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Abstract 

In this work, we demonstrate nonreciprocal acoustic wave transmission in a two cascaded 
Fabry-Perot like slab resonators undergoing time modulation of their effective density. Phase 
difference is introduced in the time modulation between the two coupled resonators to produce 
spatial bias in order to access unidirectional wave propagation. A theoretical model based on 
plane wave expansion and transfer matrix method is developed to study the Fabry-Perot-based 
system. The theoretical model allows rapid and precise characterization of the acoustic 
dispersion, with results in excellent agreement with finite element based numerical 
simulations. We demonstrate acoustic nonreciprocity behavior for the fundamental acoustic 
mode, and further show that with proper optimization, the coupled Fabry-Perot based device 
can achieve nonreciprocal acoustic frequency conversion. This work could inspire designing 
simple and compact nonreciprocal acoustic devices for efficient wave control. 
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I. Introduction 

During the last decade, a growing area of research is concerned with the possibility of breaking the 
reciprocity for waves to realize unidirectional wave propagation. Particularly, an acoustic 
nonreciprocal device, that enables one-way transmission of sound, is highly desirable for numerous 
technological applications such as unidirectional sound barrier, improved medical ultrasound 
devices, and SAW based communication systems [1,2]. Reciprocity is a fundamental property of 
wave phenomena in any linear time-invariant system [3,4]. It can only be broken using proper 
biasing of space or time quantities, meticulously introduced into the propagation medium. Various 
systems were constructed to achieve acoustic nonreciprocity and demonstrate different wave 
behaviors in opposite propagation directions. Early attempts for an acoustic nonreciprocity 
realization were successfully conducted by combining nonlinear medium with a phononic crystal 
(PC) [5,6]. Later-on, geometrical design strategies were proposed to achieve asymmetric wave 
dispersion, though these systems do not break reciprocity but rather affect the waves packets 
path [7,8]. The P-T symmetry can also lead to asymmetric wave reflection by introducing loss and 
gain elements in a linear waveguide [9]. 

An exotic way of achieving nonreciprocity is the application of space-time modulated (STM) 
mediums in order to break the time reversal symmetry. The idea was proposed in 1959 in photonics 
and electrical circuits, where permittivity, permeability or impedance is harmonically modulated 
both in space and time to create unidirectional band gaps for waves [7–9]. The medium can be seen 
as keeping its intrinsic properties spatially modulated and moving at a certain velocity. This thus 
breaks the time reversal, allowing different dispersions of waves traveling in opposite directions 
along the same path. This route, however, faded until this last decade where researchers 
reinvigorated their interest on the realization of such space time modulated systems, all thanks to 
the technological progress in fabrication and characterization [13–19]. Drawing inspiration from 
photonics, multiples STM based designs were proposed in acoustics [20–23] and 
elastodynamics [24–29]. In those designs, the mechanical properties of the designed mediums 
where varied both in space and time to achieve nonreciprocity. Besides, acoustic circulator [30] 
was proposed as a nonreciprocal device, which contains circulating flow insides three ports to break 
the time reversal.  

However, in most of the works applied to classical waves and especially in acoustics, the physics 
of nonreciprocity is based on shifting the Bragg bandgap in the frequency domain for opposite 
directions to prohibit wave propagation unidirectionally [24–26]. This mechanism was achieved 
by spatiotemporally modulating the effective parameters of the constituent materials (stiffness) 
along several periods of the structure (at least 10 periods). Consequently, the periodic parts of the 
system have to be precisely synchronized which makes the experimental realization quite 
challenging, and thus limit the device practicability. For instance, in acoustics, although 
dynamically changing the effective density of air is locally possible [31], a precise harmonic 
modulation in both space and time along several periods remains challenging. In contrast, 
nonreciprocity based on STM becomes relatively accessible in elastodynamics by modulating the 
effective stiffness of the material [26–28]. However, this process involves introducing piezoelectric 
elements connected to electrical circuits to introduce effective negative capacitance with the 
complexity of synchronizing the modulations. The whole nonreciprocal device becomes 



cumbersome, limiting practical applications in the future. Besides, systems such as coupled 
modulated Helmholtz resonators [32], air cavities [21], membranes [22], and even Fabry–Perot 
based photonic slabs [33] inspired us for a simple design compared to the aforementioned systems. 
For instance, Shen et al. [32] showed that using two cascaded time-modulated Helmholtz 
resonators (HR), nonreciprocal wave behavior can be realized via frequency conversion with high 
order modes appearing differently for positive and negative propagation. However, nonreciprocity 
is achieved far from the resonance frequency of the HR as the wave is completely reflected at this 
frequency. Under this restriction, the fundamental mode with the frequency of the incident wave is 
always accompanied with high order modes in the transmission whatever the direction of 
propagation is. Nevertheless, the choice of cascaded slabs is more advantageous since it allows 
high wave transmission at the Fabry–Perot resonance. Consequently, the slabs-based-system has 
the potential to create the situation of unidirectional wave conversion for instance, hence offering 
more control over nonreciprocity via mode conversion. 

In this work, we demonstrated nonreciprocal acoustic transmission in a finite system based on 
coupled Fabry-Perot resonators with time modulation of their effective properties. A good 
nonreciprocity is achieved in our system with a quasi-lossless transmission in one direction and a 
nearly-zero transmission of the fundamental mode in opposite direction. In contrast to the previous 
works that used Bragg band gap combined with modulating the effective parameters of the 
materials along several periods of the structure, our system is composed of two coupled fluid slabs 
that behave as coupled Fabry-Perot (FP) resonators whose density, however, is temporally 
modulated. A spatial bias is introduced to realize nonreciprocal wave propagation by forcing a 
phase difference on the time modulated density between the two slabs. This kind of modulation 
could be easily achieved by periodically compressing the fluid for instance [31,34]. In such design, 
the physical mechanism is mainly based on frequency conversion where the acoustic energy is 
transferred from the fundamental mode into higher order ones  [35,36]. 

The plane wave expansion (PWE) method [37] is first adopted to construct the scattering matrix 
describing the system, which analytically solves the acoustic transmission. The analytical result 
matches well with the finite-element-method (FEM) simulation results. Then, we took advantage 
of this model to seek for parameters and configurations that yield a good nonreciprocity. 
Furthermore, under the premise of high nonreciprocity, we also discussed the possibility of 
unidirectional frequency conversion. The latter is an important wave phenomenon that enables 
generating waves at desired frequencies from an incident wave at different frequencies. Recently, 
the application of frequency conversion is expanded to acoustic domain, such as directional 
loudspeakers and nondestructive evaluation [38,39]. 

II. Design and theory 



 
Figure 1. Schematic of a single-slab (a) system and a two-cascaded-slab (b) system with time modulated 

effectives densities. Harmonics appear in the transmitted and reflected waves due to the modulation. 

We first considered an adiabatic single slab resonator as shown in Fig.1. The background medium 
is air, whose density is 𝜌! and sound speed is 𝑐!, with bulk modulus 𝜅! = 𝜌!𝑐!". The thickness of 
the slab resonator is 𝑑. The medium of the slab resonator is a fluid whose static density is higher 
than air. In this model, we assume that the density of the slab can be modulated in time: 𝜌# =
𝛿𝜌![1 + 2 ∙ 𝑀 𝑐𝑜𝑠(Ω𝑡 + 𝜙)]. As we consider the bulk modulus to be fixed throughout all this study 
(𝜅! = 141.2𝑘𝑃𝑎), the speed of sound in the slab resonator is consequently modulated as 𝑐# =

:𝜅! 𝜌#⁄  which yields 𝑐# = <𝜅! =𝛿𝜌!(1 + 2 ∙ 𝑀 𝑐𝑜𝑠(Ω𝑡 + 𝜙))>⁄ . Without temporal modulation, 

the static speed of sound in the slab resonator is 𝑐#$ = 𝑐! √𝛿⁄ .  

In practice, this kind of modulation can for instance be achieved by driving a piston with rotating 
elements to induce changing compression in time. Here, 𝛿  is the static density ratio, 𝑀  is the 
modulation depth, Ω is the angular frequency of modulation, and 𝜙  is the initial phase of the 
modulation. Considering a forward incident wave at an angular frequency 𝜔 , and using the 
Floquet-Bloch theorem, the acoustic pressure and the particle velocity fields in the slab yield, 

𝑝(𝑥, 𝑡) = D 𝑝%(𝑥)𝑒&(()%*),	
).

%/0.

(1) 
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where 𝑝%(𝑥) and 𝑣%(𝑥) are the Fourier components of the pressure and velocity, respectively, in 
the time domain for both forward and backward propagating waves. The time modulated density 
can be rewritten in the same way, 

𝜌#(𝑡) = 𝛿𝜌! D 𝜌H%𝑒&1*,	𝑒&2!
).

1/0.

(3) 

According to the adopted harmonic modulation for 𝜌#, we have here 𝜌H! = 1, 𝜌H±# = 𝑀 , and  𝜌H1 =
0	for 𝑚 ≠ 0,±1, and 𝜙±# = ±𝜙. By substituting Eqs. (2) and (3) into the known acoustic equation 
𝜕4𝑝 = −𝜌(𝑡)𝜕,𝑣, we get the following relation, 

(b)(a)
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Then we develop Eq. (4) by combining the two summations, 

𝜕𝑝(𝑥, 𝑡)
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By eliminating the index script 𝑚 by replacing it with 𝑛 − 𝑛5, we can develop Eq. (5) into the 
following equation, 

𝜕𝑝(𝑥, 𝑡)
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By substituting Eq. (1) into Eq. (6) and using the orthogonality of =𝑒&%*,>
%

,  we have, 
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The time dependent term 𝑒&(, is eliminated. 

Substituting Eqs. (1), (2) and (3) into the known acoustic equation 𝜕4𝑣 = −𝜅!0#	𝜕,𝑝 and following 
the same steps as above, we get, 
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1
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After further developments by defining a new variable 𝜉 = 𝑥Ω 𝑐#$⁄  , Eq. (7) and (8) become, 
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and  
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where 𝑍#$ = 𝛿𝜌!𝑐#$ is the static impedance in the slab. 

Thus, a series of first order partial differential equations is constructed based on Eqs. (9) and (10), 
which depends on the number of decompositions 𝑁 we adopt to approximate the solution, 
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where 𝒑< = ⟨𝑝0< , … , 𝑝!, … , 𝑝<⟩> , 𝒗< = ⟨𝑣0< , … , 𝑣!, … , 𝑣<⟩> , 𝑨; = ^ 0 𝑨;
?
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matrix and the subscript 𝑠 indicates the domain index. For example, in Fig.2, 𝑠 = 1 refers to the 
slab resonator and 𝑠 = 2 refers to the next air medium in contact. 𝑨;

?  and 𝑨;@  are both square 
matrices with size 2𝑁 + 1, 
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where 𝛿%0%" is the Kronecker function. As 𝑨; is function of 𝜉, Eqs. (11) have a solution in this 
form, 
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where 𝑽;,A
±  and 𝜆;,A

±  are the 𝑖,C eigenvector and eigenvalue associated to the matrix 𝑨; respectively, 
corresponding to forward/backward wave propagation associated with the layer 𝑠 , 𝑪;,A

±  are 
unknown coefficients which correspond to wave amplitudes. By considering the boundary 
conditions (continuity of pressure and velocity) between the layers in contact labeled s and s+1, 
and performing some algebraic manipulations, we can easily obtain the transfer matrix 𝑴;→;)# 
which is defined by, 

^𝑪;)#
)
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𝑪;0
a (15) 

And the definition of 𝑪;± is explained in Fig.2. 𝑴;→;)# can be developed from equation (14) and 
the boundary conditions, 
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the thickness of layer 𝑠, 𝑐; is the speed of sound in layer s. 

 
Figure 2. Schematic of the transfer matrix 𝑴!→!#$ between layers. 𝑪!± is the complex amplitude of 

forward/backward wave at the right boundary of layer 𝑠. 



From Eq. (15), we constructed the transfer matrix M describing the complete system presented in 
Fig.2, 

𝑴 =q𝑴(G0A)→(G)#0A)

G

A

(17) 

The above solution is based on PWE and the precision of the solution is related to the considered 
number 𝑁 of plane waves. In our work, the convergence of the result is guaranteed with 𝑁 ≥ 4. 
Finally, we obtained the scattering matrix 𝑺 from the transfer matrix 𝑴 (see Appendix 1).  

Using the vector describing the incident wave of positive direction 𝑱) = ⟨𝛿< , … , 𝛿!, … , 𝛿0<|𝑶<⟩>, 
we can deduce the corresponding reflection and transmission coefficients, 𝛿% is Kronecker function, 

v𝒓
<,)

𝒕<,)
y = 𝑺 ∙ 𝑱) (9) 

where 𝒓<,) = 〈𝑟<), … , 𝑟!), … , 𝑟0<) 〉>  and 𝒕<,) = 〈𝑡<), … , 𝑡!), … , 𝑡0<) 〉> . Similarly, the reflection and 
transmission coefficients for negative incidence can be obtained using the vector associated to 
negative incident wave: 𝑱0 = ⟨𝑶<|𝛿0< , … , 𝛿!, … , 𝛿<⟩>, 

v𝒕
<,0

𝒓<,0
y = 𝑺 ∙ 𝑱0 (19) 

where 𝒕<,0 = 〈𝑡<0, … , 𝑡!0, … , 𝑡0<0 〉>  and 𝒓<,0 = 〈𝑟<0, … , 𝑟!0, … , 𝑟0<0 〉>  are the corresponding 
transmission and reflection coefficients, respectively. 

These equations allowed us to evaluate the transmission and reflection coefficients for each 
frequency order. We have performed a series of calculations using our theoretical model to 
determine the optimized design that enables unidirectional propagation and frequency conversion. 
The involved parameters for our optimization process are the incident angular frequency 𝜔, the 
modulation frequency Ω , the static density ratio 𝛿  and the phase difference between the 
modulations of the slabs Δ𝜙 = 𝜙# − 𝜙". 

 
III. Results and discussion 

III.1 Single slab resonator 

In the present study, the considered intrinsic parameters for air at ambient temperature are: 𝜌! =
1.2 𝑘𝑔 𝑚H⁄  and 𝑐! = 343𝑚 𝑠⁄ . Since the acoustic equations are linear in this study, we considered 
normalized incident frequency 𝐹A% = ω (2𝜋	𝑓I$)⁄   and normalized modulation frequency 	𝐹1 =
Ω (2𝜋	𝑓I$)⁄ , where 𝑓I$ = 𝑐#$ (2𝑑⁄ )  is the resonance frequency of the slab without temporal 
modulation. 



 
Figure 3. Transmission through a single time modulated slab. (a) Calculated transmission in the static case 

(black solid line) and transmission components |𝑡&| for the 𝑖'( order up to the second order. The 
modulation frequency in this case is 𝐹) = 1.12. (b) Transmission spectrum for an incident 

monochromatic wave at frequency Fin=10.5. Blue solid curve stands for the spectrum obtained from time 
dependent finite element simulation (FEM), while red flat marks stand for theoretically predicted 

transmission coefficients for the 0th, ±1st and ±2nd orders (TMM). 

Figure 3 shows the transmission results for the case of  𝛿 = 5, 𝐹1 = 1.12 and 𝑁 = 5. In such 
configuration, since the modulation rate is relatively low, the conversion from the fundamental 
mode to higher order harmonics (|𝑛| ≥ 3) can be omitted. So only 𝑛 = 0,±1,±2 are shown in the 
figure. Fig. 3(a) displays the transmission curves for the static case without modulation (black 
curve) and the transmission coefficients for the temporally modulated slab for orders 𝑖 = 0,±1,±2 
as function of the incident frequency. We can see that under temporal modulation, part of the 
energy of the fundamental mode is converted to higher orders modes located at 𝐹&* ± 𝑛𝐹) . It 
indicates that if the system is properly tuned, the frequency conversion could be stronger, then the 
nonreciprocity is possible with some spatial bias involved. Further, we confronted these results 
with numerical ones from simulations based on finite elements (FE) method via the commercial 
software COMSOL Multiphysics v5.5. The comparison is shown in Fig. 3(b) for the chosen case 
of the monochromatic incident wave with frequency 𝐹A% = 10.5. Because of the existence of time-
varying parameters, the FE simulations were performed in the time domain. The length of input 
signal has to be much longer than the modulation period 𝑇1 = 2𝜋 Ω⁄  in order to guarantee the 
stability and accuracy of the result. In Fig. 3(b), the response of the time modulated slab is analyzed 
via Fourier transform. Good agreement between theory (flat symbols) and simulation (blue solid 
lines) was observed.  

III.2 Bilayer slab resonator 

As shown in Fig.1 (b), spatial bias is introduced into the system by adding a second time-modulated 
slab resonator with different initial phase. We consider the two slabs with the same thickness 𝑑, 
located at 𝑥 = 0 and	𝑥 = 𝐿 + 𝑑 , with an air medium of length 𝐿 between them. The inner air 
medium can be seen as a resonator as well whose resonance frequency is 𝑓J = 𝑐! 	2𝐿⁄ . In order to 
achieve good nonreciprocity with this system, we tune the incident frequency 𝐹A%, the modulation 
frequency Ω, the static density ratio 𝛿 and the phase difference Δ𝜙 between the modulations of the 
two slabs, within certain ranges. Our strategy to achieve nonreciprocity is based on two-level tuning. 
Firstly, we tune 𝐹A%  and 𝐹1  with properly preselected Δ𝜙 and 𝛿. By analyzing the diagrams of 
transmittance asymmetry difference !𝑇0+ − 𝑇0−!  (with 𝑇!) = |𝑡!)|"	  and 𝑇!0 = |𝑡!0|" ), their ratio 

!10 𝑙𝑜𝑔01(𝑇0+/𝑇0−)! and the total transmission difference !(∑ 𝑇𝑖+2
32 )

!
" − (∑ 𝑇𝑖−2

32 )
!
"!, we were able to 
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select a proper set of 𝐹A% and 𝐹1. Afterwards, a fine optimization was performed by tuning Δ𝜙 and 
𝛿 with fixed 𝐹A% and 𝐹1. To acquire the nonreciprocity at a specific frequency, we can scale the 
slab dimension 𝑑 with the tuned parameters. 

The coupling behavior of the resonators in static state (without modulation) has a significant effect 
on nonreciprocity. A definite static coupling behavior reduces variable elements in the tuning 
process. To characterize the coupling behavior, we introduce coupling factor 𝛼 = 𝑓J 𝑓I$ 	⁄ , the ratio 
between the resonance frequency of the inner air waveguide 𝑓J = 𝑐! 2𝐿⁄  and the static slab 
resonance frequency 𝑓I$. In what follows, we used the configuration of 𝛼 = 1 (see Appendix B).  

The static density ratio 𝛿 determines the effective sound speed and the effective density in the slab 
medium, thus, its static impedance. Therefore, it affects directly the scattering behavior on the 
boundary between slab and air, because this density change leads to mismatched impedance on the 
boundary which impacts the wave reflection and transmission. As 𝛿  is larger, this scattering 
becomes stronger, which contributes to the wave asymmetry under spatial bias. However, large 𝛿 
weakens the feasibility of the system. To be more realistic, we set  𝛿 = 5. The thickness of slab is 
set as 𝑑 = 0.05𝑚 and the length of the air medium 𝐿 is determined by 𝐿 = √𝛿𝑑 𝛼	⁄ . 

The density of the two cascaded slabs is time-modulated as 𝜌# = 𝛿𝜌![1 + 2 ∙ 𝑀 cos(𝛺𝑡)] and 
𝜌" = 𝛿𝜌![1 + 2 ∙ 𝑀 cos(𝛺𝑡 + 𝛥𝜙)], where the phase difference Δ𝜙 is taken into account. In what 
follows, we utilized 0.5𝜋 as the preset value of Δ𝜙 which leads to spatiotemporal bias and breaks 
the time reversal symmetry. When Δ𝜙 = 0, the system complies with time reversal symmetry as 
the bilayer slab resonator system is symmetric. When Δ𝜙 = 𝜋 , although the time reversal 
symmetry is broken, it only leads to phase inversion between the wave transmitted in opposite 
directions while the amplitudes are kept the same. As asymmetry appears in Δ𝜙 ∈ (0, 𝜋) while we 
get no asymmetry at both limits of this range, an extremum exists. Consequently, we have first 
chosen Δ𝜙 = 0.5𝜋  where we expect to have the maximum effect of asymmetry (see Appendix 
C).  

The modulation depth 𝑀 is directly related to the external energy brought into the system actively, 
so practically we tend to adopt relatively small values for the modulation depth. A weak modulation 
not only enables the feasibility of the system, but also prevents the transmitted wave from being 
overamplified by the modulation. Here the modulation depth is chosen as 𝑀 = 0.06. Then, we first 
searched for nonreciprocal wave behavior by sweeping the incidence frequency  𝐹&*  and the 
modulation frequency 𝐹). 

 
Figure 4. Transmission analysis between right and left propagations as function of the normalized incident 

frequency 𝐹&* and the normalized modulation frequency 𝐹), for ∆𝜙 = 0.5𝜋 and 𝛿 = 5. (a) Asymmetry 

(a) (b) (c)



difference of the 0th order mode transmittance, standing for |𝑇+# − 𝑇+,|. (b) Asymmetry ratio of 0th order 
mode transmittance, standing for |10 𝑙𝑜𝑔$+(𝑇+#/𝑇+,)|. (c) Total transmission difference, standing for 

<(∑ 𝑇&#-
,- )

!
" − (∑ 𝑇&,-

,- )
!
"< where all the modes are included. The black dot in these figures marks the 

point where 𝐹&* = 8 and 𝐹) = 0.76. 

Here we are interested in the scattering properties of the fundamental mode. Fig.4(a) and (b) show 
the quantities |𝑇!) − 𝑇!0|  and |10 𝑙𝑜𝑔#!(𝑇!)/𝑇!0)|  for the fundamental mode, respectively, as 
function of the normalized modulation frequency 𝐹1 and incident frequency 𝐹A%. Fig.4(c) plots the 
normalized total transmission difference for the convenience of observation. The criterions for 
finding nonreciprocity are |𝑇!) − 𝑇!0| > 0.9 and |10 𝑙𝑜𝑔#!(𝑇!)/𝑇!0)| > 20𝑑𝐵 in a wide range of 
𝐹A%, which correspond to yellow zones that are wide on the 𝐹A% axis in the plots. As shown in 
Fig.4(c), it is difficult to achieve high level asymmetry of total transmission in this system, so the 
nonreciprocity here is mainly due to frequency conversion. We observe that Fig.4(a) and (b) show 
some periodicity on the 𝐹A%  axis. The nonreciprocity zones tend to appear at multiples of the 
resonance frequency of the slab, for example, the marked point where 𝐹A% = 8 corresponds to the 
actual frequency 8𝑓I$. In fact, far away from resonances, the reflection is dominant and the effect 
of frequency conversion on the transmitted waves becomes weak. Another interesting phenomenon 
reflected in the Fig.4 is that when 𝐹1 = 1, all the asymmetries disappear. In this case, the actual 
modulation frequency is equal to the resonance frequency of the slab, 𝑓1 = 𝑓I$. In this case, the 
spatial biasing effect from phase difference becomes weak. 

For an optimized case of nonreciprocity, we selected 𝐹A% = 8 and 𝐹1 = 0.76, where |𝑇!) − 𝑇!0| =
0.956 and |10 𝑙𝑜𝑔#!(𝑇!)/𝑇!0)| = 25.98dB (Black dot indicated in Fig.4). Under this configuration, 
the positive and negative transmission coefficients of the fundamental mode are, 𝑡!) = 0.049 and 
𝑡!0 = 0.979. While fixing the same values 𝐹A% and 𝐹1, we performed a 2nd level fine tuning where 
we swept for 𝛿 and Δ𝜙 (see Appendix D). A better result is achieved with 𝛥𝜙 = 0.46𝜋 and 𝛿 =
5. 

 
Figure 5.(a) (b) Transmission coefficient for the positive direction (a) and the negative direction (b) with 
𝐹&* = 8, 𝐹) = 0.76, 𝛥𝜙 = 0.46𝜋 and 𝛿 = 5. (c) Theoretically calculated transmission coefficient curve 
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for the fundamental mode (0th order) for both directions as function of 𝐹&*, for 𝐹) = 0.76, 𝛥𝜙 = 0.46𝜋 
and 𝛿 = 5. The black dash lines and arrow mark the bandwidth. 

With this fine optimization, the transmission coefficients become 𝑡!) = 0.043 and 𝑡!0 = 0.979, so 
nonreciprocal transmission is slightly improved in comparison with the previous result. For this 
configuration, we plot in Fig.5 the transmission coefficient in both propagation directions with 
incident monochromatic wave at the frequency of 𝐹A% = 8 (Fig.5(a) and (b)). We can clearly see 
that the 0th order mode is dominant in the negative propagation direction while it is almost depleted 
in the positive direction with strong frequency conversion at higher order modes. We also plot the 
fundamental mode transmission in both propagation directions in Fig.5(c) where we can deduce 
acoustic nonreciprocity around the incident frequency. The bandwidth of nonreciprocity is defined 
as |𝑇!)(ω) − 𝑇!0(ω)| > 0.5 × Max (|𝑇!) − 𝑇!0|). The normalized bandwidth of nonreciprocity ∆𝐹 
is approximately 0.51 in this case.  

 
Figure 6. Pressure field pattern for the case reported in figure 5(a) and (b), from 30ms to 31ms.	𝜆&* =

1 𝑓&*⁄  is the wavelength of the incident wave and 𝜆) = 2𝜋 𝛺⁄  is the modulation wavelength. (a) Negative 
direction; (b) positive direction.   
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To further illustrate the nonreciprocity behavior, we plot in Fig.6 the total pressure as function of 
space and time based on transit FEM simulation. The figure shows the total pressure on the whole 
structure within a chosen duration of time. In the negative direction (Fig.6(a)), the incident wave 
can pass through our structure and the wave form is little distorted, indicating the transmission of 
the fundamental mode with relatively low reflection in contrast to that of the positive direction. 
However, in the positive direction (Fig.6(b)), we observe a different wave propagation 
phenomenon where the pattern of the fundamental mode is no longer dominant, and frequency 
conversion to higher frequency orders is observed. The modulation wave behavior shown in 
Fig.6(b) corresponds to the superposition of several harmonic waves (±1 order, ±2 order, etc.).  

 

 

III.3 Unidirectional frequency conversion 

Since the nonreciprocity in our system is achieved owing to frequency conversion, we further 
exploited the unidirectional frequency conversion under the nonreciprocity premise. As 
schematically shown in Fig.7, for a harmonic excitation, if the modulation frequency is chosen so 
that the first order corresponds to one of the resonance frequencies of the slab, this first order mode 
can be highly transmitted. There are numerous possibilities for frequency conversion, so we 
consider for instance two of them: from 0th to -1st and from 0th to +1st which are shown by arrows 
vertically orienting. In the example of Fig.7, if we choose a specific frequency of modulation so 
that the -1st order corresponds to one of the resonance frequencies of the slab, this order could be 
highly transmitted while the fundamental mode and the +1st order being weakly transmitted. 
Further, if high transmission exists at both fundamental mode and one of the ±1st order modes due 
to large transmission bandwidth, we can achieve both unidirectional frequency conversion and 
nonreciprocity by manipulating the modulation. 

 
Figure 7. Schematic of the frequency conversion. The -1st order mode is at the resonance frequency of the 

slab instead of the fundamental mode and the 1st order mode. Thus, -1st order mode may be transmitted 
with higher amplitude. 
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Figure 8. (a) Transmission coefficient in the frequency domain for the 0th, ±1st and ±2nd orders with 𝐹) =
0.85, 𝛥𝜙 = 0.589𝜋 and  𝛿 = 12. Transmission spectrum coefficient in the positive direction (a) and the 

negative direction (b) at the monochromatic incident frequency 𝐹&* = 8.85, (flat marks for theory and 
solid blue line for FEM based simulation). 

 

To illustrate this idea, we consider the configuration of 𝐹1 = 0.85, 𝛥𝜙 = 0.589𝜋 and 𝛿 = 12 
where strong asymmetries of all the ±1st and 0th order modes are achieved. We plot in Fig.8 (a) the 
transmission coefficient in the frequency domain for the 0th and ±1st orders. We can observe that 
the	±1st orders modes are both dominant in the transmission for one of the directions of propagation. 
At 𝐹A% = 8.85 for instance, the -1st orders mode (𝐹A% − 𝐹1) is at a resonance frequency (8𝑓I$). 
Figures 8 (b) and (c) display the transmission coefficient with incident monochromatic wave at 
𝐹A% = 8.85. In the positive direction, the amplitude of the -1st order reaches 0.61 and becomes the 
dominant mode and the amplitude of the fundamental mode is 0.18, while in the negative direction, 
the fundamental mode’s amplitude is 0.78 and the amplitudes of all the neighboring modes are low. 
In this case, unidirectional frequency conversion appears.  

Regarding the experimental implementation of the system, for instance, it can be built using 
successive layers of air and gas with different densities, separated by an airtight thin membrane to 
avoid being mixed. Then, the effective density can be modulated in time using pistons that can 
change the volume of each cavity layer. The thickness of the layers can be chosen to operate at 
frequency ranges far from the flexural resonances of the membranes. The existence of the 
membranes will only slightly reduce the bandwidth of nonreciprocity which can still be achieved 
by fine tuning the parameters of the system. 
Conclusion 

In this work, we have demonstrated nonreciprocal acoustic transmission and unidirectional 
frequency conversion in cascaded fluid slab resonators based on temporal modulation of their 
effective densities, with phase difference of the time modulations between the slabs. A theoretical 
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transfer matrix method based on plan waves expansion has been developed for efficient 
characterization of the acoustic dispersion of the system, while numerical simulations based on 
FEM have been conducted to assess the theoretical findings. Optimizations over the system’s 
parameters was carried out to achieve broadband nonreciprocity and frequency conversion in the 
two-slab system. An acoustic nonreciprocity behavior has been demonstrated for a monochromatic 
incident wave, with almost  97.9%  transmission in the positive direction while only 4.3%  is 
transmitted in the negative direction. Furthermore, unidirectional frequency conversion has been 
achieved. Over half of the transmitted acoustic energy has been converted into one mode with 
higher static density ratio 𝛿 . The proposed design of nonreciprocal acoustic system displays 
promising functionalities, with a simple compact configuration to achieve unidirectional wave 
propagation and frequency conversion. Though the present system is purely theoretical and far 
from representing a realistic device for application, it is possible to imagine a solid system where 
we only consider longitudinal waves which are described with the same Helmholtz equation, thus 
behaves the same as acoustic waves in fluid. In this case, our approach could also be conducted by 
considering the time modulation of the effective stiffness of the materials using piezoelectric 
elements instead of density. Further, the time-modulation capability of the design is to be 
investigated especially when the frequency of modulation is comparable to the incident frequency 
of the system, our design offers a platform that could inspire futuristic devices for multiple 
applications, including biomedical ultrasound devices, improved energy harvesting and 
communication system. 

  



 

Appendix A: Conversion from transfer matrix to scattering matrix. 

The schematic of the scattering system is shown is Fig. 9. The transfer matrix 𝑴 and the scattering matrix 
𝑺 are defined as,  

M𝑪
-

𝑫-
O = P𝑴$$ 𝑴$.

𝑴.$ 𝑴..
Q M𝑨

-

𝑩-
O 

P𝑩
-

𝑪-
Q = P𝑺$$ 𝑺$.

𝑺.$ 𝑺..
Q M𝑨

-

𝑫-
O 

 

Figure 9. Schematic of the system for matrix conversion 

where 𝑨- = 〈𝐴,- , … , 𝐴-〉/, 𝑩- = 〈𝐵,- , … , 𝐵-〉/, 𝑪- = 〈𝐶,- , … , 𝐶-〉/ and 𝑫- = 〈𝐷,- , … , 𝐷-〉/.  

𝑴$$ , 𝑴$. , 𝑴.$  and 𝑴..  are matrices with 2𝑁 + 1 orders. With some algebraic manipulations, we can 
easily obtain the elements of the scattering matrix from the transfer matrix, 

𝑺$$ = −𝑴..
,$ ∙ 𝑴.$ 

𝑺$. = 𝑴..
,$ 

𝑺.$ = 𝑴$$ −𝑴$. ∙ 𝑴..
,$ ∙ 𝑴.$ 

𝑺.. = 𝑴$. ∙ 𝑴..
,$ 

Appendix B: Determination of the coupling factor 

To illustrate the static coupling behaviors, we plotted in Fig.10 the transmission coefficients 
without modulation for various values of coupling factor 𝛼 . Fig.10 (a) displays the classical 
resonances of the single slab, while Fig.10(b)-(d) are the transmission curves for the case of two 
coupled static slabs for different values of  𝛼. As we increase the coupling factor, the scattering 
changes and the average transmission bandwidth becomes smaller while stronger undulations of 
the transmission coefficient appear. Strong coupling is desired in order to achieve strong 
nonreciprocity and frequency conversion. 



 
Figure 10. Transmission coefficient for the static case (without time modulation): (a) single resonator, (b) 
cascaded resonators with 𝛼 = 0.5, (c) cascaded resonators with 𝛼 = 1 and (d) cascaded resonators with 

𝛼 = 2. 

Appendix C: Preset value of the initial phase difference 

In order to verify the consistency of the preset phase difference 𝛥𝜙 = 0.5, a series of calculations 
were performed upon 𝛥𝜙. Figure 11 presents the absolute value of difference between the right 
and left transmission coefficients of the fundamental mode, �|𝑡!)| − |𝑡!0|�, as function of 𝛥𝜙 for the 
considered modulating frequencies 𝐹1 = 0.7, 0.9, and 1.1. For all these three cases, high level of 
transmission difference, indicating strong nonreciprocity, appears where Δ𝜙 is between 0.4	𝜋 and 
0.6	𝜋. To conclude, it is rational to assume strong asymmetry at 𝛥𝜙 = 0.5. 

 
Figure 11. Transmission coefficient difference ,|𝑡14| − |𝑡13|, of the fundamental mode as function of Δ𝜙 for 
an incident wave frequency of 𝐹&* = 8.94, for the case of frequency modulations 𝐹) = 0.7 (a), 𝐹) = 0.9 

(b), and 𝐹) = 1.1 (c). 

Appendix D: Second-level fine tuning   

Under 𝐹A% = 8  and 𝐹1 = 0.76 , we performed a refinement of the optimization for stronger 
nonreciprocity. Fig.12(a) and (b) show |𝑇!) − 𝑇!0| and |10 𝑙𝑜𝑔#!(𝑇!)/𝑇!0)| of the fundamental 
mode, respectively, as function of the static density ratio 𝛿 and phase difference ∆𝜙, while Fig.12(c) 
plots the total transmission difference. We can see that with the preselected 𝛿 = 5 and ∆𝜙 = 0.5𝜋, 
the result is already good, so we just slightly change the value of Δ𝜙. The result of fine optimization 
is  ∆𝜙 = 0.46𝜋 and	𝛿 = 5, where |𝑇!) − 𝑇!0| = 0.957 and |10 𝑙𝑜𝑔#!(𝑇!)/𝑇!0)| = 27.15dB. 

(a) (b)

(d)(c)
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Figure 12. Results of the theoretical calculation sweeping ∆𝜙 from 0 to 𝜋 and 𝛿 from 3 to 7, with 𝐹&* = 8 

and 𝐹) = 0.76 inherited from the last calculation. (a) Asymmetry difference of 0th order mode 
transmittance. (b) Asymmetry ratio of 0th order mode transmittance. (c) Total transmission difference. The 

black dot in these figures marks the point where ∆𝜙 = 0.46𝜋 and	𝛿 = 5. 
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