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Abstract 

Combination of electro-Fenton (EF) process with other advanced oxidation processes (AOPs) 

is found very much effective for water and wastewater treatment. The combined processes 

including sono-EF (SEF), photo-EF (PEF), electro-peroxone, ferrate-EF and EF combined with 

persulfate oxidation allow enhancing the mineralization efficiency of treatment as well as 

reducing operational cost and toxicity of treated wastewater. Even though, there are several 

advantages in combined processes, they also present some disadvantages such as increased side 

reactions, increased energy requirement etc., which are challenges to overcome.  

 

Keywords: Electro-Fenton; Advanced oxidation processes; Combined process; Hydroxyl 

radical.  

 

1. Introduction 

Even though electro-Fenton (EF) process has several advantages like its capability to generate 

hydrogen peroxide in-situ, higher mineralization efficiency, enhanced ferrous ion regeneration 

capacity and lesser catalyst requirement; the disadvantages like longer time requirement for 

complete mineralization of pollutants, scaling up issues, passivation of electrodes etc. made a 

barrier for its real field implementation [1–6]. Another drawback of EF process is related to the 

acidic pH (pH 3) requirement for its effective performance. A few heterogeneous catalyst was 

found much effective even in neutral pH [7]. However, electrolytic generation of hydrogen 

peroxide at neutral pH is a challenging task, as proton is needed for the two-electron reduction 

of oxygen and subsequent generation of hydrogen peroxide. Therefore, in general, higher 

mineralization rates in EF process are achievable at acidic conditions and neutralization of EF 

treated effluent is needed for further treatment or its discharge.  
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Several modified versions of EF process like photo-Fenton, peroxicoagulation, and anodic-

Fenton were tested to solve the issues associated with EF process [2,8–10]. However, the 

drawbacks of EF process are marginally solved by these modified processes. Another method 

to improve the performance of the EF process is to combine it with other advanced oxidation 

processes (AOPs). Thus, the process efficiency can be improved in terms of pollutant 

degradation kinetics, mineralization efficiency, biodegradability enhancement, toxicity 

reduction etc. Passivation of electrodes can be reduced by combing with sonochemical 

processes [11].  

The present article, analyse the performance of EF process in combination with other AOPs. 

Performance enhancement is detailed along with advantages and disadvantages of combined 

systems.  

 

2. Coupling EF process with different AOPs 

Implementation of the EF process requires [4,12]: 

 suitable cathode material for H2O2 formation and Fe3+ reduction to Fe2+ ; 

 a homogeneous (dissolved in the bulk) or heterogeneous (solid) iron source ; 

 pH adjustment, particularly for homogeneous EF (optimal pH is 3) ; 

 current supply. 

Several combinations have then been investigated for promoting the removal of organic 

compounds. The idea is based on the establishment of suitable operating conditions for the 

implementation of another AOP in the same reactor. The objective is to increase the production 

of oxidant species (to enhance degradation/mineralization efficiency) or reduce energy 

consumption (to enhance cost effectiveness) in such a hybrid reactor. 
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The choice of the anode material offers a first opportunity. For example, non-active materials 

such as BDD or TiOx materials allow for production of large amounts of hydroxyl radicals from 

water oxidation at the anode surface [13–15]. Using porous anode materials in flow-through 

configuration also provides solutions for improving mass transport conditions [16].  

Addition of suitable chemical reagents gives the opportunity to enhance the formation of 

oxidant species. Ferrate (FeVI), a powerful oxidant, was recently used as an iron source (instead 

of conventional FeII or FeIII) for the EF process (EF-FeVI) [17]. Addition of sulfite or persulfate 

and subsequent electrochemical activation is another way to generate oxidant species such as 

SO4
•‒, SO3

•‒ and •OH [18–20]. Sulfite is able to accelerate the regeneration of Fe2+ [21]. 

Introduction of O3 also improves the oxidation of organic compounds through the electro-

peroxone process via reaction of O3 with H2O2 [22]. 

Using irradiations from artificial or solar light allow for implementation of various processes 

linked to the EF processes. The (solar) photo-EF (PEF) process is based on the use of UV 

irradiations for promoting the formation of •OH and the regeneration of Fe2+
 through (i) rupture 

of the metal-carboxylate ligand bond, (ii) photodecarboxylation of Fe(III)-oxalate complexes, 

(iii) photoreduction of Fe(OH)2+ and (iv) photolytic rupture of H2O2 [9,23]. Addition of a 

photocatalyst (e.g. TiO2) has been investigated for implementation of the photocatalytic EF(EF-

PC) process [9,24]. Development of photo-anodes by coating a semiconductor photocatalyst on 

a conductive support allows for implementing the photoelectrocatalytic EF (EF-PEC) process 

[9,25,26], which is the focus of a great attention over the last few years [27]. 

Ultrasound irradiation is another way to improve the EF process (SEF) efficiency, owing to (i) 

formation of additional •OH from water by cavitation, (ii) faster regeneration of Fe2+ from Fe-

O2H2+ and (iii) mass transport enhancement [28–30]. 
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3. Performance of EF process coupled with other AOPs  

Coupling between the EF process and other AOPs always can enhance degradation/ 

mineralization efficiency, reduce solution toxicity and operational cost compared to EF alone 

due to the enhanced generation of oxidants (mainly OH), which accelerate the degradation and 

mineralization of the contaminants and reduce treatment time [3,4,10,31]. For example, the 

apparent rate constant (kapp) for the degradation of erythrosine B dye at 20 mA cm‒2 was 

reported to be 0.2461, 0.5222 and 0.4539 min‒1 for EF, PEF (100 W) and SPEF (570 W m‒2) 

after 2 h of treatment [32]. Degradation rate of 0.076 and 0.322 min‒1 and total organic carbon 

(TOC) removal of 37% and 65% were observed for EF alone and SPEF, respectively, during 

treatment of 50 mg L‒1 of amoxicillin at 150 mA cm‒2 [33]. UVA-PEF treatment of bezafibrate 

showed higher degradation (92%) compared to visible-light PEF (55%) and EF (42%) owing 

to higher absorbance of Fe catalyst within UV region [34]. EF-sulfite showed enhanced 

degradation of anthracene, achieving 85.9% degradation compared to 75.3% obtained in EF 

alone [18] and carbamazepine, 100% compared to 83.7% observed in EF alone [19]. Enhanced 

degradation was observed during EF-persulfate treatment of cefotaxime (100%) [35], and 

diclofenac (96.3%) [20]. PEC-EF always perform better than either photocatalysis or EF alone 

[36,37]. The kapp for the degradation of amaranth were 0.157, 0.171 and 0.211 h‒1 for PEC, EF 

and PEC-EF respectively [38]. The degradation kinetics of triphenyltin chloride was observed 

to follow the sequence PEC-EF (0.274 min‒1) > PEF (0.219 min‒1) > PEC (0.011 min‒1) [25].  

The effluents treated by coupled processes PEF, SPEF, PEC-EF and EF-persulfate always have 

reduced toxicity compared to EF treatment alone because of the enhanced degradation and 

mineralization of pollutants by the coupled technologies. For example, EF-persulfate treated 

fruit processing wastewater exposed to Daphnia magna showed increased EC50 (48 h) from 

17% (5.8 TU) to 20.4% (4.9 TU) for EF compared to 28.9% (3.5 TU) obtained with EF-

persulfate at 50 mA cm‒2 [39]. 
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Coupled EF-sulfite/persulfate requires does not require additional energy to EF other than 

chemical cost. Lower energy consumption was always observed for PEF, SPEF PEC-EF 

compared to EF, but the operating cost of PEF and PEC-EF is always higher owing to the cost 

and energy consumption of the lamps. The energy consumption during treatment of acid blue 

29 by EF and SPEF were 257 and 57 kWh (kg TOC)‒1, respectively [40], whereas the PEF 

treatment of brown HT dye using UVA lamp with wavelength of 365 nm (75 mW cm-2)  

requires 225 kWh (kg COD)‒1, thus, not much suitable for large-scale applications, even the 

process has significant additional dye removal efficiency than EF, electrochemical oxidation 

and ozonation [41]. SPEF has lower energy/cost requirement because of abundant and 

availability of sunlight as natural energy source. 

 

4. Advantages of coupling EF with other AOPs 

The combination between EF and other AOPs can bring interesting synergies and therefore 

provides some advantages. It can enhance the treatment efficiency of wastewater treatment by 

increasing the number of •OH active sites within the reactor, and can generate other strong 

radicals (SO4
•‒, Cl•, etc.) that contribute additional removal of organic pollutant [9,42]. 

Moreover, an increase of regeneration rate of Fe(II) from photoreduction of Fe(III) in SPEF has 

been established [23,43], which not only permit to increase the •OH production, but also allows 

reducing the amount of sludge generation and the associated management cost [44,45]. 

Furthermore, the flexibility of electrochemical systems [46] allows combining EF with AOPs 

in single hybrid reactor [24,43], which decrease the footprint and promote synergies of 

reactions. The fact that the working electrode is the cathode in EF process [47], the anode can 

also favor reactions according to their properties [48]. For instance, using transparent anode 

which allows the passage of UV radiation go through the material and interact both with anode 

surface and bulk solution following photoelectrocatalysis mechanisms [24,49].  
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In the meantime, such coupling could modify operating and capital costs; therefore, a cost 

feasibility study is required when comparing these combinations in order to determine the 

optimal cost-effective conditions [44]. A significant rise of cost with the coupling could 

represent drawbacks, which are discussed in the following section. 

 

5. Disadvantages of EF coupled with AOPs: Side reactions and non-radical pathways 

During the coupling of EF with other AOPs, the excess of certain chemicals entails side 

reactions consuming the oxidant species in detriment of pollutant degradation. Such undesired 

effects are exacerbated when several chemicals/oxidant promoters are combined in the same 

reactor. The main side reactions affecting EF efficiency are related to the excess of Fe2+ and/or 

H2O2 consuming OH according to Eqs. 1 and 2, respectively. Additionally, high current 

densities are known to affect the degradation/mineralization efficiency due to further H2O2 

reduction to H2O (Eq. 3) and the evolution of H2 (Eq. 4) [4]. When EF is combined with anodic 

oxidation (EF-AO) using non-active anodes (BDD, TiOx…), the degradation efficiency is also 

decreased at high current densities due to O2 evolution entailed by recombination of surface 

•OH (Eq. 5), and H2O2 anodic decomposition (Eq. 6) [50,51]. In the case of the combined EF-

sulfite and EF-persulfate processes, the excess of H2O2 can consume OH and SO4
‒ (Eq. 1 and 

7, respectively), decreasing the degradation efficiency [18,19]. Excessive amounts of SO3
2‒ in 

EF-sulfite can also be detrimental for •OH availability (Eq. 8). In the case of the EF-persulfate 

process, the excess of S2O8
2‒ can entail waste reactions as well, reducing the amount of oxidants 

available for pollutant degradation. Such reactions include the consumption of SO4
- by S2O8

2‒ 

(Eq. 9) and the recombination of SO4
‒ (Eq. 10) once such radicals are formed by Fe2+ activation 

of S2O8
2‒ (Eq. 11). The surplus of Fe2+ also reduces the amount of SO4

‒ according to the waste 

reaction of Eq. 12 [20]. Accordingly, the experimental conditions of combined approaches must 
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be carefully optimized to obtain the highest degradation/mineralization efficiencies avoiding 

parasitic reactions. Advantages and disadvantages of various EF coupled with AOPs are 

provided in Table 1. 

H2O2 + OH  H2O + O2
‒ + H+    (1) 

Fe2+ + OH  Fe3+ + OH‒     (2) 

H2O2 + 2H+ + 2e‒  2H2O      (3) 

2H+ + 2e‒  H2      (4) 

2BDD(•OH)  2BDD + O2 + 2H+ + 2e‒   (5) 

H2O2  O2 + 2H+ + 2e‒     (6) 

H2O2 + SO4
‒  HO2

 + SO4
2‒ + H+    (7) 

SO3
2‒ + •OH  SO3

•‒ + OH‒     (8) 

S2O8
2‒ + SO4

‒  SO4
2‒ + S2O8

‒    (9) 

SO4
‒ + SO4

‒  S2O8
2‒     (10) 

S2O8
2‒ + Fe2+  Fe3+ + SO4

2‒ + SO4
‒   (11) 

SO4
‒ + Fe2+  Fe3+ + SO4

2‒     (12) 

Regeneration of catalyst is a major concern in all the AOPs. The catalyst used in AOPs may 

affect the efficiency of subsequent process or it may be a threat to the environment, if it is 

discharged. Hence, recovery and reusability of catalyst used in all AOPs is a critical parameter 

for its practical application. 
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6. Conclusions 

Combination of EF process with other AOPs is an effective way of pollutant removal in terms 

of oxidative degradation/mineralization efficiency, biodegradability enhancement and toxicity 

reduction. Even though, the combined system has several advantages, a few disadvantages such 

as improvements in the rate of side reactions, increase in the process cost (in a few systems), 

and promotion of non-radical pathways (in a few systems) etc., constitute the challenges. 

Overall, the combined systems provide better results than individual AOPs. However, more 

studies in higher scales are needed for understanding the real issues before their implementation 

in the real field.  
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Table 1: Main combined EF-AOPs: Main reactions, advantages and challenges  

 

Combined process Main reactions Advantages Challenges Refs. 

EF-Anodic oxidation 

(EF-AO) 

Cathode: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + e-  Fe2+ 

 

Anode: 

M + H2O  M(•OH) + H+ + e- 

 

Bulk solution: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

- Production of OH at the 

cathodic and anodic sides for 

enhanced pollutant degradation 

and higher mineralization 

current efficiency. 

- High mineralization yields. 

 

- High cost of BDD, the most 

powerful material for AO. 

- Lack of powerful anodes for 

AO available in the market, 

others than BDD. 

- Formation of ClO3
- and 

ClO4
- at the anode 

[50] 

EF-Ferrate (EF-FeVI) Cathode: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + e-  Fe2+ 

 

Bulk: 

FeVI–mediated oxidation and formation 

of reduced form of Fe  

H2O2 + Fe2+  •OH + Fe3+ + OH- 

- Pre-oxidation of organic 

compounds using FeVI as iron 

source 

- Reuse of reduced forms of FeVI 

for EF process 

- Lower treatment time (faster 

degradation) 

- Cost of FeVI [15] 
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EF-Sulfite Cathode: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + e-  Fe2+ 

 

Anode: 

SO3
2− → SO3

•- + e− 

 

Bulk solution: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + SO3
2−  SO3

•- + Fe2+ 

SO3
•- + O2  SO5

•- 

SO5
•- + HSO3

-  HSO5
- + SO3

•- 

Fe2+ + HSO5
-  Fe3+ + SO4

•- 

SO5
•- + SO3

2−  SO5
2− + SO3

•- 

SO5
•- + SO3

2−  SO4
•- + SO4

2− 

SO5
•- + SO5

•-  2SO4
•- + O2 

- Production of SO4
•- to enhance 

pollutant degradation. 

- Wide pH range of operation. 

- SO3
2- is inexpensive and 

nontoxic. 

- SO3
2- is transformed into SO4

2- 

after treatment. 

- Side reactions decreasing 

efficiency when high SO3
2- 

doses are used. 

- Higher concentration of 

SO4
2- after treatment (that 

can require post-treatment 

in certain cases) 

[18,19] 

EF-Persulfate Cathode: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + e-  Fe2+ 

S2O8
2- + e-  SO4

2- + SO4
•- 

- Selective SO4
- are produced to 

enhance pollutant degradation. 

- Possibility to operate the 

system at wider pH values. 

- Occurrence of several 

undesired reactions 

reducing the efficiency, 

[20] 
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Bulk solution: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

S2O8
2- + Fe2+  Fe3+ + SO4

2- + SO4
•- 

 

Anode : 

SO4
2-  SO4

•- + e- 

SO4
•- + SO4

•-  S2O8
2- 

S2O8
2- + •OH  SO4

•- + HSO4
- + 0.5 O2 

Non-radical activation of S2O8
2- 

 

 

- Possibility to form persulfate 

from SO4
2- at suitable anode 

material 

- High availability of persulfate 

salts. 

especially in real 

wastewater matrices. 

- Cost of persulfate salts. 

- Higher concentration of 

SO4
2- after treatment (that 

can require a post-treatment 

in certain cases) 

Photoelectro-Fenton – 

Photoelectrocatalysis 

(PEF - PEC) 

Cathode: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

Fe3+ + e-  Fe2+ 

 

Photoanode: 

semiconductor + hv  eCB
- + hVB

+ 

hVB
+ + RX  RX•+ 

hVB
+ + H2O  •OH + H+ 

 

- Enhanced regeneration of Fe2+ 

- Production of •OH at the 

cathodic and anodic sides for 

enhanced 

degradation/mineralization 

current efficiency (PEC). 

- High mineralization rates due 

to multiple electrochemical 

and photochemical reactions. 

- Photoanodes are not 

commercially available 

(PEC). 

- Need for development of 

efficient and scalable 

photoanodes (PEC). 

- Need for visible-light-active 

photoanodes (PEC). 

[25,52] 
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Bulk solution: 

H2O2 + Fe2+  •OH + Fe3+ + OH- 

[Fe(OH)]2+ + hv  Fe2+ + •OH 

Fe(OOCR)2+ + hv → Fe2+ + CO2 + •OH 

H2O2 + hv  2•OH 

 

- The external potential reduces 

hVB
+/eCB

- recombination for 

higher degradation efficiency 

(PEC). 

- No need for separation of the 

photocatalyst since it is 

supported in a conductive 

material forming the 

photoanode (PEC). 

- Possibility to use solar light 

with solar active photoanodes 

(PEC). 

- Need for development of 

large-scale photoreactors. 

- Intermittent solar irradiation 

/ cost of artificial light 

irradiation 

 


