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Infinite horizon for symetric strategy
population game

Meziane Privat

Abstract : To predict the behavior of a population game when
time becomes very long, the process that characterizes the evo-
lution of our game dynamics must be reversible. Known games
satisfying this are 2 strategy games as well as potential games
with an exponential protocol. We will try to extend the study of
infinite horizons for what are called symetric strategy games.
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1 The case one population

1.1 Informal presentation with an example

First, we will consider the case where there is only one population.

Imagine a population of N cats playing a three-state game: no eating, eating
one mouse, or eating two. This is a game with one population and three
strategies, but it can be transformed into a game with three populations
and two strategies. Imagine three populations of N cats each (as if we were
cloning the initial population), the first population would play a two-state
game which would be: do not eat or eat, the second would play: eat a mouse
or do not eat a mouse, and the third would play: eat two mice or not eat two
mice. The possible states would only be those where N cats choose an "odd"
strategy and 2N cats choose an "even" strategy. We have thus transformed
the game into a two-strategy game that we know is reversible.
To switch from the initial game to the new game, you have to make small
changes.

Let A be an object concerning the initial game, its transformation for the
new game will be A∗

In this case,

• x = (x1, x2, x3) ∈ X becomes x∗ = (x1, 1−x1, x2, 1−x2, x3, 1−x3) ∈ X∗

• S = {a, b, c} becomes S∗ = {a, a, b, b, c, c}

• p = 1 becomes p∗ = 3

• F (x) = (α, β, γ) becomes F ∗(x∗) = (α, x2β+x3γ
x2+x3

, β, x1α+x3γ
x1+x3

, γ, x1α+x2β
x1+x2

)
or
F ∗(x∗) = (α, 0, β, 0, γ, 0)

• R becomes R∗ = (R,R,R)

•

ρ(π, x) =

 ρa,a(π, x) ρa,b(π, x) ρa,c(π, x)
ρb,a(π, x) ρb,b(π, x) ρb,a(π, x)
ρc,a(π, x) ρc,b(π, x) ρc,c(π, x)


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Becomes

ρ∗(π∗, x∗) =



ρ∗a,a(π
∗, x∗) ρ∗a,a(π

∗, x∗) 0 0 0 0

ρ∗a,a(π
∗, x∗) ρ∗a,a(π

∗, x∗) 0 0 0 0

0 0 ρ∗b,b(π
∗, x∗) ρ∗

b,b
(π∗, x∗) 0 0

0 0 ρ∗
b,b
(π∗, x∗) ρ∗

b,b
(π∗, x∗) 0 0

0 0 0 0 ρ∗c,c(π
∗, x∗) ρ∗c,c(π

∗, x∗)

0 0 0 0 ρ∗c,c(π
∗, x∗) ρ∗c,c(π

∗, x∗)



=



ρa,a(π, x) ρa,b(π, x) + ρa,c(π, x)
1
2(ρb,a(π, x) + ρc,a(π, x))

1
2(ρb,b(π, x) + ρb,c(π, x) + ρc,b(π, x) + ρc,c(π, x))

0 0
0 0
0 0
0 0

0 0
0 0

ρb,b(π, x) ρb,a(π, x) + ρb,c(π, x)
1
2(ρa,b(π, x) + ρc,b(π, x))

1
2(ρa,a(π, x) + ρa,c(π, x) + ρc,a(π, x) + ρc,c(π, x))

0 0
0 0

0 0
0 0
0 0
0 0

ρc,c(π, x) ρc,a(π, x) + ρc,b(π, x)
1
2(ρa,c(π, x) + ρb,c(π, x))

1
2(ρa,a(π, x) + ρa,b(π, x) + ρb,a(π, x) + ρb,b(π, x))


We then know by theorem 11.2.3 of [San10] what shape should have the
stationary distribution of the game and therefore its infinite horizon.

1.2 Formal presentation

In this part we will lay the mathematical foundations to have access to the
behavior when the time becomes very long for a game with 3 strategies.

Définition 1.1. A is a symetric game if for all i, j ∈ S we have ρij(π, x) =
ρji(π, x) and Rij = Rji.

Let A be a game of a population with 3 strategies that we will call the initial
game, in connection with this game we then pose:
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• X the state space of A

• S = {1, 2, 3} the set of 3 strategies in A

• We have p = 1

• Let F be its gain function

• We set ρ its full support revision protocol

• R its revision rate

• N the number of agents in the population

Proposition 1.1. If for all i, j ∈ S we have ρij(π, x) = ρji(π, x) and Rij =
Rji, then for any population game at 3 strategies there is a unique population
game with two strategies and 3 population describing the same game.

Proof. To demonstrate this we must first build this new game, ie show its
existence, and then show its uniqueness.

Existence: Let A∗ be a two-strategy game of n population defined as follows:

• X∗ = {x∗ = (x1, 1−x1, x2, 1−x2, x3, 1−x3) such that ∃ x = (x1, x2, x3) ∈
X} its state space

• S∗ = {1, 1, 2, 2, 3, 3} the set of 6(2× 3) strategies in A∗

• We have p∗ = 3 populations

• Let x ∈ X such that F (x) = y = (y1, y2, y3) then
F ∗(x∗) = y∗ = (y1, 0, y2, 0, y3, 0) ∈ R6

• Let N∗ = (N,N,N) ∈ (N∗)3 be the number of agents in each popula-
tion (which is N for each)

•

ρ∗(π∗, x∗) =



ρ∗1,1(π
∗, x∗) ρ∗

1,1
(π∗, x∗) 0 0 0 0

ρ∗
1,1

(π∗, x∗) ρ∗
1,1

(π∗, x∗) 0 0 0 0

0 0 ρ∗2,2(π
∗, x∗) ρ∗

2,2
(π∗, x∗) 0 0

0 0 ρ∗
2,2

(π∗, x∗) ρ∗
2,2

(π∗, x∗) 0 0

0 0 0 0 ρ∗3,3(π
∗, x∗) ρ∗

3,3
(π∗, x∗)

0 0 0 0 ρ∗
3,3

(π∗, x∗) ρ∗
3,3

(π∗, x∗)



with ∀i ∈ S :
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(i) ρ∗i,i(π∗, x∗) = ρi,i(π, x)

(ii) ρ∗
i,i
(π∗, x∗) =

∑
j∈S
j 6=i

ρi,j(π, x)

(iii) ρ∗
i,i
(π∗, x∗) = 1

2

∑
j∈S
j 6=i

ρj,i(π, x)

(iv) ρ∗
i,i
(π∗, x∗) = 1

2

∑
j∈S
j 6=i

∑
k∈S
k 6=i
k 6=j

ρj,k(π, x) +
∑
j∈S
j 6=i

ρj,j(π, x)


• Let R∗ the new revision rate the same as ρ∗

Unicity: We now need to show that from each element previously con-
structed for A∗ we can find the element of A used, in other words, that there
is a bijection between each element of A∗ and the element of A which allowed
its construction.

• To go from N∗ to N , just take the first coordinate of N∗

• To go from p∗ to p just set p = p∗

3

• Let f : R6 → R3 such that f(x1, ..., x6) = (x1, x3, x5), then f(X∗) = X
and f(F (X∗)) = F (X)

• By writing S∗ = {1, ..., 6} we can find S by setting S = {1, 3, 5}

• Recall that ∀i, j ∈ S, ρij(π, x) = ρji(π, x)

(i) ∀i ∈ S, ρii(π, x) = ρ∗ii(π
∗, x∗)

(ii) ∀i, j, k ∈ S with i 6= j 6= k, we have:

ρij(π, x) + ρji(π, x) =(ρij(π, x) + ρik(π, x)) + (ρji(π, x) + ρjk(π, x))

− (ρik(π, x) + ρjk( pi, x))

=ρ∗
i,i
(π∗, x∗) + ρ∗

j,j
(π∗, x∗)− 2ρ∗

k,k
(π∗, x∗)

we then have ∀i, j, k ∈ S with i 6= j 6= k :

ρij(π, x) =
ρ∗
i,i

(π∗,x∗)+ρ∗
j,j

(π∗,x∗)−2ρ∗
k,k

(π∗,x∗)

2

• For R∗ we prove uniqueness as for the previous point.
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We will call A∗ the transformation of A.

Proposition 1.2. If for all i, j ∈ S we have ρij(π, x) = ρji(π, x), and
Rij = Rji then for any population game from N agents to 3 strategies with a
full support revision protocol one can define a stationary distribution for the
evolutionary process (XN

t ) on XN .

Proof. Let A be a population game of N agents with 3 strategies with a satis-
factory full-support revision protocol for all i, j ∈ S that ρij(π, x) = ρji(π, x).
Then by applying Proposition 3.1, we can define the game A∗ which is the
transformation of A. We can then apply theorem 11.2.3 of[San10] which
gives us the stationary distribution of the set A∗ which is for its population
i ∈ J1, 3K:

µ
Ni
Xi
µ
Ni
0

=
NXi∏
j=1

N−j−1
j
·
ρ∗
i,i

(F ∗i( j−1
N

), j−1
N

)

ρ∗
i,i

(F ∗i( j
N
), j

N
)

with Xi ∈ {0, 1
N
, 2
N
, ..., 1} and

3∑
i=1

Xi = 1

with µNi
0 determined by the requirement that

∑
Xi∈XNi

µNi
Xi

= 1.

Maybe have to make a mixture model to return to dimension 1, to
see

2 The case p populations

In this part we will show that proposition 1.2 is true for several populations,
for this we will show a more general result by showing that we can find an
infinite horizon that the number of strategy of the game of each population
is 2 or 3 .

Proposition 2.1. Let A be a game with p populations such that the popula-
tion p plays a game with np strategies (np = 2 or 3), that its revision protocol
is with full support and that for all i, j ∈ S we have ρpij(π, x) = ρpji(π, x) and
Rij = Rji then we can define a stationary distribution for the evolutionary
process (XN

t ) on XN .

Proof. Let p ∈ J1, pK Ap be the game played by the population p. Applying
Proposition 1.2, let p ∈ J1, pK A∗p be the transformation into a 2-strategy
game of the game played by the population p (A∗p = A if np = 2). By
setting A∗ the set of these games, we then end up with a game A∗ which is
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a 2-strategy game with
p∑

k=1

nk = n populations, and A∗ represents the same

game as A. We can then apply Theorem 11.2.3 of [San10] which gives us
the stationary distribution of the set A∗ which is for its population i ∈ J1, nK

such that ∃p ∈ J1, pK such that i ∈ J
p−1∑
k=0

nk + 1,
p∑

k=0

nkK (with n0 = 0):

µ
Ni
Xi
µ
Ni
0

=
NpXi∏
j=1

Np−j−1
j
·
ρ∗
i,i

(F ∗i( j−1
Np ), j−1

Np )

ρ∗
i,i

(F ∗i( j
Np ),

j
Np )

with Xi ∈ {0, 1
Np ,

2
Np , ..., 1} and

np∑
i=np−1+1

Xi = 1 and
n∑
j=1

Xj = p

with µNi
0 determined by the requirement that

∑
Xi∈XNi

µNi
Xi

=1

3 Transformation of an n-strategy symetric game
into a 2-strategy game

To go from a game with n strategies to a game with 2 strategies, we will
show that for a game with n strategies there exists a unique game with n−1
strategies which represents the same game, then by repeating this we come
across a game with 2 strategies.

Définition 3.1. A is a symetric game if for all i, j ∈ S we have ρij(π, x) =
ρji(π, x) and Rij = Rji.

Let A be a game of a population with n strategies that we will call the initial
game, in connection with this game we then pose:

• X the state space of A

• S = {1, 2, ..., n} the set of n strategies in A

• We have p = 1

• Let F be its gain function

• We set ρ its full support revision protocol

• R its revision rate

• N the number of agents in the population
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Proposition 3.1. For any population game with n strategies (n > 3) there
exists a unique population game with n population each playing a game with
n− 1 strategies describing the same game .

Proof. To demonstrate this we must first build this new game, ie show its
existence, and then show its uniqueness.

Existence: Let A∗n−1 be a set of n populations each having access to n− 1
strategies defined as follows:

• X∗n−1 = {x∗n−1 = (x1, x2, ..., xn−2, 1−xn−1−xn, x2, x3, ..., xn−1, 1−x1−
xn, ..., xn, x1, x2, ..., xn−3, 1−xn−1−xn−2) such that ∃ x = (x1, ..., xn) ∈
X} its state space

• S∗n−1 = {1, 2, ..., n − 2, a1, 2, 3, ..., n − 1, a2, ..., n, 1, 2, ..., n − 3, an} the
set of n− 1× n strategies in A∗n−1

• We have p∗n−1 = n populations

• Let x ∈ X such that F (x) = y = (y1, ..., yn) then
F ∗n−1(x

∗
n−1) = y∗n−1 = (y1, y2, ..., yn−2, 0, y2, y3, ..., yn−1, 0, ..., yn, y1, y2, ..., yn−3, 0)

• Let N∗n−1 = (N, ..., N) ∈ (N∗)n be the number of agents in each popu-
lation ( which is N for each)

•

ρ∗n−1(π
∗
n−1, x

∗
n−1) =


An−11 0Mn−1 · · · 0Mn−1

0Mn−1

. . . . . . ...
... . . . . . . 0Mn−1

0Mn−1 · · · 0Mn−1 An−1n

 ∈Mn(n−1)

with ∀i ∈ S :

An−1i =


ρ(i+0)≡n,(i+0)≡n ρ(i+0)≡n,(i+1)≡n · · · ρ(i+0)≡n,(i+n−3)≡n ρ∗n−1(i+0)≡n,ai

ρ(i+1)≡n,(i+0)≡n ρ(i+1)≡n,(i+1)≡n · · · ρ(i+1)≡n,(i+n−3)≡n ρ∗n−1(i+1)≡n,ai...
... . . . ...

...
ρ(i+n−3)≡n(,i+0)≡n ρ(i+n−3)≡n,(i+1)≡n · · · ρ(i+n−3)≡n,(i+n−3)≡n ρ∗n−1(i+n−3)≡n,ai

ρ∗n−1ai,(i+0)≡n
ρ∗n−1ai,(i+1)≡n

· · · ρ∗n−1ai,(i+n−3)≡n
ρ∗n−1ai,ai


∈Mn−1

with ∀j ∈ S:
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• ρ∗n−1j,ai
= ρj,(i+n−2)≡n + ρj,(i+n−1)≡n

• ρ∗n−1ai,j
= ρ(i+n−2)≡n,j + ρ(i+n−1)≡n,j

• ρ∗n−1ai,ai
= ρ(i+n−2)≡n,(i+n−2)≡n+ρ(i+n−2)≡n,(i+n−1)≡nρ(i+n−1)≡n,(i+n−2)≡n+

ρ(i+n−1)≡n,(i+n−1)≡n

where ∀a ∈ N a≡n is a modulo n.

• We set R∗n−1 the new revision rate in the same way as ρ∗n−1

Unicity: We now need to show that from each element previously con-
structed for A∗ we can find the element of A used, in other words, that there
is a bijection between each element of A∗ and the element of A which allowed
its construction.

• To go from N∗n−1 to N , just take the first coordinate of N∗n−1

• To go from p∗n−1 to p just set p =
p∗n−1

n

• Let’s set f : Rn2−n → Rn such that f(x1, x2..., xn2−n) = (x1, ..., xpn−p−1, ..., xn2−2n−1)
with p ∈ J1, n− 1K, then f(X∗) = X and f(F (X∗)) = F (X)

• By writing S∗n1
= {1, ..., n2−n} we can find S by setting S = {1, ..., pn−

p− 1, ..., n2 − 2n− 1} with p ∈ J1, n− 1K

• (i) ∀i ∈ S, ρii(π, x) = ρ∗n−1(i−1)n−(i−1)+1,(i−1)n−(i−1)+1
(π∗n−1, x

∗
n−1) (this is

the first coordinate of An−1i (π∗n−1, x
∗
n−1))

(ii) ∀i ∈ S and j ∈ J(i+ 1)≡n, (i+ n− 3)≡nK such that (i+ a)≡n = j,
ρij(π, x) = ρ∗n−1(i−1)n−(i−1)+1,(i−1)n−(i−1)+1+a

(π∗n−1, x
∗
n−1)

(iii) ∀i ∈ S and j = (i+n−1)≡n, ρij(π, x) = ρ∗n−1(j−1)n−(j−1)+2,(j−1)n−(j−1)+1
(π∗n−1, x

∗
n−1)

(iv) ∀i ∈ S and j = (i+ n− 2)≡n,

ρij(π, x) = ρ∗n−1(i−1)n−(i−1)+1,(i−1)n−(i−1)+n−1
(π∗n−1, x

∗
n−1)

ρij(π, x) = −ρ∗n−1(j−1)n−(j−1)+2,(j−1)n−(j−1)+1
(π∗n−1, x

∗
n−1)

• For R∗n−1 we prove uniqueness as for the previous point.
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Now that we know how to go from a game with n strategies to a game with
n− 1 strategies, we can explain how to go from a game with n strategy to a
game with m strategy with m ≤ n.

Proposition 3.2. For any population game with n strategies (n > 3) there
exists a population game with n population each playing a game with m strate-
gies (m ≤ n ) describing the same game.

Proof. Let A be the initial game with n strategies, let A∗n−1 be its transfor-
mation into a game with n− 1 strategies given by Proposition 1.1. Applying
proposition 1.1 again to the game A∗n−1 we find a game B∗n−1 defined as
follows:

• X∗B∗n−1
= {x∗B∗n−1

= (x1, x2, ..., xn−3, 1−xn−2−xn−1−xn, ..., xn, x1, x2, ..., xn−4, 1−
xn−1− xn−2− xn−3) ∈ Rn×(n−1)×(n−2) such that ∃ x = (x1, ..., xn) ∈ X}
its state space

• S∗B∗n−1
= {1, 2, ..., n − 3, a1, 2, 3, ..., n − 2, a2, ..., n, 1, 2, ..., n − 4, an} the

set of (n− 2)× (n− 1)× n strategies in A∗n−1

• We have p∗B∗n−1
= n× (n− 1) populations

• Let x ∈ X such that F (x) = y = (y1, ..., yn) then
F ∗B∗n−1

(x∗B∗n−1
) = y∗B∗n−1

= (y1, y2, ..., yn−3, 0, y2, y3, ..., yn−2, 0, ..., yn, y1, y2, ..., yn−4, 0)

• We set N∗B∗n−1
= (N, ..., N) ∈ (N∗)n×n−1 the number of agents in each

population (which is N for each)

•

ρ∗B∗n−1
(π∗n−1, x

∗
n−1) =


Bn−1

1 0Mn−2 · · · 0Mn−2

0Mn−2

. . . . . . ...
... . . . . . . 0Mn−2

0Mn−2 · · · 0Mn−2 Bn−1
n×(n−1)

 ∈Mn(n−1)(n−2)
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with ∀i ∈ S :

Bn−1
i =



ρ(i+0)≡n,(i+0)≡n ρ(i+0)≡n,(i+1)≡n · · · ρ(i+0)≡n,(i+n−4)≡n ρ∗B∗n−1(i+0)≡n,ai

ρ(i+1)≡n,(i+0)≡n ρ(i+1)≡n,(i+1)≡n · · · ρ(i+1)≡n,(i+n−4)≡n ρ∗B∗n−1(i+1)≡n,ai...
... . . . ...

...
ρ(i+n−4)≡n(,i+0)≡n ρ(i+n−4)≡n,(i+1)≡n · · · ρ(i+n−4)≡n,(i+n−4)≡n ρ∗B∗n−1(i+n−4)≡n,ai

ρ∗B∗n−1ai,(i+0)≡n

ρ∗B∗n−1ai,(i+1)≡n

· · · ρ∗B∗n−1ai,(i+n−4)≡n

ρ∗B∗n−1ai,ai


∈Mn−1

• Let R∗B∗n−1
= (R, ..., R) be the revision rate in each population (which

is R for each)

Let us then set A∗n−2 a restriction of B∗n−1 such that its revision protocol is:

Bn−1
1 0Mn−2 · · · 0Mn−2 · · · · · · 0Mn−2

0Mn−2

. . . . . . ... . . . . . . ...
... . . . . . . 0Mn−2 · · · · · · 0Mn−2

0Mn−2 · · · 0Mn−2 Bn−1
in−i−1 0Mn−2 · · · 0Mn−2

0Mn−2 · · · · · · 0Mn−2 · · · · · · 0Mn−2

0Mn−2

. . . . . . ... . . . . . . ...
... . . . . . . ... · · · · · · 0Mn−2

0Mn−2 · · · 0Mn−2 0Mn−2 0Mn−2 · · · Bn−1
n2−n−1


∈Mn(n−2)

We then say that A∗n−2 is the transformation of A into a game with n pop-
ulations playing a game with n− 2 strategies, similarly, by iterating we can
find A∗m.

Proposition 3.3. If for all i, j ∈ S we have ρij(π, x) = ρji(π, x) and Rij =
Rji, then for any n strategy population game with a fully supported revision
protocol one can define a stationary distribution for the evolutionary process
(XN

t ) on XN .

Proof. Let A be a symetric population game of N agents with n strate-
gies with a fully supported revision protocol satisfying for all i, j ∈ S that
ρij(π, x) = ρji(π, x). Then by applying propositions 4.1 and 4.2, we can
define the game A∗3 which is the transformation of A into a game with n
populations playing a game with 3 strategies. Then by applying Proposition
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3.1, we can define the game A∗ which is the transformation of A. We can
then apply theorem 11.2.3 of [San] which gives us the stationary distribution
of the set A∗ which is for its population i ∈ J1, nK:

µ
Ni
Xi
µ
Ni
0

=
NXi∏
j=1

N−j−1
j
·
ρ∗
i,i

(F ∗i( j−1
N

), j−1
N

)

ρ∗
i,i

(F ∗i( j
N
), j

N
)

with Xi ∈ {0, 1
N
, 2
N
, ..., 1} and

n∑
i=1

Xi = 1

with µNi
0 determined by the requirement that

∑
Xi∈XNi

µNi
Xi

=1

Remark: The chosen restriction is natural because it mainly consists of
removing coordinates that appear several times.

4 Symetric game with p populations

In this part we will show that proposition 3.3 is true for several populations,
for this we will show a more general result by showing that we can find
an infinite horizon whatever the number of strategies in the game of each
population.

Proposition 4.1. Let A be a symetric game with p populations such that the
population p plays a game with np strategies, its revision protocol has complete
support and for all i, j ∈ S we have ρpij(π, x) = ρpji(π, x) and Rij = Rji then
we can define a stationary distribution for the evolutionary process (XN

t ) on
XN .

Proof. Let p ∈ J1, pK Ap be the game played by the population p. Applying
Proposition 3.3, let p ∈ J1, pK A∗p be the transformation into a 2-strategy
game of the game played by the population p. By setting A∗ the set of these
games, we then end up with a game A∗ which is a 2-strategy game with
p∑

k=1

nk = n populations, and A∗ represents the same game as A. We can then

apply Theorem 11.2.3 of [San10] which gives us the stationary distribution
of the set A∗ which is for its population i ∈ J1, nK such that ∃p ∈ J1, pK such

that i ∈ J
p−1∑
k=0

nk + 1,
p∑

k=0

nkK (with n0 = 0):

µ
Ni
Xi
µ
Ni
0

=
NpXi∏
j=1

Np−j−1
j
·
ρ∗
i,i

(F ∗i( j−1
Np ), j−1

Np )

ρ∗
i,i

(F ∗i( j
Np ),

j
Np )

with Xi ∈ {0, 1
Np ,

2
Np , ..., 1} and

np∑
i=np−1+1

Xi = 1 and
n∑
j=1

Xj = p

with µNi
0 determined by the requirement that

∑
Xi∈XNi

µNi
Xi

=1
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Remark: Not all the properties of this article are subject to the symmetry
condition of the protocol and the revision rate, so if the infinite horizon of
3-strategy games is found by applying the same properties, we will have the
infinite horizons of all games on the condition of assuming the inertia and
myopia of the players.
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