the network, and should be kept as low as possible.

2. The maximum number of VPs in a virtual channel, termed hop count in the liter-
ature, should also be kept as low as possible so as to guarantee low set up times
for the virtual channels and high data transfer rates.

In its most general formulation, the Virtual Path Layout (VPL) problem is an
optimization problem in which, given a certain communication demand between pairs
of nodes and constraints on the maximum load and hop count, it is first required to
design a system of virtual paths satisfying the constraints and then minimizing some
given function of the load and hop count.

We employ a restricted model similar to the one presented by Cidon, Gerstel and
Zaks in [12]. In particular, we assume that all VPs have equal capacities, normalized to
1. Hence the load of a physical link is simply the number of VPs that share this link.

Although links based on optical fibers and cables are directed, traditional research
uses an undirected model. Indeed, this model imposes the requirement that if there
exists a VP from u to v then there exists also a VP from v to u. In fact, that is the way
ATM networks are implemented at the present time. However, the two VPs (the one
from u to v and the one in the other direction) do not need to have the same capacity.
Indeed, in many applications the flows on the VPs are not equal. For example, in a
video application where u is a server and v a consumer there is a VP from u to v using
a large capacity (transmission of video data) and a VP from v to u used only for control
or acknowledgments with a very small capacity which can be considered as negligible.
Therefore, it seems more reasonable to use a directed model like the one introduced by
Chanas and Goldschmidt in {5]). This would allow us to model the situation described
above by a single VP of capacity 1 in the main direction.

We focus on the all-to-all problem (all pairs of nodes are equally likely to commu-
nicate). Thus, the resulting maximum hop count can be viewed as the diameter of the
graph induced by the VPs.

More formally, given a communication network, the VPs form a virtual directed
graph on the top of the physical one, with the same set of vertices but with a different
set of arcs. (Specifically, a VP from u to v is represented by an arc from u to v in the
virtual digraph.) This virtual digraph provides a directed virtual path layout (DVPL)
for the physical graph. Each VC can be viewed as a simple dipath in the virtual digraph.
Therefore, a central problem is to find a tradeoff between the maximum load and the
virtual diameter. In this article, we consider the following problem:

Given a capacity on each physical arc, minimize the diameter of an admissible
virtual graph (a virtual digraph that doesn’t load an arc more than its capacity)

Related Work The problem has been considered in the undirected case, for example,
in [12,11, 20,10, 16,8). The problem of minimizing the maximum load over all VPL
with bounded hop-count is studied in [9,1), and minimizing also the average load is
considered in [11). The one-to-many problem is handled in [9,11], where the focus is
on minimizing the eccentricity of the virtual graph from a special point called the root



(this problem is the rooted virtual path layout problem) rather than minimizing the
diameter of the virtual graph. A duality in the chain network between the problem of
minimizing the hop-count knowing the maximum load, and the one of minimizing the
load, knowing the maximum hop-count, is established in [9). The reader can find an
excellent survey of the results in the undirected model in [21].

The techniques involved in our constructions bear a certain resemblance to various
embedding techniques used previously in the context of parallel computing, in order
to implement a useful virtual architecture on a given practical machine topology (cf.
(18, 14]). The parameters of interest in such embeddings are the number of virtual pro-
cessors mapped onto any physical processor, the load on the physical links, and the
dilation of the embedding, namely, the maximum length of the physical path corre-
sponding to a given virtual link. The relevant concerns in our context are somewhat
different, as dilation is of no consequence, and on the other hand, we have the freedom
of designing the virtual topology as desired, in order to optimize its diameter.

Our Results The following table summarizes the results, giving lower and upper
bounds on the virtual diameter (the minimum diameter of an admissible virtual di-
graph) as a function of the number of vertices n in the physical graph, its diameter
Dg, its maximum in- and out-degree d, and the capacity c considered as a constant.
Some of the proofs are omitted and will appear in the full version, and other proofs
are included in the appendix. The results mentioned in the table for the path in the

special case of ¢ =1 are due to (4, 3].

Graph G Capacity Lower Bound Upper Bound
General Graph c=0(1) ,—:—:{;%)- -1 Dg
Path P, c=1 2 +logn Z +logn + O(1)
c=0(1) 2(n7-T) O(c-n%-T)
Cycle Cn, c=1 2vV2n + 0(1) | 2v2n+0(1)
c=0(1) 2(n3) O(c-na)
Torus TM(a,b),a < b c=0(Q1) 2((a - b)}/?2) O(a - b*/%2¢)
Mesh M(a,b), logb <a <b| c¢=0O(1) 2(log n) O(log n)
D(PD'rvc)
Arbitrary Tree T c=2 1/2.n/? 32.n!3
Dg'P.logn
c=0(1) | 2(Dg"?=1) | 8c.nl/(3-1
Dg'/<=1) .1og n
Complete k-ary Tree T [c=2, k=2 Dg/2 -1 Dg/2+2
c=0(1) |2 | prysr| +!

2 The model

The physical network is represented by a strongly connected weighted digraph G =
(V, E,c). The number of vertices is denoted by n = |V|. The vertex set V represents
the network switches and end-users, and the arc set E represents the set of physical
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directed links. The parameter c is the capacity (or weight) function, assigning to each
arc e its capacity c(e). For simplicity, given co € N*, we denote by co the constant
capacity function in which c(e) = co for all e.

The network formed by the VPs is represented by a strongly connected digraph
H = (V,E’) and a function P assigning to each arc ¢’ = (z,y) € E' a simple dipath
P(e’) connecting z to y in G. In our terminology, the pair (H, P) is a virtual digraph
on G, an arc of H is a virtual arc, and the dipath P(e’) in G associated with a virtual
arc ¢’ is a virtual dipath (V P). To a dipath Q = (e},...,¢;) in H is associated a route
in G consisting of the concatenation of P(e}),..., P(e:).

The load of an arc ¢ of G is the number of dipaths P(e’) of G associated to an arc e’
of H (or virtual dipaths) that contain the arc e, that is, I(¢) = [{e' € E’ s.t. e € P(e')}]
A virtual digraph (H, P) satisfying the requirement Ve € E, l(e) < c(e) is referred as a
c-admissible directed virtual paths layout of G, shortly denoted c-DVPL of G. The aim
is to design ¢-DVPL of G with minimum hop-count. This corresponds to minimizing
the diameter of the virtual digraph. For any digraph F, dr(z,y) denotes the distance
from z to y in F, and Dr denotes F’s diameter. The virtual diameter, D(G, c), of the
digraph G with respect to the capacity c, is the minimum of Dy over all the ¢-DVPL
HofG.

Note that both problems are N P-hard. (Indeed, deciding the question of whether
D(G,c0) = 1 is equivalent to determining the arc-forwarding index of G, which is
known to be N P-hard, see also [4).)

3 General Bounds

For most digraphs it turns out that D(G, ¢o) is logarithmic even for co = 1. Hence the

ratio 2}5’—,‘,"2 is of importance. For d-bounded degree digraphs’, a classical result states

that % —1 < D(G, co). It is obtained by applying the Moore bound to the virtual
digraph with n nodes, degree at most cod, and diameter D(G, co) (see [16, 20]). Note
also that D(G, 1) < Da.

Here we derive a tighter bound related to the expansion-congestion parameters of
G. First we recall three standard definitions: A routing for G is a mapping associating
to each pair of vertices (z,y) a route (i.e. a dipath in G) from z to y; the congestion
of a routing is the maximal load of an arc of G (i.e., the maximum number of routes
going through an arc); the arc-forwarding index of G, denoted x(G), is the minimum
congestion of a routing.

The parameter 7(G) has been extensively studied and many relations exist between
x and other parameters like bisection or expansion, see [17,19,13). There are strong
relationships between x(G) and the DVPL issue. A routing for G is a DVPL of G
where H is the complete digraph, and so x(G) is the smallest integer co such that

D(G, Co) =1.

Proposition 1. Let G be a d-bounded digraph, then

log x(G)

Tog(cod) 14 0O(log D) < D(G,co) .

! where both the in- and out- degrees are upper-bounded by d



Proof. With every co-DVPL H of G one can associate a routing for G as follows.
Note that for any ordered pair of vertices (z,y) there exists at least one dipath in H
from z to y with length smaller than Dpy. We select one such dipath and choose the
associated real dipath as the route from z to y. Due to the capacity constraint, at most
cod virtual dipaths enter (resp., leave) any given vertex of G; one can easily check that
the number of dipaths in H of length k that use an arc is at most kco(cod)*~!. Hence
the congestion of our routing is upper-bounded by M = co + 2co(cod) + 3co(cod)2 +

.o+ Dyco(cod)PH1,
D
By definition, * < M; as M < co 2”;%3?1—"-, taking the logarithm we obtain the

result.

Remark 1. The lower bound of proposition 1 is quite similar to the one derived on the
gossip time of a network under WDM or wormhole models (7,2]. In both cases one
must construct a route between any pair of vertices: for gossip problems the route is
built along T time steps, whereas in the context of VPL design it is constructed by
using D(G, ¢) jumps.

The following proposition indicates that for bounded co, one can expect D(G, co) to
be logarithmic only if D¢ is not too large. The result is valid for (distance-) symmetric
digraphs (namely, such that d(z,y) = d(y, z)).

Proposition 2. Let G be a symmetric bounded degree digraph with log Dg = 2(log n).
If D(G,co) = O(log n), then co = N2 (29%5—")
In particular, if co is constant and D(G,co) = O(log n) then Dg = O(iogw)-
We will see in proposition 8 that the above lower bound is tight in some sense.

Proof. The idea is that the design of an efficient DVPL is prevented by the existence of
a long geodesic dipath contained in G. Let us first formalize the notion that a digraph

“contains” some bad sub-structure.

Define a retraction of a digraph G as a digraph G’ such that there exist a mapping f
from V(G) onto V(G') satisfying a contractioncondition: dg(z,y) > dg/(f(z), f(¥)).
Define the total load of G for virtual diameter Do as :£(G, Do) = min()_, . I(e))
where the minimum is taken on all DVPL such that Dy < Do.

Due to the contraction condition, for any retraction G’ of G we have £(G, Do) >
L(G', Do). Moreover, denoting the number of arcs of G by |E|, the maximum load is
greater than or equal to the average load. Hence we have proven the following.

Lemma 1. If G’ is a retraction of G then x(G, Do) > ﬂ%’ll"l > E(GT;'IEQ.

First, we claim that the path Pp, of length D¢ is a retraction of G. To prove this,
consider the following mapping. Label the vertices of Pp; by 0,1,..., Dg, and choose
a pair of vertices (z,y) of G such that d(z,y) = d(y,z) = D; then map any vertex
at distance 1 from z onto vertex § of the path. Due to the triangle inequality, and to

symmetry, the mapping is contracting.
Now, suppose that we are given a bounded degree digraph G with log Dg =

O(log n), and the capacity function co Consider any DVPL with diameter Dy =

O(log n). By lemma 1 we have co > &Pr%]'o_”). we also know that if Dy ~ log Dg
then P(Lpg, Do) ~ Dglog Dg [21); it follows that co > —29-'[%:5,2&. As |E| < nd, we
obtain ¢p > —Qﬂ-d':lﬂ.
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4 The Cycle C,

In this section the physical digraph G is C,, the symmetric directed cycle of length n.
We choose arbitrarily a sense of direction on C,. For concreteness, consider as posi-
tive, or forward (resp., negative or backward) the clockwise (resp., counterclockwise)
direction. We assume that Ve € E, c(e) = c¢* if e is a forward arc and c(e) = ¢~ if e is

a backward arc.
It turns out that our bounds can be expressed as functions of ¢ = ¢t +¢~. It is then

convenient to define ubc(n, o) (resp., lbc(n, o)) as an upper bound (resp., lower bound)
on D(Chn, c) valid if c satisfies c* +¢c~ = o. By the definition, lbc(n, ¢) < D(Cn,¢) < ubc(n, o).

Proposition 3.

ne - n\ %
T S D(Cn’c) < 20(5) +1.

In particular, if ¢ = co then

ni% . n\ s
2 < D(Cn,c0) < 4co (5) °+1.

Upper and lower bounds are both proved by induction from the next two lemmas
(to be proved later):

Lemma 2. lbc(n,0) 2 mingey+{max(3s,lbc(p, o —1))}.

Lemma 3. ubc(n,0) < mingen+{2(p - 1) + ubc([2],0 - 1)}

Proof (proposition 8). First we consider the lower bound. We prove by induction on o
that lbc(n,0) > ::.-nf. For the initial case we have lbc(n,1) =n—12> 2. Now to go
from 0—1 to o we use lemma 2 which states that lbc(n,0) > min,en+ max(%, %p71-1)
An elementary analysis shows that max(3%, %p;{"') > %n}. Hence lbc(n,0) > %n*
and the proof is completed.

Now, we prove the upper bound. First we show by induction on ¢ that for n =
2a°,a € N, ubc(n,0) < 20 (%)1/0 ~20+41 = 20a—-20+1. Foro =1, ubc(n,1) <
n — 1. For the inductive step from ¢ — 1 to o, we apply lemma 3 with p = a, getting
ubc(n,0) < 2(a — 1) + ubc(2a°~?, 0 — 1). By induction, ubc(2a°},0 - 1) = 2(c —
1)a — 2(0 — 1) 4+ 1; so we get the expected result.

For other values of n, the claim is proved as follows. Let a be such that 2(a —
1) < n < 2°thatisa—-1 < (%)1/0 < a. By applying lemma 3 with

z = a for o times, we obtain ubc(n,0) <208 —-20+1. Asa < (%)} + 1, this implies
1
ubc(n,0) < 20 ('5'-)' + 1.

Proof (lemma 2). Let H be an optimal ¢-DVPL of C, and let [z,y;] be the dipath
consisting of all the vertices of C, between z, and y, in the positive direction. Let
d(z1,y1) denote the number of arcs in [z1,y1). We say that [z;,y:1] is covered by H if
(the VP corresponding to) some virtual arc contains [z, y1].

First we prove that if [z, 1] is covered then Dy > lbc(d(z1,y1),0 — 1). For this,
we shorten the cycle by identifying all the nodes in [y, z,] with z,, obtaining a cycle C’



of length d(z,,y;). Virtual arcs are just transformed according to this graph quotient.

As example a virtual arc from z € [z),y1] to y € [z1, y1] is left unchanged; and a virtual
arc from z € [z1,y1]) to y € [y1, 23] is transformed into the arc (z,z;). Note that the
virtual arc containing the positive arcs of [z;,y:) (see figure 1) is transformed into a
loop. We also remove loops or multiple virtual dipaths in order to get a simple DVPL
on C'.

Note that our transformation does not increase the load of any arc; furthermore
the virtual arc from z; to y; disappears, so the congestion of any positive arc decreases.
Moreover, our transformation does not increase the virtual diameter.

Consequently, we obtain a ¢’-DVPL of C’ (a‘cycle of length d(z1,y1)) with ¢'t +
¢~ =0 -1, and diameter at most Dy. It follows that

Dy 2 lbc(d(z1,41),0 - 1) (1)

Now we argue that there exist vertices u and v with large d(u,v) such that [u,v]
is covered. Let P be the shortest dipath in H from 0 to n/2, and assume w.l.o.g. that
P contains the arcs of [0,n/2]). Let S denote the set of vertices of P between z and y
in the positive direction. Then |S| < Dy + 1, and therefore there exist vertices u and
v such that [u,v] is covered and with

n
d > —. 2
(u’ v) - 2DH ( )
Let p = max{d(u,v) | [u,v] is covered}. From (2) we have Dy > 35+ and from (1) it
follows that Dy > lbc(p, 0 — 1).

Fig. 1. Collapsing a cycle

Proof (lemma$). Let us construct a c-DVPL on C,,. Without lost of generality suppose
that ¢t > ¢, soct #£0. Let pe N*, we proceed as follows.

- Use n virtual arcs (1,4 + 1)i¢[o..n—1) of dilation 1 in the positive direction.

- Let S be the set of vertices {0,p. 2p, ... ,([g] - ])p}, and note that vertices of S
form a cycle Cf:;].

- Use an optimal ¢-DVPL for Cyay with ¢t =ct —-1,and ¢~ = ¢, that is

ct 4+ =0-1.

By construction, the diameter A(S) of the set S (i.e., the maximal distance of
two vertices in S) is at most ubc([2],0 — 1); moreover, for any vertex z, we have
d(S,z) < p—1 and d(z,S) < p — 1. Hence d(z,y) < d(S,z) + d(y,S) + A(S) <
2(p - 1) + ubc([ 2], 0 — 1).



Fig.2. C, forc=1 (0 =2)

In the case of capacity co = 1 we have been able to determine D(Ca,c) quite

exactly.
Proposition 4. 2/2n - 0(1) < D(Cn,1) < 2V2n +1.

The upper bound is the one given for the general case, We conjecture that D(Cn,1) =
2v/2n - 3, and wish for simpler argument that would extend to greater capcaities. Note
also that using lemma 2 from the starting condition lbc(n,2) > 24/n + @(1)) would
slightly improve the lower bound on lbc(n, o). the lower bound proof requires some
care so the next section is devoted to its exposure.

4.1 Proof of the lower bound for ¢ = 1 in the cycle

Let H be an optimal virtual digraph on G with respect to the capacity 1.

Definition 1. - The forward successor of a verter z is denoted z*,
- Pgﬁ(z,y) denotes the dipath from £ to y in Cy in the positive direction,
— apathQ = (e1,...eg) fromz toy in H is said to be of type + :'ng."(z,y) c W(Q).

Definitions are given for the positive direction, but similar notions apply for the
negative direction as well.

Definition 2. A circuit-bracelet of size n is a digraph A constructed as follows (see
figure 3):

— The digraph is made of a set of cycles C;,s € I directed in a clockwise manner.

— For any s, Ci and Ci41 mod1 share a unique verter vi4i1mod1-

— The length of the dipath in C; from vi_; to v, is denoted p; and is called the positive
length of C;; similarly, the length of the dipath in C; from v,_; to v, is denoted n,
and is called the negative length of C;.

Denote by f(n) the minimal value of D4, where A is any circuit-bracelet of size
n. In the remaining of the section indices are taken modulo I.

Lemma 4. f(n) = D(Cn,1)



Proof. Notice that if an arc e of G is not used by a virtual dipath P(e’) with ¢’ € £',
we add a virtual arc e’ such that P(e') = (e). This transformation can only decrease
the diameter of H, which is of no consequence since we only look for a lower bound on
the virtual diameter. Using this manipulation, we know that Ve € E,3¢' € E' s.t. e €

P(e') . This implies

Z w(e') = z w(e')=n. (3)

e’ arc of type — e’ arc of type +

Now, we show that : If ¢’ = (z,y) € E' is an arc of type + of weight w(e’) > 3 then
all the arcs of type — between y~ and z*t are of weight 1.

Since the capacity of any arc of G is 1, and there is already a virtual arc of type
+ between z and y, there is no virtual arc of type + ending at any vertex between z*
and y~. Since H = (V, E’) is strongly connected, there is at least one arc ending at
each one of these vertices. These arcs are of type -. For the same reasons of capacity
and connectivity, these virtual arcs are of weight 1. Due to this property it is easy to
see that there exists a digraph isomorphism from H to a circuit-bracelet of size n (see

figure 3).

Fig. 3. A circuit-bracelet

We first prove the result for the special case of a regular circuit-bracelet, namely, a
circuit-bracelet satisfying p; = 1 for every 1. Let g(n) denote the minimal value of D4
where A is any regular circuit-bracelet of size n.

Lemma 5. g(n) = 2v/2n 4+ O(1).

Proof. We know from the construction of lemma 3 that there exists a regular circuit-
bracelet with diameter D < v2n + O(1) = O(y/n), and prove that D > 2v/2n + O(1).
We assume that n is sufficiently large, and fix a positive integer p. Note that the circuits
of a regular circuit-bracelet all consist of a single arc in the positive direction. Call a
circuit large if its size is greater than %' Note that the size of any circuit is at most

D + 1 = O(y/n), hence there is at least £2(\/n) circuits. Moreover the total number
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of circuits is O(y/n), otherwise the distance between two antipodal vertices would be
greater than D. As n < 3-‘,—3— + 8D with s + b = ©(y/n) it follows that :

For sufficiently large p : b = O(\/n) (4)

Suppose that large circuits are ordered cyclically according to the circuit-bracelet
structure: Cy,Cy,,...Ci,_,, and that there are s small circuits. Let § denote the
number of vertices in the small circuits. We denote the ancestor of v; in C, by w,,
and the successor of v,4; in C; by 2,. Let k € {0,1,...5—1} and consider dipaths from
zi, to wi,_,; in the negative direction the cost is exactly di = E}'E[k—p.kl ni; —2; as
these circuits are large, ni; > -”2 and hence d; > 2‘,{—’D—2. So we must use the positive
direction. The length is dx = n,, +ni,_, +b+s—# circuits in [ix_p, 1x]. Summing on
all the k’s, each circuit is counted 4 — p times; moreover, all the vertices in large circuits
are counted twice. Hence we have Ek::_l de =2(n—8)+b(b+s)—p(b+s) <bD. So

An=b) 4 p+s—p—pt < D. Note now that § < s- 2, so:
) b P

P4b-224s-p-p<D

24 bts(1-2L-B)=p< D (5)

In (5) the left member is greater than 27" +b—p when the factor with s is positive,
that is : b > “?‘ + p. Due to claim (4) it is verified if p has been choosen large enough.
The minimum of the left member in (5) is then 2v/2n + ©(1) and is achieved for
8 =0,b = v2n. So we have g(n) = 2v/2n + O(1).

Proposition 5. D(Cn,1) = f(n) = 2v/2n + 6(1).

Proof. Recall that D = ©(y/n). Consider a circuit-bracelet, and note that n; + p; <
D +2, so that we can find an integer k such that Cy, C2,...Cx contains z > 2D +2,z =
©O(y/n) vertices. Consider the shortest dipath from v, to vx4; and suppose that it uses
the positive direction, so that E‘e[”‘] pi < D. It follows that Ziell.kl ni > D. So,
the dipath from vx to v; cannot use the negative direction, and must use the positive
one. It follws that Zie(l.kl pi < D. Globally, " pi < 2D = ©(y/n). If we remove this
©(/n) vertices we obtain a regular circuit-bracelet with lesser diameter. It follows that

f(n) 2 g(n — O(v/n)) = 2v2n + ©(1).

5 The Path P,

In this section the physical digraph G is the n-vertex path P,. Our bounds are valid

for any capacity function ¢ such that positive (resp., negative) arcs have capacity c*
(resp., ¢7), with ¢t + ¢~ = o > 2, and the additional requirement ¢t > 1,¢~ > 1.

Proposition 6.

F

nir i\
< D(Pac) < (2(0-1))("2 1)

Proof. Will appear in the full version



6 Grids and Toroidal Meshes

First the physical digraph G is the toroidal mesh of dimensions a x b, TM(a, b). Recall
that TM(a,b) = Ca0Cs, the Cartesian sum (also called product) of two cycles.

Proposition 7.

) a\!1/2¢-1 by !/2aco
D(TM(a,b),0) < 2(4co)- (5) +2a+1+“‘“°°‘”(§) '

Note that in order to get a graph G such that D(G,co) ~ logn with co bounded
we can use a toroidal mesh T'(log n —). Hence we have the following.

Proposition 8. There ezists an infinite family of digraphs with n vertices and diam-
eter n/log n, such that with bounded capacity co, D(G, co) = O(log n).

Note that this is the counterpart of proposition 2 .
For [log, 4] < a < b we have :

Proposition 9. D(T(a,b),1) = 2(log n).
Results for the grid M(a,b) = PoOP, are similar and will be detailed in the full

version.

7 The Complete Symmetric k-ary Tree T'(k,h)

Let us recall that in a complete k-ary tree, each vertex that is not a leaf has exactly
k children. The depth of a vertex is its distance from the root. The depth of the tree
is the maximum depth of its vertices. In this section the physical digraph G is T'(k, k),
the directed symmetric complete k-ary tree of depth h rooted in ro, the only vertex
of degree k. T'(k, k) has "h:_:l' 1 vertices and diameter 2h. For a vertex z of the graph
T(k, k), let f(z) denote its parent; vertex y is said to be below z if 31 > 0s.t. fily) =z

Note that z is below itself.

7.1 Lower Bound
Proposition 10. D(T(k,k),c) > 2 || +1.

Proof. Let H be an ¢-DVPL of Tk, k). Let 4 = |log, c| +1. Let r be a vertex of depth
d, 1 <d < h-—+; Let B(7,r) denote the complete k-ary subtree of T(k, k) of depth ¥
rooted in r. A leaf z of B(«,r) is said to be upward-bad for r if there doesn’t exist any
virtual arc e’ that starts below z and ends not below r. If there doesn’t exist any virtual
arc e’ that starts not below r and ends below z then z is said to be downward-bad for
r. We claim the following: For any vertez r of depthd, 1 < d < h — v there ezist an
upward-bad verter and a downward-bad vertez for r.

Indeed, suppose that all the k" leaves of B(y,r) are not upward-bad. There exists
a virtual arc that starts below each leaf and ends not below r. Then the load of the
arc (r, f(r)) is at least k7. Since the capacity of this arc is ¢ < kU°* <J#! there exists
at least one leaf that is upward-bad for r. The same argument considering the load of

arc (f(r),r) completes the proof of the claim.
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sequences of vertices (l;)i=1..1, and (r:)i=1..i, as follows. Let I, and r, be the leftmost
and the rightmost neighbors of the root of T'(k, h), respectively. If + < 1o — 1, choose
for l,4; an upward-bad vertex for {;. By induction, the depth of /i is 1 + (s — 1) and if
t <io—1itisless than h — vy so, from the claim, l;4, exists. Symmetrically, we define
the sequence (r,)i=1..., by choosing r.4, as one of the downward-bad vertices for r,.

Let us now consider the shortest path P in H from i, to ri,. Let y be the first
vertex of P not below ;. By construction, P uses at least 1o virtual arcs from l,; to y.
Also z, the predecessor of y in P, is below {; and thus not below r;. Hence, P uses at
least so virtual arcs from z to r,,. In summary, P uses at least 2ip — 1 virtual arcs. So
D¢ > 210 — 1 that is 2(|(h - 1)/v]) + 1.

Now we prove that Dy 2 2([-’-‘—;—'—]) + 1. Let 5o = [(h —1)/v] + 1. Define two

Fig.4. k =2,c=2or 3, y = 2, there exist no arcs from A to B; (on the right) k = 2,
¥ =2, h =6, one cannot do better than 5 from I3 to r3

7.2 Upper Bound for k = 2,¢c =2
Proposition 11. D(T(2,hk),2) < D/2+1.

Proof. The construction of an admissible virtual graph H on D(T(2, h) is undirected.
In other words, for each VP from z to y, there is a VP from y to z using the opposite
path. Place a VP of dilation 2 between each vertex of even depth and its grandparent
and a VP of dilation 1 between each vertex of even depth and its parent. If A is odd
then add a VP of dilation 1 between each leaf and its parent. This construction gives
the upper bound.

8 Arbitrary Trees

In this section, the graph at hand is an arbitrary tree T. The lower bound follows from
our bound for the n-vertex path P,, upon noting the following.
Proposition 12. D(T,¢) > D(Pp,,c) -

One natural upper bound follows by embedding a cycle around the tree. Consider
a cycle Czn-2 embedded around the tree T in a depth-first fashion. Let ¢t = [¢/2]
and ¢~ = |c¢/2). An admissible graph H on Cz,-; with respect to ¢t on posi-
tive arcs and ¢~ on negative ones gives us an admissible virtual graph on T. Thus,
D(T,c) < D(Cin-2,¢/2) < 2¢c(n—1)¢+1.

Another upper bound is derived by a recursive construction.




Proposition 13. There exists a constant such that D(T,c) < 8enTeT

Proposition 14. D(T,c) < D(Pp,,c) logn .

9 Open problems and directions

Some of our bounds are not tight, and the remaining gaps may be narrowed. Establish-
ing upper and lower bounds on D for other families of graphs may also be interesting
and useful.

Looking for the minimum diameter is reasonable when all the connections may be
requested with roughly the same probability, which is also not always realistic. In case
of non-uniform traffic, instead of studying D, one may try to optimize its weighted
counterpart, ) r(i,5) - du(f,5), where r(s, j) denotes the traffic requirements between
1 and j; such a target function may make it desirable to place the VPs between the
node pairs which communicate the most.

Finally, there may be other parameters of the directed ATM model worth studying.
One may also consider variations on the model with variable capacity of the VPs.
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