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1 
Interactive effects of abiotic factors and biotic agents on Scots pine 2 

dieback : A multivariate modeling approach in southeast France. 3 

Jean Lemaire1, Michel Vennetier2, Bernard Prévosto², Maxime Cailleret2,  4 

Abstract 5 

Forest dieback is a high risk factor for the sustainability of these ecosystems in the climate 6 

change context. Productivity losses and increased defoliation and mortality rates have 7 

already been recorded for many tree species worldwide. However, dieback is a process 8 

that depends on complex interactions between many biotic and environmental factors 9 

acting at different scales, and is thus difficult to address and predict. 10 

Our aim was to build tree- and stand-level foliar deficit models integrating biotic and abiotic 11 

factors for Scots pine (Pinus sylvestris), a species particularly threatened in Europe, and 12 

especially in the southeastern part of France. To this end, we quantified foliar deficit in 1740 13 

trees from 87 plots distributed along an environmental gradient. We also measured tree 14 

annual radial growth and the abundance of two parasites: the pine processionary moth 15 

(Thaumetopoea pityocampa Den. & Schiff.) and mistletoe (Viscum album L.). Topographic, 16 

soil, climate and water balance indices were assessed for each plot, together with the stand 17 

dendrometric characteristics. Given the large number of environmental factors and the 18 

strong correlations between many of them, models were developed using a partial least 19 

squares (PLS) regression approach.   20 

All the models pointed to a preponderance of the biotic factors (processionary moth and 21 

mistletoe) in explaining the intensity of foliar deficit at both tree- and stand- levels. We also 22 

show that strong interactions between climate, soil, water balance and biotic factors help to 23 

explain the intensity of dieback. Dieback was thus greater in the driest topoedaphic and 24 

climatic conditions where the mistletoe and processionary moth were present.  25 
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This study highlights the need to account for a wide range of biotic and abiotic factors to 26 

explain the complex process of forest dieback, and especially the environmental variables 27 

that contribute to the water balance on the local scale. The phenomenological modeling 28 

approach presented here can be used in other regions and for other species, after a re-29 

calibration and some adaptations to local constraints considering the limited distribution area 30 

of some biotic agents.  31 
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1. Introduction 38 

Ever since the beginning of the industrial era in the 19th century, human activities have 39 

been associated with a significant rise in global temperatures, forecast to continue in the 40 

range of +1°C to +5.7 °C by 2100 according to climate scenarios (relative to the period 41 

1850-1900 ; Masson-Delmotte et al., 2021). This gradual temperature rise has been 42 

accompanied by an increased frequency and intensity of extreme weather events and 43 

summer droughts in some regions, such as the Mediterranean (Cramer et al., 2018). These 44 

climate changes intensify the physiological stress undergone by forest ecosystems, leading 45 

to short- and long-term modifications in their carbon and water economies (McDowell et al., 46 

2008), and in their structure and composition (Anderegg et al., 2013).  47 

 48 

One sign of these dysfunctions at both tree and stand levels is dieback, defined as 49 

weakened vitality of a tree relative to a healthy reference tree, or weakened vitality of a 50 

large number of trees in a stand (Schütt and Cowling, 1985). Visible clues of dieback 51 

include reduced radial growth (Helama et al. 2014; Camarero et al. 2018), changes in 52 

crown architecture, branch and root death, fewer or smaller seeds (Girard et al., 2012; 53 

Vennetier et al., 2013), and most often a leaf area deficit (Becker et al., 1990; Carnicer et 54 

al., 2011; Dobbertin and Brang, 2001). Dieback may degenerate in tree death in the 55 

absence of recovery (Bréda et al., 2006). Besides these visible clues, various physiological 56 

and anatomic signs can be reported, including changes in carbon reserves (Adams et al., 57 

2013), lower efficiency in the use of resources (Gessler et al., 2018), xylem embolism 58 

(Choat et al., 2012), or nutrient imbalance (Gessler et al., 2017). Mechanistically, dieback is 59 

described as a complex system in which various biotic and abiotic factors interact in chains 60 

(Franklin et al., 1987; Waring, 1987). Commonly cited biotic factors include fungi, insects, 61 

bacteria, plant parasites, and inter-tree competition. Abiotic factors are related to climate, 62 

topography, soil, and sometimes air pollution. Dieback processes are often triggered by 63 

weather events, in particular severe droughts (Bigler et al., 2006; Suarez et al., 2004; Das 64 
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et al., 2007; Pedersen, 1998; Gaylord et al., 2015), which are increasingly associated with 65 

heatwaves (Teskey et al., 2015; Vogel et al., 2021). These factors can be compounded with 66 

spells of deep frost, either early or late, but also with biotic agent outbreaks (e.g., Morcillo et 67 

al., 2019).  68 

 69 

Forest dieback affects many biomes and species worldwide (e.g., van Mantgem et al. 2009; 70 

Allen et al., 2010; Hartmann et al., 2018; Hartmann et al. 2022), including Scots pine (Pinus 71 

sylvestris), a main European tree species that covers more than 20 million hectares from 72 

Scandinavia to southern Spain (Gonthier et al. 2011; Houston Durrant et al. 2016). It is 73 

particularly impacted in the southern part of its distribution range, in the Pyrenees and the 74 

Alps, but also in central Europe. These dieback events are often attributed to drought 75 

(e.g., Bigler et al. 2006; Bose et al. 2020; Buras et al. 2018; Camarero et al. 2015; Etzold et 76 

al. 2019; Martínez-Vilalta et al. 2009), but it also involves biotic factors such as the pine 77 

processionary moth (Thaumetopoea pityocampa Den. & Schiff.) (Hódar et al., 2003), and 78 

mistletoe (Viscum album L.) a hemiparasitic plant that causes gradual weakening of 79 

infested trees (Dobbertin et al. 2005; Galiano et al. 2010; Rigling et al. 2010 ; Kollas et al. 80 

2018).  81 

 82 

Determining the potential interactions between stand attributes, climate, processionary 83 

moth and mistletoe in the dieback process is key with regard to climate change. When 84 

water and nutrients availability are not limited, pine mistletoes can co-exist with their host 85 

tree for years (Solomon et al., 2015; Zuber, 2004). However, during drought, mistletoes 86 

maintain high transpiration rates (Zweifel et al., 2012), which may exacerbate the stress 87 

experienced by the host pine, with negative consequences on the growth performance and 88 

on foliar deficit (Dobbertin and Rigling, 2006; Rigling et al., 2010; Wang et al., 2022). 89 

Considering that epidemic phases of the processionary moth can also cause strong pine 90 

defoliation, and that both biotic factors are favoured by sunny and warm positions, and thus 91 
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potentially by transparent canopies, synergies between these factors, drought, and the 92 

microenvironment are likely (e.g,. Gea-Izquierdo et al., 2019).   93 

Both biotic factors are favored by higher temperature, and upward or northward shifts have 94 

been reported in several areas (e.g., Dobbertin et al. 2005; Robinet et al. 2007 and 2014). 95 

However, quantification of this process requires long-term data series, which are rarely 96 

available and may show a different trend (e.g., Camarero et al., 2022 in the case of 97 

processionary moth). 98 

 99 

In the last 20 years, many numeric models have been developed to predict the endpoint of 100 

dieback, namely tree death. On the one side, physiological models explicitly simulate the 101 

carbon and hydraulic mechanisms involved in tree death (e.g., McDowell et al., 2013; 102 

Cochard, 2020; Davi and Cailleret, 2017). On the other side, phenomenological models 103 

predict mortality risk using statistical approaches based on local abiotic environmental data 104 

(soil, climate, topography) and dendrometric data (type of stand, density, tree size, etc.) 105 

without considering the physical and physiological mechanisms behind tree dieback (e.g., 106 

Taccoen et al., 2019). Along  this continuum are models that couple empirical and 107 

mechanistic approaches (e.g., Venturas et al. 2021), and others that use integrative 108 

indicators of tree vitality, such as radial growth (e.g., Bigler and Bugmann, 2004; Holzwarth 109 

et al., 2013; Hülsmann et al., 2018). Physiological models are considered as more accurate 110 

in the context of a changing environment, but they require a large amount and diversity of 111 

high-resolution data, and are not yet fully functional for many species and over large areas. 112 

Phenomenological models are more parsimonious and robust within their calibration range, 113 

but less reliable outside it. Despite the increasing number, diversity and complexity of 114 

models that predict whether a tree will live or die, prediction of mortality at a regional scale 115 

is still challenging (Trugman et al., 2021), and few models simulate a tree’s level of dieback, 116 

owing to lack of data and because dieback displays a wide range of signs. These dieback 117 

models, for example those that predict foliar deficit (e.g., Galiano et al., 2010; Gonthier et 118 
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al., 2011), cannot be used directly for forestry diagnostics as they consider only a few 119 

factors influencing tree health, either directly or indirectly (through their interactions), and 120 

often neglect site factors (e.g., soil and topography). However, in view of the current 121 

increase in forest dieback at both local and global scales, operational tools able to predict 122 

this risk are urgently needed. 123 

The aim of this study was to partly fill this research gap by developing phenomenological 124 

models to predict foliar deficit of Scots pine. We used a partial least squares (PLS) 125 

regression approach to (1) assess the impact of multiple environmental factors (climate, 126 

soil, topography) and of the spatial distribution of pine populations at landscape scale on 127 

the abundance of biotic agents : pine processionary moth and mistletoe; (2) disentangle the 128 

respective and interactive impacts of these abiotic and biotic drivers on foliar deficit on both 129 

tree and stand scales; and (3) develop a model that could be used by forest managers to 130 

predict the risk of stand dieback. With this multifactorial and multiscale approach, we aimed 131 

at improving our understanding of the dieback process on Scots pine and the 132 

methodologies used to predict dieback risk. 133 

 134 

2. Materials and Methods  135 

2.1 Study area 136 

The study was conducted in southeast France (Figure 1), where Scots pine is the main 137 

forest species in terms of area and timber volume. This pioneering species has naturally 138 

recolonized a large part of the agricultural land that has been abandoned in the last 150 139 

years, and has also been planted to protect the soil in mountain areas (Médail, 2001). Scots 140 

pine is moderately tolerant of both drought and cold, and not markedly sensitive to pH or 141 

soil type. It was thus present in our study area in different biomes over a broad range of 142 

climatic conditions, from a typical Mediterranean climate, alongside downy oak (Quercus 143 

pubescens Willd.), to a mountain climate with common beech (Fagus sylvatica L.) and 144 

silver fir (Abies alba Mill.) (Le Houerou, 2005; Joly et al., 2010). Scots pine dieback has 145 
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been a major concern for the past 30 years in this area (Pauly and Belrose, 2005; Sardin, 146 

1997; Thabeet et al., 2009).  147 

 148 

 149 

Figure 1. Localization of the 87 plots of Scots pine sampled in southeast France (latitude 150 

43.64–44.58 °N, longitude 5.58–6.93°E). 151 

2.2 Sampling design 152 

Our sample set covered a broad range of soil and climate conditions in which Scots pine 153 

was present in the study area (elevation from 600 m to 1700 m; Figure 1). The average 154 

annual temperature (1981-2010 period) ranged from 4.8 °C to 12 °C (mean 8.9 °C). 155 

Average annual rainfall ranged from 680 mm to 1200 mm (mean 980 mm). Soil type, 156 

texture, and bedrock also varied widely, with a pH ranging from 4.5 to 9, and soil depth from 157 

20 cm to 80 cm. Soils were mostly calcareous; but 36% of the plots had acidic soils. No 158 

evidence of hydromorphy was observed during our soil measurements. 159 

Based on a bioclimatic model defining the water balance in the French Mediterranean 160 

region (Vennetier et al., 2008) and earlier studies conducted on the growth and dieback of 161 
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Scots pine (Thabeet, 2008; Thabeet et al., 2009), three stratification criteria were used to 162 

select the plots:  163 

 164 

– Elevation: We used two classes, below and above 1200 m ; this elevation 165 

corresponding to the boundary between the mountain- and meso-Mediterranean 166 

climates (Le Houerou, 2005) and to a marked discontinuity in dieback rates recorded 167 

between 2003 and 2006 (Thabeet, 2008). 168 

– Aspect and slope: These were combined in the radiation climate index (IKR) defined by 169 

Becker (1984). IKR is computed as the ratio between the solar energy received 170 

annually in a given square meter and a reference horizontal square meter at the same 171 

place. We used three classes: cold slopes (IKR < 0.95), horizontal areas or neutral 172 

slopes (0.95 ≤ IKR < 1.05), and hot slopes (IKR ≥ 1.05). 173 

– Topographic position: The topographic position index TPI_100 (see Appendix A) was 174 

computed following Weiss (2001) using a radius of 100 m around the center of the plot. 175 

The data came from a digital elevation model (DEM) developed by the French National 176 

Institute of Geographic and Forest Information available at a resolution of 25 m (© 177 

BDALTI IGN), and was processed using the ©QGis 3.16 software. We chose three 178 

classes with contrasting topographical situations: at the bottom of the slope or valley 179 

floor (TPI_100 ≤ −0.8, indicating favorable conditions in terms of water balance), mid-180 

slope (−0.8 < TPI_100 < 0.8), and at the top of the slope or on the ridge corresponding 181 

to unfavorable conditions (TPI_100 > 0.8).  182 

 183 

For each of the 18 combinations obtained (two elevation × three IKR × three TPI_100 184 

classes), five plots were sampled, giving a planned total number of 90 plots. These plots 185 

were randomly selected on a systematic 50 x 50 m grid in stands where Scots pine 186 

occupied at least 75% of the canopy cover according to the French national forest inventory 187 

(© BDFORET v2 IGN). To be finally selected, the plots then had to meet the following 188 

criteria: (i) no signs of logging in the last 10 years; (ii) stand height above 3 m or mean 189 
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diameter at breast height (DBH) greater than 10 cm to avoid very young stands; (iii) location 190 

in a forested area and easily accessible; and (iv) at least 20 pine trees in the dominant or 191 

co-dominant overstorey available in homogeneous site conditions around the center of the 192 

plot. Sampled plot area ranged from 235 m² to 2375 m² (mean 522 m²). 87 plots met all the 193 

above criteria.  194 

 195 

2.3 Biotic data: health status, dendrometry, and distribution of parasite-prone 196 

pine 197 

On each plot, the health status of 20 dominant or co-dominant Scots pine trees was 198 

recorded during the 2017 growing season, representing an overall of 1740 trees. We 199 

followed the health status monitoring protocol used by the French forest health department 200 

(protocol DEPERIS; Goudet, Saintonge, and Nageleisen 2018), which is based on the 201 

European protocol used in the ICP-Forests network (Eichhorn et al. 2020). A single 202 

operator carried out all surveys to limit the estimation bias linked to the measurement 203 

protocol. 204 

For each tree, DBH was measured and the functional crown (i.e., free of competition from 205 

neighboring trees) was delimited. We used binoculars to estimate on the functional crown 206 

and in two opposite directions, the: 207 

– percentage of foliar deficit (FolDef; in %) relative to a healthy reference tree (Figure 2), 208 

estimated visually in 5% classes, and that integrates microphylly (needle length < 50% 209 

of the regional mean) and the proportion of dead branches;  210 

– number of processionary moth nests per tree (NbnestTp); 211 

– mistletoe abundance as a percentage of the functional crown occupancy (CrownVa; in 212 

5% classes).  213 
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 214 

Figure 2. Reference photos used in the French and European protocols for estimating 215 

crown foliar deficit of Scots pine trees with corresponding defoliation rate in percentage of a 216 

fully leafed crown. Source: Müller and Stierlin (1990)  217 

 218 

From a subsample of 28 plots representative of all the combinations of stratification 219 

classes, two cores per tree were sampled using a Pressler increment borer from the 15 220 

trees closest to the center of the plot and whose health status was recorded (402 trees, i.e., 221 

804 cores were analyzed). After drying and sanding, ring widths were measured to the 222 

nearest 0.01 mm on scanned images using Windendro software (WinDENDROTM 2014, © 223 

Regent Instruments Canada Inc.). Each series was visually cross-dated based on the 224 

pointer years characterized by particular ring-width, early/latewood ratio or wood anatomy. 225 

From the measured ring widths, we computed the basal area increment, which was 226 

averaged for five specific periods: during the severe multi-annual drought of 2003–2007 227 

(GSd), before (1997–2002, GSb), and after this event (2008–2016, GSa). The period 2003–228 

2007 was identified locally to have caused a strong reduction in growth and high mortality of 229 

Scots pine (Thabeet et al., 2009; Vennetier et al., 2013). The average basal area increment 230 

was then computed considering all years (Gs) and over the last 20 years (1997–2016; 231 

Gs20). Finally, considering the non-linearity in the growth trend over this period (see 232 

Appendix B), and as tree dieback may be related to a low growth resilience to drought 233 

(DeSoto et al., 2020; Trugman et al., 2018), we computed the resistance, recovery and 234 

resilience indices based on Lloret et al. (2011). Resistance (RS) is quantified by the ratio 235 
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GSd/GSb, representing the capacity of the trees to buffer stress and maintain growth during 236 

drought. Recovery (RC) is the growth reaction following drought and is defined as the ratio 237 

GSa/GSd. Resilience (RE) represents the capacity of trees to recover and regain the 238 

growth level of the pre-drought period (ratio GSa/GSb). The absence of subsampling bias 239 

was checked to ensure that these 28 plots were representative of all 87 plots (Appendix C).  240 

 241 

Stand basal area (m2/ha) was measured using a chain relascope. Finally, because the 242 

presence and abundance of mistletoe and processionary moth could be linked to the 243 

abundance of tree species sensitive to these pests around the point of measurement 244 

(Robinet et al., 2014a), we calculated the area occupied around each plot by the pine 245 

species locally hosting mistletoe (Scots pine, Pinus nigra subsp. nigra Arn. and Pinus nigra 246 

subsp. laricio (Poiret) Maire) or the pine processionary moth (the same species plus Pinus 247 

halepensis Mill.). For these two Pine Presence indices (PPI), we tested different radii: 0.2, 248 

0.5, 1, 2, 4, 6, 8, 16, 32 and 64 km, and selected the ones that best explain foliar deficit in 249 

the statistical models (see section 2.6). 250 

2.4 Climate data and indices 251 

Mean monthly climatic conditions were characterized for each plot with the AURELHY 252 

model for precipitation (P) and minimum and maximum temperatures (Bénichou and 253 

Lebreton, 1987). AURELHY provides the 30-year mean values for 1981–2010 at a 1 km 254 

resolution, integrating the effects of elevation and topography as far as possible. This model 255 

is based on data from 3400 weather stations for rainfall, and 1500 stations for temperature; 256 

however, it does not provide extreme values, such as the lowest temperature recorded 257 

each year during the 1981-2010 period, an important variable explaining the distribution of 258 

the pine processionary moth (see below). This variable has thus been determined with the 259 

SAFRAN model, despite its lower spatial resolution (8 km; Quintana-Seguí et al., 2008). 260 

Mean monthly solar radiation from 1971 to 2000 was estimated with the DIGITALIS model 261 

at a 50 m resolution using data from 88 weather stations, taking into account elevation, 262 
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latitude and topography (Piedallu and Gégout, 2007). Monthly potential evapotranspiration 263 

(PET) was estimated with Turc’s method (Turc, 1955) to determine a monthly climatic water 264 

balance (P-PET). These climatic variables were also calculated for the summer season 265 

(June–August), the growing season (April–October), and the non-growing season 266 

(November–March).  267 

In addition to these climatic variables, we calculated climatic indices of potential 268 

colonization by mistletoe and processionary moth. The distribution of mistletoe with 269 

elevation and latitude is limited by winter cold and is favored by high summer temperatures 270 

(Dobbertin et al., 2005). Iversen (1944) developed a climatic index for the presence of 271 

mistletoe based on these two criteria. This index was subsequently improved by Skre 272 

(1979) in Scandinavia and tested successfully by Dobbertin et al. (2005) in Switzerland and 273 

by Odland (2009) in Norway. We calculated the Skre index (SKRE_I) for each plot (Eq. 1). 274 

                             SKRE_I = 0.575 × T7 + 0.101 × T1 − 2.77                                             (Eq. 1) 275 

where T7 is the mean temperature in July and T1 the mean temperature in January. 276 

Processionary moth dispersion and abundance are also dependent on climatic variables, in 277 

particular minimum temperature, radiation, and temperatures in the non-growing season 278 

(Hoch et al., 2009). For each plot, we tested the climatic variables of the models developed 279 

by Robinet et al. (2007, 2014), i.e., the absolute minimum temperature, radiation, minimum, 280 

maximum, and mean temperatures for each month between October and March, and Turc’s 281 

evapotranspiration over this 6 months period.  282 

 283 

2.5 Soil and topographic data and indices 284 

Local topoedaphic index 285 

For each plot, a detailed survey of bedrock, soil and local topography was carried out in the 286 

field to calculate a topoedaphic index (TEI) developed and validated over the studied area 287 

by Vennetier et al. (2018, for details see Appendix D). This index appraises the local water 288 
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balance on the plot scale and is correlated with forest productivity. Depending on its value, 289 

which ranges from +80 to −80, the water balance is considered as highly favorable (>15), 290 

favorable (5 to 15), neutral (−5 to +5), unfavorable (−5 to −15), or highly unfavorable 291 

(<−15). 292 

 293 

Soil characteristics were estimated directly from a hand-dug trial pit at the center of each 294 

plot and from several core drillings throughout the plot. The useful water reservoir was 295 

quantified using the protocol of Baize and Jabiol (2011), and calculated from the 296 

pedotransfer functions developed by Jamagne et al. (1977). The nature of the underlying 297 

bedrock was surveyed in the field whenever possible, or else using geological maps. The 298 

presence of active limestone was estimated in the top 50 cm using 10% hydrochloric acid. 299 

The pH was measured at a depth of 20 cm using a ©SoilStik pH meter. The slope and 300 

aspect were measured using a clinometer and a compass.  301 

 302 

 303 

Topographic indices at landscape scale 304 

Three landscape topographic indices were calculated using two DEMs from the French 305 

National Institute of Geographic and Forest Information available with a respective precision 306 

of 25 m and 75 m (BD_ALTI © IGN). The topographic position index (TPI) was calculated in 307 

a 100 m radius for microtopography (TPI_100, already used for the sampling stratification), 308 

and a 1500 m radius (TPI_1500) for macrotopography (Weiss, 2001), with DEMs at 25 m 309 

and 75 m resolution respectively, each adapted to a working scale. Plots located at the top 310 

of the slope show high TPI values while plots located at the bottom of the valley have low 311 

TPI. The topographic wetness index (TWI) is an estimate of the water accumulation in a 312 

defined area. It was calculated with DEMs at 75 m. TWI is defined as the ratio of the area 313 

upslope (i.e., from where water would flow) from a given point on the landscape to the local 314 

slope at that point (Galiano et al., 2010; Petroselli et al., 2013). A high TWI corresponds to 315 

favorable situations where water inputs are higher than the losses. These three indices 316 
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illustrate the part of the water balance linked to water flows in the landscape, on a larger 317 

scale than the plot (i.e., than the TEI). 318 

2.6 Statistical approach  319 

We built two indices quantifying the intensity of colonization by mistletoe and pine 320 

processionary moth, and developed three dieback models that related tree and stand health 321 

status with all the biotic and abiotic variables mentioned above (Table 1). 322 

Target variables 323 

To quantify the intensity of colonization by biotic factors, we focused on the percentage of 324 

crown colonized by mistletoe (CrownVa), and the number of nests of processionary moth 325 

per tree (NbnestTp). 326 

For the first dieback model, the percentage of foliar deficit (FolDef) was analyzed on tree 327 

scale, while the second model used the percentage of stems with at least 50% of leaf loss 328 

(Xstem50) estimated on stand scale. Xstem50 was used instead of the mean foliar deficit 329 

as both variables are closely correlated (r = 0.95, p < 0.001), and Xstem50 is often used 330 

operationally by forest managers. Indeed, tree dieback is conventionally defined by a foliar 331 

deficit greater than or equal to 50% (DGAL 2018; Linares et Camarero 2012; Sergent 332 

2011). The third model was developed to predict the probability that a stand experiences a 333 

dieback, i.e., that its Xstem50 value is greater than 30%. This risk model was designed for 334 

direct use in the field by forest managers. Different threshold values of Xstem50 (20, 25 or 335 

30%) are cited in the literature to define dieback in a stand (Brunier et al., 2020; DGAL, 336 

2018; Linares and Camarero, 2012), but preliminary analyses enabled us to retain the 30% 337 

threshold (Appendix E). 338 

 Model name Target variable Y  Type of 

variable 

Statistical 

approach 

Biotic potential 

colonization 

Viscum album 

 

CrownVa 

mean of crown percentage 

Continuous PLS 
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indices  colonized by mistletoe in the plot 

Thaumetopoea 

pityocampa  

NbnestTp 

Mean number of nests per tree in 

the plot  

Continuous PLS 

Dieback model Tree dieback  FolDef  

Tree foliar deficit  

Continuous Kruskall-

Wallis+ 

PLS 

 Stand dieback  

 

Xstem50 

Percentage of stems in the plot with 

at least 50% leaf deficit 

Continuous ANOVA + 

PLS 

 Stand dieback 

risk  

Xstem50>30% 

Presence of at least 30% of stems 

with at least 50% leaf deficit 

Binary LOG PLS 

Table 1. Main characteristics of the biotic colonization indices and dieback models 339 

 340 

 341 

Summary statistics and model development 342 

A three-way ANOVA was used to determine the pertinence of the stratification variables 343 

used for the sampling design: elevation (≥1200 m, <1200 m), IKR (cold, neutral, hot) and 344 

TEI (favorable, neutral, unfavorable) on the dieback variables FolDef and Xstem50. ANOVA 345 

validity assumptions were statistically examined, i.e., the normality of residuals with the 346 

Shapiro-Wilk test, and the homogeneity of variance with the Levene test. Two-by-two 347 

comparisons of means were carried out with the Tukey test, except when the variables did 348 

not meet ANOVA validity criteria, in which case the Kruskall-Wallis and Nemenyi tests were 349 

used. 350 

 351 

The two indices of potential colonization by biotic agents and the three dieback models 352 

were developed using partial least squares (PLS) regression (Ter-Braak and Juggins, 353 

1993). 354 
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The PLS approach is known to well define complex interacting systems (Fernandes, 2012). 355 

This regression method predicts the values taken by the target variables from a series of 356 

predictor variables using a multivariate approach. This approach sidesteps two difficulties 357 

often met in ecology, namely the collinearity of explanatory variables, and the high number 358 

of these variables relative to the number of observations (Cramer III et al., 1988; 359 

Tenenhaus, 1998). The method has proved to be effective in forestry : i.e., to study forest 360 

productivity (Bikindou et al., 2012; Paulo et al., 2015; Rathgeber et al., 2005), stand health 361 

(Tenenhaus, 1998), and flora composition based on a  bioclimatic model (Vennetier et al. 362 

2008). We chose the PLS approach because the number of variables used to build the 363 

models was large (99 in total, see Appendix A) and exceeded the number of plots. Also, 364 

some climatic and topographic variables based on digital elevation models are highly 365 

correlated. For instance, The AURELHY and DIGITALIS models use topography 366 

information to derive high-resolution climatic maps (Bénichou and Lebreton, 1987; Piedallu 367 

and Gégout, 2007). A stepwise method based on the Q2 coefficient of Stone-Geisser was 368 

used to select the number of components in the PLS regression (Bertrand, F., Maumy-369 

Bertrand, M., 2018; Bastien, P., Vinzi, V.E., Tenenhaus, M., 2005). Only the variables 370 

whose partial correlation coefficient was significantly different from zero (p < 0.05) after 371 

bootstrapping were then retained. To model the probability of the presence or absence of 372 

dieback in a plot, we used a PLS binary logistic regression approach (LOG PLS); the 373 

logistic regression being regularly used to predict tree mortality risk (e.g., Cailleret et al., 374 

2016; Hülsmann et al., 2018; Monserud, 1976). The LOG PLS combines a PLS regression 375 

model with the binary prediction model of logistic regression. The PLS regressions were run 376 

with the plsRglm package (Partial Least Squares Regression for Generalized Linear 377 

Models; Bastien et al., 2005; Bertrand and Maumy-Bertrand, 2018) from the R 4.0.5 open-378 

source software (RStudio Team, 2021). 379 

 380 

Finally, we partitioned the variance of the stand dieback models to assess the relative 381 

weights of the biotic, climatic, and topoedaphic factors. Venn diagrams were drawn with the 382 
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eulerr R package (Larsson, 2021) to evaluate the specific and combined weights of these 383 

three groups of variables in the explained variance of Xstem50 and of biotic potential 384 

colonization indices. In such diagrams, the area of the ellipse plotted for each group is 385 

proportional to the sum of its individual coefficient of determination and its joint contribution 386 

with one or several other groups. The joint contributions are represented by the area of the 387 

intersections of the individual ellipses.  388 

 389 

3. Results 390 

The stands studied were relatively young, 88 years on average, with a quite broad range of 391 

tree age and diameter between and within plots (Table 2 and Appendix F). This variability is 392 

related to the gradual recolonization of abandoned farmlands by Scots pine over the last 393 

century (Médail, 2001). Their health status is poor; the foliar deficit (FolDef) and percentage 394 

of stems with more than 50 % of foliar deficit (Xstem50) respectively averaged 48% and 395 

31% (Table 2). No plot showed less than 25% of foliar deficit, and 51% of the plots were 396 

considered as declining as XStem50 was higher than 30%. A broad variability in the 397 

presence and abundance of biotic agents was observed between plots: mean crown 398 

infestation by mistletoe in the crown ranged from 0 to 29%, and the mean number of 399 

caterpillar nests per tree ranged from 0 to 6 (for details see Appendix G). 400 

 401 

Variable Mean 

 

Standard 

deviation  

Min Max 

Age (years) 88  30 48 181 

Diameter at breast height 

(cm) 

26 4.6 17 40 

Stand basal area (m
2
/ha) 23.1 8.8 8 48 

FolDef (%) 48.3 11.7 25.8 84.5 

Xstem50 (%) 31 24.9 0 90 

NbnestTp 0.66 1.25 0 6 

CrownVa (%) 8.1 7.6 0 29 

Table 2. Main stand characteristics. The target variables are defined in Table 1. 402 
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 403 

3.1 Influence of elevation, IKR, and topoedaphic index  404 

Below 1200m of elevation, the mean tree foliar deficit (FolDef) and the percentage of stems 405 

in the plot with at least 50% of leaf deficit (Xstem50) were significantly higher than above this 406 

threshold (p < 0.05; Figure 3A and 3D; Appendix H). The effect of IKR was less obvious as 407 

there were no significant differences in Xstem50 (Figure 3E), and only the trees growing in 408 

the hot situations had higher FolDef (p<0.01; Figure 3B). FolDef and Xstem50 were higher in 409 

the unfavorable topoedaphic situations than in the neutral and favorable classes, while the 410 

difference between these two classes were only significant for FolDef (Figure 3C and 3F). 411 

There were no interactive effects of the elevation, IKR and TEI classes on both dieback 412 

variables. 413 

 

Figure 3. Differences in tree foliar deficit (FolDef, %; Top) and in stand XStem50 (%; 

Bottom) between classes of elevation (A and D), IKR (B and E) and topoedaphic index 

(TEI; C and F). Rectangles delimit two central quartiles separated by the median. Points 

indicate the value of each tree (A, B, C) or each stand (D, E, F). Groups sharing the same 

letter did not differ significantly (p < 0.05). 
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3.2 Potential colonization indices for mistletoe and processionary moth 414 

The proportion of the crown colonized by mistletoe (CrownVa) was highly correlated with 415 

biotic, climatic, and topoedaphic factors (R² = 0.38, p < 0.001; Table 3 and Figure 4). 416 

Concerning the biotic factors, it was positively impacted by the cumulative area of pine 417 

species sensitive to mistletoe (pine presence index; PPI) in an 8 km radius around the 418 

studied plot. Mistletoe was more abundant when water deficit was marked (i.e., low P-PET), 419 

and when mean January and July temperatures (Skre index) were high. Likewise, mistletoe 420 

was more abundant in situations with unfavorable topography, where temperatures are 421 

higher and the water balance lower, such as on convex terrain or at the top of the slope 422 

(low TEI and high TPI_100). In the PLS regression, climatic variables had standardized 423 

coefficients that are ~2 times higher than those of the other variables with significant 424 

effects, highlighting the strong importance of climate on the colonization by mistletoe. 425 

Like mistletoe, the number of processionary moth nests per tree (NbnestTp) was closely 426 

correlated with biotic, climatic, and topoedaphic variables (R² = 0.32, p ≤ 0.001; Table 3 and 427 

Figure 4). The PPI and climatic variables had the highest standardized coefficients in 428 

absolute values; PPI being positively associated with the number of nests, but this time in a 429 

radius of 6 km. The PET from October to March and the absolute minimum temperature 430 

also influenced significantly and positively the number of nests. The warmer the winter 431 

months, the more nests were found. Finally, the two topographic factors TEI and TPI (here 432 

TPI_1500) were significant, as they were for mistletoe. Caterpillars were more abundant in 433 

situations with unfavorable topography and water balance (low TEI) such as on convex 434 

terrain or at the top of the slope (high TPI_1500).  435 

 

Number of 

components of 

the PLS 

Q
2
 RSS ∑R²Y 

Biotic index for mistletoe 

Potential colonization index of V. album CIVA 
1 0.34 3067 0.38 

Biotic index for processionary moth 

Potential colonization index of T. pityocampa CITP 
1 0.25 91 0.32 
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Tree dieback model 

FolDef (%) 

1 0.32 97613 0.33 

2 0.34 90580 0.38 

Stand dieback model 

Xstem50 (%) 
1 0.62 20228 0.65 

  
CHI

2
 

Misclassi

fied* AUC 

Stand dieback risk model 

Xstem50 ≥ 30% 
1 67 21.6%* 0.88 

Table 3. Summary statistics for the different Partial Least Square (PLS) regression models. 436 

Q2  the coefficient of Stone-Geisser, RSS the Residual Sum of Squares, ∑R²Y the 437 

coefficient of determination, and AUC the Area Under the receiver operating characteristics 438 

Curve.* The misclassification rate was calculated by cross-validation  439 

 440 
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Figure 4. Standardized partial correlation coefficients of the significant variables selected in the Partial 442 

Least Squares regression models developed to predict the potential colonization of the biotic factors, and 443 

to predict tree and stand dieback. CrownVa% is the percentage of pine crowns colonized by mistletoe (% 444 

per tree or per plot according to the model); NbnestTp is the number of processionary moth nests (per 445 

tree or per plot according to the model); PPI is the Pine Presence Index expressed in area occupied by 446 

pine species sensitive to mistletoe or to pine processionary moth (ha; calculated in a radius of 8 km and 447 

6 km, respectively); DBHm is the mean stand DBH (cm); DBHt/DBHm is the ratio between tree DBH and 448 

the mean stand DBH; Gs20 is the mean BAI over the last 20 years (1997–2016 ; mm²/year); Gsd is the 449 

mean BAI during the major climatic stress (2003-2007; mm²/year); RE is the resilience, defined as the 450 

ratio between mean BAI after drought (2008-2016; Gsa) and before drought (1997-2002; Gsb); RC is the 451 

recovery, defined as the ratio between mean BAI after drought (2008-2016; Gsa) and during drought 452 

(2003-2007; Gsd); P-PET_1103 and P-PET_0410 are the difference between precipitation and potential 453 

evapotranspiration calculated from November to March, and from April to October, respectively; SKRE_I 454 

is the Skre index (see eq. 1). PET_1003 is the potential evapotranspiration October to March; TNABS is 455 

the absolute minimum temperature (°C); TEI is the field-based topoedaphic index; TWI is the 456 

topographic wetness index; TPI_100 and TPI_1500 are the topographic position indices calculated using 457 

100m and 1500m radii, respectively. Finally, CIVA and CITP are the potential colonization indices 458 

calculated for V. album and T. pityocampa, respectively. All climatic variables are calculated for the 459 

1981-2010 period. 460 

 461 

3.3 Dieback models 462 

Tree model 463 

The model explaining the foliar deficit of the 402 cored trees had a coefficient of determination of 464 

0.38 with 12 significant variables (Table 3 and Figure 4). The two most influential variables were the 465 

percentage of the crown colonized by mistletoe (CrownVa) and the number of caterpillar nests 466 

(NbnestTp) per tree, which were positively correlated with foliar deficit. Then, in decreasing order of 467 

importance, came the topographic wetness index (TWI) and the topoedaphic index (TEI), for which 468 

the foliar deficit was negatively correlated, followed by the summer and winter climatic water 469 

balance (P-ETP), which positively influence tree health status (negative correlation with foliar 470 
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deficit). Trees that grow the best, i.e., with higher mean BAI over the last 20 years (Gs20), and that 471 

best experienced the 2003-2007 drought (high Gsd, resilience RE and recovery RC values) showed 472 

the lowest foliar deficit. Finally, stand mean DBH was positively correlated with the foliar deficit; but 473 

in these stands, the suppressed trees (with a low DBHt/DBHm ratio) tend to be more defoliated.  474 

Stand model 475 

At stand scale, the model predicting Xstem50 had the highest coefficient of correlation (R² = 0.65; 476 

Table 3). It involved three variables, CrownVa, TEI and NbnestTp, in order of decreasing 477 

importance. A high mean abundance of mistletoe and caterpillar nests increased the percentage of 478 

stems with at least 50% of foliar deficit; and both biotic factors contributed to 42.3% of the 479 

explained variance in Xstem50 (Figure 5A). The stand dieback level was lower in favorable 480 

topoedaphic conditions (high TEI), whose contribution on the variance in Xstem50 is limited when 481 

analyzed alone (5.6%), but much higher when considering its joint contribution with the biotic 482 

variables (16.6%; Figure 5 A). This model does not emphasize the direct effect of climatic 483 

variables on Xstem50, but the climate is involved indirectly via its contribution in the PLS 484 

regressions quantifying the potential colonization of mistletoe (it explained 31.5% of the variance; 485 

Figure 5B) and of the processionary moth (19.6% of the variance; Figure 5C). 486 

  487 
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 488 

 

Figure 5. Venn diagrams for the stand dieback model and the two biotic colonization indices: 

mistletoe and processionary moth. The independent and joint contribution of each type of variable 

(defined in Figure 4) is expressed as respectively the area of circles and of their intersections, 

which are proportional to their contribution to the explained variance of the model. 

 

The interaction between the climatic factors and biotic factors explains part of the variability in 489 

dieback observed among stands (Figure 6). In the situations where mistletoe was present in the 490 

field, Xstem50 increased with the mistletoe potential colonization index (CIVA index), and indicator 491 

of favorable environmental conditions. In contrast, when mistletoe was absent, the percentage of 492 

stems with dieback did not increase with these favorable conditions (Figure 6). Stand health status 493 

was thus degraded when the presence of mistletoe in the field is combined with warm and dry 494 

climate and topoedaphic conditions. In contrast to mistletoe, the number of processionary moth 495 

nests did not act as interactive factor with climate, but as additive effect (Figure 6). The presence 496 

of nests increased defoliation in the plots significantly (p < 0.05), on average by 10 %, irrespective 497 

of whether mistletoe was present in the field.  498 
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 499 

Figure 6: Xstem50 as a function of the potential colonization index for mistletoe (CIVA index) and 500 

according to the actual presence or absence of mistletoe and processionary moth on the plot. 501 

 502 

Risk model 503 

The dieback risk model developed here performed well: its cross-validation misclassification rate 504 

was 21.6%, and its AUC was 0.88 indicating an excellent predictive quality (Hosmer et al., 2013). 505 

It tends to lightly overestimate dieback proportion in medium risk classes, i.e., when the dieback 506 

risk predicted by the model is between 20 and 80%, the proportion of stand with observed dieback 507 

is lower than expected (Figure 7).  508 

Four variables were significant in this model; two of these were 509 

linked to mistletoe (Figure 4). The first was its potential colonization (CIVA) index, which integrates 510 

biotic (PPI), climatic, and soil factors (Figure 6B). The second was its actual presence in the field 511 

(CrownVa). Introduction of these two variables in the risk model takes account of the interaction 512 

between the presence of mistletoe and the environmental conditions prone to its development 513 

(underlying factors in the CIVA index). The other two variables were also included in the stand 514 

model, namely the topoedaphic index and the average number of processionary caterpillar nests 515 

per tree. Although only marginally significant (p = 0.06) and consequently not considered in the 516 
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best model (Figure 4), the processionary moth potential colonization index (CITP) confirmed the 517 

indirect influence of climatic variables on dieback risk. 518 

 519 

  520 

Figure 7. Distribution of healthy stands (Xstem50<30%) or stands with dieback (Xstem50>30%) 521 

by the dieback probability class as predicted by the risk model. These 20% classes were set to 522 

include at least five plots each. Significant differences in the proportion of plots with observed 523 

dieback were observed between risk classes predicted by the model (chi-square = 40.17, df = 4, 524 

p < 0.001).  525 

 526 

4. Discussion  527 

Tree dieback is a complex process that requires a multifactorial and multiscale approach (Franklin 528 

et al. 1987; Manion 1991; Allen et al. 2015). This study, based on multivariate statistical models 529 

and conducted on Scots pine, confirms the importance of incorporating a range of biotic factors 530 

(tree and stand characteristics, and abundance of mistletoe and processionary moth), topographic 531 

and soil factors representing the local- and landscape-scale water balance, and climatic factors, 532 

which are important both directly and through their interactions with the other factors. 533 



27 

 

4.1 Biotic factors 534 

Mistletoe and the pine processionary moth play essential roles in the Scots pine dieback process. 535 

When considering their interaction with the topoedaphic variables, these biotic factors explain 536 

64.5% of the variance in the percentage of stems with 50% of leaf deficit (stand model predicting 537 

Xstem50 ; Figure 5). 538 

The impact of mistletoe on the health and growth of Scots pine is well documented. Mistletoe does 539 

not regulate its transpiration even under drought, and consequently reduces the water available to 540 

the host tree, worsening its physiological stress. It also uses a significant proportion of the 541 

nutrients from the tree sap, which it stores in its own structure (Mutlu et al., 2016). Consequently, 542 

infested trees close their stomata earlier and longer (Zweifel et al., 2012) and produce smaller 543 

leaves (Rigling et al., 2010) thereby limiting their carbon absorption capacity and growth potential 544 

(Meinzer et al., 2004). Stand-scale productivity losses have been estimated at between 29% in 545 

Germany (Kollas et al. 2018) and 64% in Spain for high levels of infestation (Camarero et al., 546 

2018), with lower resistance and resilience to severe drought. Infestation by mistletoe is on 547 

average more marked in the upper part of the crown due to the parasite’s heliophilous nature 548 

(Briggs, 2021; Mellado and Zamora, 2014) and the behavior of the birds that spread it. This 549 

explains why it was mostly present in our study area in sunny locations such as on convex terrain 550 

(high TPI; Figures 4 and 5), and in open stands. 551 

The presence of mistletoe is also linked to climate (Jeffree and Jeffree, 1996), especially to 552 

temperatures in the coldest and hottest months, as shown by its significant correlation with the 553 

Skre index (Figure 4). Although temperature is the variable that best explains the presence of 554 

mistletoe, the population density of fruit-eating birds, and more specifically of its main dispersion 555 

agent the thrush genus Turdus, also explains the spatial distribution of mistletoe at landscape 556 

scale (Ramsauer et al., 2021). The most significant radius (8 km) used to calculate the area of 557 

pines sensitive to mistletoe around our plots is in line with the literature, e.g., with the minimum 558 

radius of 3.5 km estimated in Catalonia by Ramsauer et al. (2021). The propagation of mistletoe 559 

from a point source is fast, accelerates over time with the progressive increase in population 560 

density in neighboring areas, but is still modulated by vegetation distribution in the landscape and 561 



28 

 

especially by the availability of host species (from 0.04 km/year to 0.35 km/year ; Hawksworth and 562 

Scharpf 1986, Shaw and Lee 2020). 563 

The processionary moth is a forest pest that can cause severe damage to leaves, especially in 564 

newly infested areas (Battisti et al., 2005; Stastny et al., 2006). Its distribution in our study area 565 

was closely linked to climate, to the area covered by pine stands on the landscape, and to soil and 566 

topography factors. The potential evapotranspiration from October to March and minimum 567 

absolute temperature were the two dominant climatic variables in the colonization model, in line 568 

with the model of Robinet et al. (2007) calibrated in central France. Low minimum temperature 569 

limits the expansion of the processionary moth toward higher elevations and latitudes (Hoch et al., 570 

2009; Hódar et al., 2003) as it needs heat in winter and large amounts of sunlight to feed and 571 

survive (Battisti et al., 2005). It is accordingly found on sunny exposition (e.g., at the top of the 572 

slopes, south-facing aspect; Figures 4 and 5) and in open forests where tree canopies are well 573 

exposed. The optimal radius to compute its pine hosts density (6 km), is consistent with the study 574 

by Robinet et al. (2014b), stating that females can fly 6 km on average, and up to 10 km.  575 

The density of both mistletoe and processionary moth populations seem thus reduced when the 576 

stands sensitive to these parasites are young, have low stand density, and are scattered over the 577 

landscape (low PPI; see also Shaw and Lee 2020). Because Scots pine naturally and gradually 578 

colonized abandoned farmland over the last century (Médail, 2001), its age and spatial distribution 579 

is irregular within the landscape. This explains why some plots were not or only slightly affected by 580 

these parasites, and thus relatively healthy, despite climatic and site conditions favorable to these 581 

pests (Figure 6). Such plots, though few in number, reduced the predictive capacity of the dieback 582 

models by partly masking the effects of climatic variables. 583 

 584 

For these two heliophilous parasites, the significant weight of topography and soil is explained by 585 

their relationship with the water balance and landscape structure. Stands located at the top of the 586 

slopes, on ridges, on convex terrain well-exposed to sunlight, and on shallow or stony soils (often 587 

found in such locations due to erosion), (i) usually have a low stem density and canopy cover 588 

favoring the infestation of dominant trees with sunny crowns, and (ii) have limited water retention 589 
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capacities, weakening trees and increasing their vulnerability to these parasites and so 590 

accelerating dieback (Mutlu et al., 2016). These stands have especially experienced high 591 

defoliation and mortality rates during and following the 2003–2007 drought  (Vennetier et al., 592 

2007), opening them, and favoring both mistletoe and processionary moth populations. 593 

 594 

Independently of the factors cited above, stands with large mean tree DBH had higher foliar deficit 595 

(see also Galiano et al. 2010). These large trees generally have larger crowns, which would be 596 

preferred by both mistletoe and processionary moth that demand light. They also provide more sites 597 

for birds involved in the spread of mistletoe (Kolodziejek J and Kolodziejek A, 2013). Nevertheless, 598 

in these stands, shaded trees smaller than the stand average had higher foliar deficits, probably due 599 

to the relative intolerance of Scots pine to high levels of shade (Gaudio et al., 2011). This result is 600 

supported by the studies from Taccoen et al. (2021) who reported an excess of mortality in shaded 601 

Scots pine in South-East France linked to the climate and its change, and from Galiano et al. (2010) 602 

in the Spanish Pyrenees. 603 

 604 

Finally, trees with the lowest foliar deficit were also those with the higher mean growth over the last 605 

20 years, and with the higher recovery and resilience after the 2003-2007 drought. The causal link 606 

between growth and crown health (i.e., defoliated trees show low growth rates and recovery after 607 

drought, or trees with low growth and recovery rates are more sensitive to further drought and prone 608 

to dieback) is unclear because the information on the temporal change in foliar deficit is missing. 609 

However, the negative relationships between foliar deficit and mean growth rates and resilience to 610 

drought were consistent with previous physiological and dendroecological studies (e.g., DeSoto et 611 

al., 2020; Dobbertin, 2005; Guada et al., 2016; Poyatos et al., 2013). Interestingly, growth 612 

resistance to drought does not seem related to Scots pine dieback, just as it does not seem related 613 

to the mortality of gymnosperms (DeSoto et al., 2020). 614 

  615 

4.2 Climatic factors  616 

Climatic variables alone only partly explained tree dieback in the PLS regression models. The more 617 

unfavorable the climatic water balance (P-PET) during the growing and non-growing seasons, the 618 
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higher the foliar deficit, reflecting the well-known sensitivity to drought of Scots pine (e.g., Camarero 619 

et al., 2015; Galiano et al., 2010; Matías et al., 2017; Rigling et al., 2013). These climatic variables 620 

were calculated for the period 1981–2010. This period was warmer than the previous decades 621 

(Cramer et al., 2018), thus favorable towards the dissemination of mistletoe with more effects on the 622 

health of stands. 623 

This period also corresponded to the first reports of massive dieback in southeast France, partly 624 

linked to the presence of biotic agents and drought (Lieutier et al., 1988; Sardin, 1997). As 625 

previously shown, the strong interactions of climate with biotic and topoedaphic factors (Figure 6), 626 

added to the irregular spatial distribution of these biotic agents on the regional scale, probably 627 

limited the ability of the models to isolate the impact of some climatic variables.  628 

4.3 Soil and topography factors 629 

Our analysis highlights a strong effect of topographic and edaphic conditions on foliar deficit, which 630 

are important in offsetting or worsening climatic water balance. Scots pine presents high foliar 631 

deficits on shallow soils (i.e., low TEI) with low water holding capacity (Galiano et al. 2010) but 632 

also low growth rate (Bigler et al. 2006). 633 

The topoedaphic index (TEI) had a significant effect in all the dieback models developed, 634 

confirming its relevance to assess at least roughly the water balance at local scale, independently 635 

of the vegetation and climate. A more accurate quantification of this water balance could be 636 

obtained from fine soil measurements and from the evaluation of the water demand at stand scale 637 

(e.g., with the leaf area index; see Granier et al., 2000), but would require additional work beyond 638 

our possibilities. Operationally, the TEI offers the advantage of being of use in varied topographic 639 

conditions, notably in conditions where slope or hillside effects are very marked, such as in our 640 

study area. 641 

However, this index still needs calibration at regional scale and to be evaluated in other contexts, 642 

and is not sufficient to estimate water fluxes and pools at landscape level. Topographic indices 643 

calculated from DEMs on a scale of 100 m (microtopography) or 1500 m (macrotopography) must 644 

also be integrated, as revealed by our tree dieback model and several previous studies (Petroselli 645 

et al., 2013; Raduła et al., 2018; Kopecký et al., 2021).  646 
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4.4 Comparison of dieback models  647 

The model developed at tree level had quite low performance (R² = 0.38), which may partly due to 648 

the difficulties when estimating tree leaf deficit despite a careful application of the protocols. The 649 

presence of understorey may limit the view of the functional crown in several directions and the 650 

microphylly, which is very frequent in our study area, is not easy to estimate with binoculars. 651 

However, this was mainly caused by the high variability in foliar deficit within stands (see Table 3), 652 

which was only partly captured by the variables measured at tree scale (age, diameter, and annual 653 

radial growth). The integration of an individual-based competition index (e.g. Heygi index 1974) 654 

could have improved the predictive ability of the tree model (e.g. Galiano et al., 2010). 655 

In the geologically complex environments we studied, the vertical and horizontal heterogeneity in 656 

soil properties (e.g., texture, percentage of coarse elements) and in bedrock fracture levels was 657 

very high, sometimes only a few meters away, and could not be evaluated with a single soil pit. 658 

This intra-plot variability in foliar deficit can also be linked to different microclimatic conditions 659 

between trees depending on their neighborhood and on the micro-topography. Some trees have 660 

also undergone other climatic damages, such as snow breaks, often observed in these 661 

environments (Vennetier et al. 2007). They may have different genetic potential, for example 662 

causing differences in water use efficiency, even though this effect of genetic differentiation may 663 

be negligible (Santini et al., 2018). 664 

At stand scale, the models predicting the percentage of declining tree (i.e., with a foliar deficit 665 

higher than 50%), and the probability of having more than 30% of declining trees model offered a 666 

higher prediction quality (R² = 0.65 and AUC = 0.88, respectively). The risk model reliably 667 

predicted dieback in successive 20% classes (Figure 7), making it operational for a direct use in 668 

the field; although a slight tendency to overestimate dieback between 20 and 80% was noted. This 669 

model seems to offer a valuable support for decision-making in forest management in a context of 670 

increasing drought recurrence and intensity.  671 

This modeling approach was designed to be continuously improved, generalized to all tree species 672 

and other pedoclimatic contexts, and enhanced by the improved quality and availability of foliar 673 

deficit data, for example at European scale (Ferretti, 2021). Another option was to make the risk 674 
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model available as an application to allow simple diagnostics in the field and make use of data 675 

collected by users, so increasing the size and diversity of the database used for calibration and 676 

validation. This would make the model more general, i.e., of use in regions where other abiotic or 677 

biotic factors are involved in the dieback process (e.g., presence of other pathogens, high 678 

competition intensity, hydromorphy; see Oliva et al., 2016 or Taccoen et al., 2021). 679 

  680 

5. Conclusion  681 

This work emphasizes the importance of taking into account the respective and interactive effects 682 

of multiple abiotic and biotic environmental factors to model tree foliar deficit and dieback. The 683 

abiotic factors cannot be reduced to the climatic conditions alone and must also include soil 684 

variables observed in the field and the local and landscape topography, which contribute to the 685 

local water balance. Finally, the abundance of biotic factors, here processionary moth and 686 

mistletoe, is of key importance to accurately predict foliar deficit and dieback of Scots pine. 687 

Considering that their potential colonization on the host pine tree is also dependent of biotic, 688 

climatic, soil and topographic factors, this study highlights the interdependencies between biotic 689 

agents and abiotic factors. 690 
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8. Appendices 1073 

Appendix A. List of variables used in the different dieback models  1074 

 1075 

Type of variable Variable Unit Scale Period

Number of 

variables Description Source
FolDef % tree 2017 1 Foliar deficit of the tree microphylls included

XStem50 % plot 2017 1 Percentage of stems per plot with at least 50% leaf loss and/or branching

DECL_XSTEM_th 0 or 1 plot 2017 3 Number of plots with Xstem50 above a given threshold (th = 20%, 25%, 30%)

%CrownVa % tree 2017 1 Percentage of crown colonized by mistletoe Field measurement

NbNestTp nb tree 2017 1 Number of nests per tree on the plot Field measurement

G_Tot m²/ha plot 2017 1 Basal area Field measurement

DBHm cm tree 2017 1 Mean diameter of Pinus sylvestris  at breast height Field measurement

Hmean m tree 2017 1 Mean height of Pinus sylvestris Field measurement

Age years tree 2017 1 Age of the tree laboratory measurement

DBHt cm tree 2017 1 Diameter of the tree t  at breast height (130 cm) Field measurement

DBHt/DBHp / tree 2017 1 Ratio of DBHt to the mean diameter of the trees growing in the same plot p Field measurement

Gs mm²/y tree 1 Mean annual basal area increment laboratory measurement

Gs20 mm²/y tree 1997-2016 1 Mean annual basal area increment for the last 20 years laboratory measurement

Gsb mm²/y tree 1997-2002 1 Mean annual basal area increment before the major climatic stress laboratory measurement

Gsd mm²/y tree 2003-2007 1 Mean annual basal area increment during the major climatic stress laboratory measurement

Gsa mm²/y tree 2008-2016 1 Mean annual basal area increment after the major climatic stress laboratory measurement

RS / tree 1 Resistance, ratio GSd/GSb laboratory measurement

RC / tree 1 Recovery, ratio Gsa/Gsd laboratory measurement

RE / tree 1 Resilience, ratio Gsa/Gsb laboratory measurement

PPI_caterpillar_r ha plot 2014 9

Area covered by pine species  (P. sylvestris, P. halepensis, P. nigra ssp nigra, P. nigra ssp laricio ) susceptible to the 

caterpillar (Thaumetopoea pityocampa ) within different radius (r ) around the center of the study plot (r  = 500 m, 1 

km, 2 km, 4 km, 6 km, 8 km, 16 km, 32 km, 64 km)

PPI_mistletoe_r ha plot 2014 9

Area covered by pine species  (P. sylvestris, P. nigra ssp nigra, P. nigra ssp laricio ) susceptible  to mistletoe (Viscum 

album sp austriacum ) within different radius (r ) around the center of the study plot (r  = 500 m, 1 km, 2 km, 4 km, 6 

km, 8 km, 16 km, 32 km, 64 km)

Tmean_m °C plot 1981-2010 12 Mean monthly temperature for the months January (m=1) to December (m=12)

Tmean_year °C plot 1981-2010 1 Mean annual temperature

Tmean_1202 °C plot 1981-2010 1 Mean winter temperature (December to February)

Tmean_0608 °C plot 1981-2010 1 Mean summer temperature (from June to August)

TX_6-8 °C plot 1981-2010 1 Mean of the maximum temperature 1981-2010 from June to August

TN_m °C plot 1981-2010 6 Mean of the minimum temperature for the months October (m=10) to March (m=3)

TN_1003 °C plot 1981-2010 1 Mean of the maximum temperature 1981-2010 from October to March

P_year mm plot 1981-2010 1 Mean annual precipitation 

P_0608 mm plot 1981-2010 1 Precipitation 1981-2010 from June to August

P_0509 mm plot 1981-2010 1 Precipitation 1981-2010 from May to September

P_0410 mm plot 1981-2010 1 Precipitation 1981-2010 from April to October

P_1103 mm plot 1981-2010 1 Precipitation 1981-2010 from November to March

PET_m mm plot 1981-2010 12 Potential evapotranspiration (Turc Formula) for the months January (m=1) to December (m=12)

PET_1003 mm plot 1981-2010 1 Potential evapotranspiration (Turc Formula) 1981-2010 October to March

PET_1004 mm plot 1981-2010 1 Potential evapotranspiration (Turc Formula) 1981-2010 October to April

PET_0410 mm plot 1981-2010 1 Potential evapotranspiration (Turc Formula) 1981-2010 October to April

PET_0509 mm plot 1981-2010 1 Potential evapotranspiration (Turc Formula) 1981-2010 May to September

PET_0608 mm plot 1981-2010 1 Potential evapotranspiration (Turc Formula) 1981-2010 June to August

PET_year mm plot 1981-2010 1 Annual potential evapotranspiration (Turc formula) 1981-2010

PET_1103 mm plot 1981-2010 1 Potential evapotranspiration (Turc formula) 1981-2010 November to March

P-PET_0608 mm plot 1981-2010 1 Climatic water balance (P-PET) 1981-2010 June to August

P-PET_0509 mm plot 1981-2010 1 Climatic water balance (P-PET) 1981-2010 May to September

P-PET_0410 mm plot 1981-2010 1 Climatic water balance (P-PET) 1981-2010 April to October

P-PET_1103 mm plot 1981-2010 1 Climatic water balance (P-PET) 1981-2010 November to March

P-ETP_year mm plot 1981-2010 1 Annual climatic water balance (P-PET) 1981-2010

ray_year J/cm² plot 1971-2000 1 Sum of annual radiation 1971-2000  DIGITALIS © AGROPARISTECH model

TNABS °C plot 1981-2010 1 lowest temperature recorded each year during the 1981-2010 period

Climatic model SAFRAN © METEOFRANCE See 2.3.2 and 

Lemaire and Pigeon 2015

SKRE_I / plot 1981-2010 1 Skre index See Equation 1 section 2.4 (Skre 1979, Dobbertin 2005)

TEI / plot Topoedaphic index Appendix A * Field measurement

Elevation m plot - 1 Elevation DEM IGN 25 m resolution

TPI_100 / plot - 1 Topographic position index in a radius of 100 m around the center of the plot DEM IGN 25 m resolution

TPI_1500 / plot - 1 Topographic position index in a radius of 1500 m around the center of the plot DEM IGN 75 m resolution

IKR / plot - 1 Radiation index of Becker 1982 Field measurement

pH_Hz_Ah / plot - 1 pH groundwater at 20 cm depth Field measurement

TWI / plot - 1 Topographic wetness index DEM IGN 75 m resolution

*All the variables necessary to calculate the TEI (Appendix 1) were also measured

Soil  and topographic 

factors

Field measurement

Database of French national land survey IGN

Target variables Y

Climatic factors

Climatic model AURELHY © METEOFRANCE 

(precipitation and temperature)

Biotic factors
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Appendix B. Temporal change in basal area increment of healthy and declining trees 1076 

 1077 

Figure B1. Temporal change in mean basal area increment of healthy (HEALTHY) and 1078 
declining (DECL) trees  1079 

 1080 

  1081 
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 1082 

Appendix C. Effect of the sub-sampling on the development of the stand dieback model  1083 

To develop the foliar deficit model at tree scale, which includes annual radial growth data from 1084 

cores, a subsample of 28 plots was selected among the 87 plots of the study, covering all the 1085 

stratification classes (see 2.2 in main text).  1086 

The absence of bias arising from subsampling was checked to ensure that this subsample of 1087 

28 plots (FolDef: mean = 51.8%, SD = 13.1%) was representative of the whole set of 87 plots 1088 

(FolDef: mean = 48.3%, SD = 11.7%). 1089 

In this way, we compared the stand dieback models constructed over the whole set of 87 plots 1090 

(see Table 1 in the main text) with this same dieback model calibrated on those 28 plots. The 1091 

significant variables retained in the two models were the same, and their non-standardized 1092 

coefficients were not significantly different (Figure B1).  1093 

   1094 

Figure C1. 95% confidence interval of centered values (standardized coefficients) of 1095 

significant variables for the stand dieback model constructed over the whole set of 87 plots 1096 

(DECL_STAND) and for the subsample of 28 plots (SUB-SAMPLE).CrownVa is the 1097 

percentage of pine crowns colonized by mistletoe per plot (% ); NbnestTp is the number of 1098 

processionary moth nests per plot; TEI is the field-based topoedaphic index.1099 
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Appendix D. Estimation of the Topoedaphic index TEI 1100 

  
UNFAVORABLE FACTORS 

NEUTRAL 

FACTORS 
FAVORABLE FACTORS 

L
a
n

d
fo

rm
 General topography 

Convex 

ridges, 

peaks and 

higher 

slopes 

-14 

Regular top 

of slope 

 

-6 
Regular 

slope 
-3 plateau 0 

Concave 

lower 

slope 

 

10 

Valley, 

thalweg 

bottom  

18 

Plot scale  

topography 
  convex -8   Flat 0 

concave 

 
8   

Former farmland Terraces       absence 0 presence 13   

Slope angle     >50% -1 <50% 0     

R
o

c
k

 

Rock outcrop (%) >30% -8 ]10-30%] -3 [1-10%] -1 0% 0     

Stone cover at soil surface 

(%) 
  >30 -3 [10-30%[ -2 [1-10%[ 0 0 2   

Dip angle vs slope     unfavorable -1 neutral 0 favorable 1   

Joints and cracks through 

rock layers (per m) 
    <5 -2 5-15 0 > 15 3   

M
a
te

ri
a
l 

Reference material 
Mother 

rock 
-4 alterite -2 lapiaz -1   colluvium 5   

Earth reaction to HCl     strong -2 weak 0 none 3   

Hard rocks coarse 

fragments in soil 
>90% -7 [60-90%[ -3   [30-60%[ 0 <30% 4   

Horizontal imbricated 

alterite plates 
  presence -6   absence 0     

Fine earth Water Holding 

Capacity (mm/cm)* 
< 0.7 -10 ]0.7-1.3] -3   ]1.3-1.6] 0 ]1.6-1.95] 2 >1.95 10 

D
e
p

th
 Colluvium thickness (cm)   absence -2 [5-20] -1 [25-50] 0 >50 3   

total depth (cm) [0-22.5[ -12 [22.5-47.5[ -5   [47.5-75[ 0 [75-100] 5 >100 10 

Mean depth 5 auger tests 

(cm) 
    [0-20] -2 ]20-40] 0 ]40-75] 2 >75 3 

 

 

Topoedaphic Index (TEI) =  +  +  +  +  +  
 1101 

Table D1. Description of the determination of the topoedaphic index (TEI) according to 1102 

field-based topography, bedrock, soil material, and soil depth variables. The plot TEI is 1103 

obtained by adding the coefficients (grey columns) corresponding to each variable. More 1104 

details are available in Vennetier et al. (2018), especially concerning the relationship 1105 

between Water Holding Capacity and fine earth texture. 1106 

  1107 
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Appendix E. Choice of Xstem50 threshold 1108 

Three thresholds in Xstem50 were tested during the development of the risk model 1109 

corresponding to values published in the literature: 20% (DGAL, 2018), 25 % (Linares and 1110 

Camarero, 2012), and 30% (Brunier et al., 2020).  1111 

Based on comparisons of the confusion matrix and the AUC, the threshold that best 1112 

discriminated stands with and without dieback was 30% (Table D1). 1113 

 1114 

XSTEM50% 
AIC 

Misclassed 

on 87 plots 
Chi2_Pearson 

RSS R
2
Y AUC 

Error 

rate 

20% 

     

  

Nb_Comp_1 
88.79 24 70.86 14.24 0.30 0.830 27.6% 

25% 

     

  

Nb_Comp_1 77.6 21 71.23 12.28 0.43 0.877 24.1% 

30% 

     

  

Nb_Comp_1 
77.48 19 73.53 12.11 0.44 0.882 21.8% 

Table E1. Comparison of the performance of the risk models with different Xstem50 1115 

thresholds. AIC is the Akaike Information Criterion, RS the residual sum of squares, R²Y the 1116 

coefficient of determination, AUC the Area Under the receiver operating characteristics 1117 

Curve. 1118 

 1119 

  1120 
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Appendix F. Tree age and DBH distribution 1121 

 1122 

 

 

 

Figure F1. Distribution in age of the trees cored (n = 402; Left) and in diameter at breast 

height (DBH) of all trees measured (n = 1440; Right). 

 

 1123 
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Appendix G. Abundance of mistletoe and pine processionary moth 1125 

 1126 

 

 

Figure G1. Distribution of percentage of crown colonized by mistletoe (CrownVa%) 

measured and pine processionary moth nests (NbnestTp) for 1740 trees 

 

 1127 
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Appendix H. Differences in mean foliar deficit among stratification classes  1129 

 1130 

 1131 

Figure H1. Differences in tree foliar deficit (FolDef, %) between each combination of class 1132 

of elevation (<1200m; >=1200m), IKR (HOT, NEUTRAL, COLD) and topoedaphic index 1133 

(TEI; FAVORABLE, NEUTRAL, UNFAVORABLE). Rectangles delimit two central quartiles 1134 

separated by the median. Groups sharing the same letter did not differ significantly (Nemeyi 1135 

test; p < 0.05). 1136 

 1137 


