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In this work, we demonstrate nonreciprocal acoustic wave transmission in a two cascaded Fabry-Perot like slab resonators undergoing time modulation of their effective density. Phase difference is introduced in the time modulation between the two coupled resonators to produce spatial bias in order to access unidirectional wave propagation. A theoretical model based on plane wave expansion and transfer matrix method is developed to study the Fabry-Perot-based system. The theoretical model allows rapid and precise characterization of the acoustic dispersion, with results in excellent agreement with finite element based numerical simulations. We demonstrate acoustic nonreciprocity behavior for the fundamental acoustic mode, and further show that with proper optimization, the coupled Fabry-Perot based device can achieve nonreciprocal acoustic frequency conversion. This work could inspire designing simple and compact nonreciprocal acoustic devices for efficient wave control.

I. Introduction

During the last decade, a growing area of research is concerned with the possibility of breaking the reciprocity for waves to realize unidirectional wave propagation. Particularly, an acoustic nonreciprocal device, that enables one-way transmission of sound, is highly desirable for numerous technological applications such as unidirectional sound barrier, improved medical ultrasound devices, and SAW based communication systems [START_REF] Fleury | Nonreciprocal Acoustics[END_REF][START_REF] Rasmussen | Acoustic Nonreciprocity[END_REF]. Reciprocity is a fundamental property of wave phenomena in any linear time-invariant system [START_REF] Casimir | On Onsager's Principle of Microscopic Reversibility[END_REF][START_REF] Strutt | Some General Theorems Relating to Vibrations[END_REF]. It can only be broken using proper biasing of space or time quantities, meticulously introduced into the propagation medium. Various systems were constructed to achieve acoustic nonreciprocity and demonstrate different wave behaviors in opposite propagation directions. Early attempts for an acoustic nonreciprocity realization were successfully conducted by combining nonlinear medium with a phononic crystal (PC) [START_REF] Liang | Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems[END_REF][START_REF] Liang | An Acoustic Rectifier[END_REF]. Later-on, geometrical design strategies were proposed to achieve asymmetric wave dispersion, though these systems do not break reciprocity but rather affect the waves packets path [START_REF] Li | Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode[END_REF][START_REF] Wang | Broadband Acoustic Diode by Using Two Structured Impedance-Matched Acoustic Metasurfaces[END_REF]. The P-T symmetry can also lead to asymmetric wave reflection by introducing loss and gain elements in a linear waveguide [START_REF] Wen | Asymmetric Frequency Conversion with Acoustic Non-Hermitian Space-Time Varying Metamaterial[END_REF].

An exotic way of achieving nonreciprocity is the application of space-time modulated (STM) mediums in order to break the time reversal symmetry. The idea was proposed in 1959 in photonics and electrical circuits, where permittivity, permeability or impedance is harmonically modulated both in space and time to create unidirectional band gaps for waves [START_REF] Li | Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode[END_REF][START_REF] Wang | Broadband Acoustic Diode by Using Two Structured Impedance-Matched Acoustic Metasurfaces[END_REF][START_REF] Wen | Asymmetric Frequency Conversion with Acoustic Non-Hermitian Space-Time Varying Metamaterial[END_REF]. The medium can be seen as keeping its intrinsic properties spatially modulated and moving at a certain velocity. This thus breaks the time reversal, allowing different dispersions of waves traveling in opposite directions along the same path. This route, however, faded until this last decade where researchers reinvigorated their interest on the realization of such space time modulated systems, all thanks to the technological progress in fabrication and characterization [START_REF] Hadad | Space-Time Gradient Metasurfaces[END_REF][START_REF] Taravati | Self-Biased Broadband Magnet-Free Linear Isolator Based on One-Way Space-Time Coherency[END_REF][START_REF] Taravati | Nonreciprocal Electromagnetic Scattering from a Periodically Space-Time Modulated Slab and Application to a Quasisonic Isolator[END_REF][START_REF] Taravati | Aperiodic Space-Time Modulation for Pure Frequency Mixing[END_REF][START_REF] Taravati | Giant Linear Nonreciprocity, Zero Reflection, and Zero Band Gap in Equilibrated Space-Time-Varying Media[END_REF][START_REF] Taravati | Programmable Nonreciprocal Meta-Prism[END_REF][START_REF] Taravati | Pure and Linear Frequency-Conversion Temporal Metasurface[END_REF]. Drawing inspiration from photonics, multiples STM based designs were proposed in acoustics [START_REF] Fleury | Subwavelength Ultrasonic Circulator Based on Spatiotemporal Modulation[END_REF][START_REF] Shen | Nonreciprocal Acoustic Transmission in Space-Time Modulated Coupled Resonators[END_REF][START_REF] Zhu | Non-Reciprocal Acoustic Transmission via Space-Time Modulated Membranes[END_REF][START_REF] Oudich | Space-Time Phononic Crystals with Anomalous Topological Edge States[END_REF] and elastodynamics [START_REF] Trainiti | Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures[END_REF][START_REF] Wang | Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice[END_REF][START_REF] Trainiti | Time-Periodic Stiffness Modulation in Elastic Metamaterials for Selective Wave Filtering: Theory and Experiment[END_REF][START_REF] Yi | Active Metamaterials with Broadband Controllable Stiffness for Tunable Band Gaps and Non-Reciprocal Wave Propagation[END_REF][START_REF] Sugino | Nonreciprocal Piezoelectric Metamaterial Framework and Circuit Strategies[END_REF][START_REF] Farhat | Spacetime Modulation in Floating Thin Elastic Plates[END_REF]. In those designs, the mechanical properties of the designed mediums where varied both in space and time to achieve nonreciprocity. Besides, acoustic circulator [START_REF] Fleury | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[END_REF] was proposed as a nonreciprocal device, which contains circulating flow insides three ports to break the time reversal.

However, in most of the works applied to classical waves and especially in acoustics, the physics of nonreciprocity is based on shifting the Bragg bandgap in the frequency domain for opposite directions to prohibit wave propagation unidirectionally [START_REF] Trainiti | Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures[END_REF][START_REF] Wang | Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice[END_REF][START_REF] Trainiti | Time-Periodic Stiffness Modulation in Elastic Metamaterials for Selective Wave Filtering: Theory and Experiment[END_REF]. This mechanism was achieved by spatiotemporally modulating the effective parameters of the constituent materials (stiffness) along several periods of the structure (at least 10 periods). Consequently, the periodic parts of the system have to be precisely synchronized which makes the experimental realization quite challenging, and thus limit the device practicability. For instance, in acoustics, although dynamically changing the effective density of air is locally possible [START_REF] Chen | A Tunable Acoustic Metamaterial with Double-Negativity Driven by Electromagnets[END_REF], a precise harmonic modulation in both space and time along several periods remains challenging. In contrast, nonreciprocity based on STM becomes relatively accessible in elastodynamics by modulating the effective stiffness of the material [START_REF] Trainiti | Time-Periodic Stiffness Modulation in Elastic Metamaterials for Selective Wave Filtering: Theory and Experiment[END_REF][START_REF] Yi | Active Metamaterials with Broadband Controllable Stiffness for Tunable Band Gaps and Non-Reciprocal Wave Propagation[END_REF][START_REF] Sugino | Nonreciprocal Piezoelectric Metamaterial Framework and Circuit Strategies[END_REF]. However, this process involves introducing piezoelectric elements connected to electrical circuits to introduce effective negative capacitance with the complexity of synchronizing the modulations. The whole nonreciprocal device becomes cumbersome, limiting practical applications in the future. Besides, systems such as coupled modulated Helmholtz resonators [START_REF] Shen | Nonreciprocal Acoustic Transmission in Cascaded Resonators via Spatiotemporal Modulation[END_REF], air cavities [START_REF] Shen | Nonreciprocal Acoustic Transmission in Space-Time Modulated Coupled Resonators[END_REF], membranes [START_REF] Zhu | Non-Reciprocal Acoustic Transmission via Space-Time Modulated Membranes[END_REF], and even Fabry-Perot based photonic slabs [START_REF] Chegnizadeh | Non-Reciprocity Using Quadrature-Phase Time-Varying Slab Resonators[END_REF] inspired us for a simple design compared to the aforementioned systems. For instance, Shen et al. [START_REF] Shen | Nonreciprocal Acoustic Transmission in Cascaded Resonators via Spatiotemporal Modulation[END_REF] showed that using two cascaded time-modulated Helmholtz resonators (HR), nonreciprocal wave behavior can be realized via frequency conversion with high order modes appearing differently for positive and negative propagation. However, nonreciprocity is achieved far from the resonance frequency of the HR as the wave is completely reflected at this frequency. Under this restriction, the fundamental mode with the frequency of the incident wave is always accompanied with high order modes in the transmission whatever the direction of propagation is. Nevertheless, the choice of cascaded slabs is more advantageous since it allows high wave transmission at the Fabry-Perot resonance. Consequently, the slabs-based-system has the potential to create the situation of unidirectional wave conversion for instance, hence offering more control over nonreciprocity via mode conversion.

In this work, we demonstrated nonreciprocal acoustic transmission in a finite system based on coupled Fabry-Perot resonators with time modulation of their effective properties. A good nonreciprocity is achieved in our system with a quasi-lossless transmission in one direction and a nearly-zero transmission of the fundamental mode in opposite direction. In contrast to the previous works that used Bragg band gap combined with modulating the effective parameters of the materials along several periods of the structure, our system is composed of two coupled fluid slabs that behave as coupled Fabry-Perot (FP) resonators whose density, however, is temporally modulated. A spatial bias is introduced to realize nonreciprocal wave propagation by forcing a phase difference on the time modulated density between the two slabs. This kind of modulation could be easily achieved by periodically compressing the fluid for instance [START_REF] Chen | A Tunable Acoustic Metamaterial with Double-Negativity Driven by Electromagnets[END_REF][START_REF] Wang | Acoustic Asymmetric Transmission Based on Time-Dependent Dynamical Scattering[END_REF]. In such design, the physical mechanism is mainly based on frequency conversion where the acoustic energy is transferred from the fundamental mode into higher order ones [START_REF] Jeon | Nonlinear Acoustic Metamaterial for Efficient Frequency Down-Conversion[END_REF][START_REF] Schneider | Frequency Conversion through Nonlinear Mixing in Acoustic Waves[END_REF].

The plane wave expansion (PWE) method [START_REF] Riva | Generalized Plane Wave Expansion Method for Non-Reciprocal Discretely Modulated Waveguides[END_REF] is first adopted to construct the scattering matrix describing the system, which analytically solves the acoustic transmission. The analytical result matches well with the finite-element-method (FEM) simulation results. Then, we took advantage of this model to seek for parameters and configurations that yield a good nonreciprocity. Furthermore, under the premise of high nonreciprocity, we also discussed the possibility of unidirectional frequency conversion. The latter is an important wave phenomenon that enables generating waves at desired frequencies from an incident wave at different frequencies. Recently, the application of frequency conversion is expanded to acoustic domain, such as directional loudspeakers and nondestructive evaluation [START_REF] Westervelt | Parametric Acoustic Array[END_REF][START_REF] Moussatov | Frequency Up-Conversion and Frequency down-Conversion of Acoustic Waves in Damaged Materials[END_REF]. We first considered an adiabatic single slab resonator as shown in Fig. 1. The background medium is air, whose density is 𝜌 ! and sound speed is 𝑐 ! , with bulk modulus 𝜅 ! = 𝜌 ! 𝑐 ! " . The thickness of the slab resonator is 𝑑. The medium of the slab resonator is a fluid whose static density is higher than air. In this model, we assume that the density of the slab can be modulated in time:

II. Design and theory

𝜌 # = 𝛿𝜌 ! [1 + 2 • 𝑀 𝑐𝑜𝑠(Ω𝑡 + 𝜙)].
As we consider the bulk modulus to be fixed throughout all this study (𝜅 ! = 141.2𝑘𝑃𝑎), the speed of sound in the slab resonator is consequently modulated as

𝑐 # = :𝜅 ! 𝜌 # ⁄ which yields 𝑐 # = <𝜅 ! =𝛿𝜌 ! (1 + 2 • 𝑀 𝑐𝑜𝑠(Ω𝑡 + 𝜙))> ⁄ . Without temporal modulation,
the static speed of sound in the slab resonator is

𝑐 # $ = 𝑐 ! √𝛿 ⁄ .
In practice, this kind of modulation can for instance be achieved by driving a piston with rotating elements to induce changing compression in time. Here, 𝛿 is the static density ratio, 𝑀 is the modulation depth, Ω is the angular frequency of modulation, and 𝜙 is the initial phase of the modulation. Considering a forward incident wave at an angular frequency 𝜔 , and using the Floquet-Bloch theorem, the acoustic pressure and the particle velocity fields in the slab yield,
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where 𝑝 % (𝑥) and 𝑣 % (𝑥) are the Fourier components of the pressure and velocity, respectively, in the time domain for both forward and backward propagating waves. The time modulated density can be rewritten in the same way,
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According to the adopted harmonic modulation for 𝜌 # , we have here 𝜌 H ! = 1, 𝜌 H ±# = 𝑀 , and 𝜌 H 1 = 0 for 𝑚 ≠ 0, ±1, and 𝜙 ±# = ±𝜙. By substituting Eqs. ( 2) and ( 3) into the known acoustic equation 𝜕 4 𝑝 = -𝜌(𝑡)𝜕 , 𝑣, we get the following relation,
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Then we develop Eq. ( 4) by combining the two summations,

𝜕𝑝(𝑥, 𝑡) 𝜕𝑥 = -𝑗𝛿𝜌 ! D (𝜔 + 𝑛 5 Ω)𝜌 H 1 𝑣 % " (𝑥)𝑒 &8()6% " )17*9, 𝑒 &2 # % " ,1 (5) 
By eliminating the index script 𝑚 by replacing it with 𝑛 -𝑛 5 , we can develop Eq. ( 5) into the following equation,

𝜕𝑝(𝑥, 𝑡) 𝜕𝑥 = -𝑗𝛿𝜌 ! D(𝜔 + 𝑛 5 Ω)𝜌 H %0% " 𝑣 % " (𝑥)𝑒 &2 !$! " 𝑒 &(()%*), % " ,% (6) 
By substituting Eq. ( 1) into Eq. ( 6) and using the orthogonality of =𝑒 &%*, > % , we have,

𝜕𝑝 % (𝑥) 𝜕𝑥 = -𝑗𝛿𝜌 ! D(𝜔 + 𝑛 5 Ω)𝜌 H %0% " 𝑒 &2 !$! " 𝑣 % " (𝑥) % " (7) 
The time dependent term 𝑒 &(, is eliminated.

Substituting Eqs. ( 1), ( 2) and ( 3) into the known acoustic equation 𝜕 4 𝑣 = -𝜅 ! 0# 𝜕 , 𝑝 and following the same steps as above, we get,

𝜕𝑣 % (𝑥) 𝜕𝑥 = -𝑗(𝜔 + 𝑛Ω) 1 𝜅 ! 𝑝 % (𝑥) (8) 
After further developments by defining a new variable 𝜉 = 𝑥Ω 𝑐 # $ ⁄ , Eq. ( 7) and ( 8) become,

𝜕𝑝 % (𝜉) 𝜕𝜉 = -𝑗𝑍 # $ D Y 𝜔 Ω + 𝑛 5 Z 𝜌 H %0% " 𝑒 &2 !$! " 𝑣 % " (𝜉) % " (9) 
and

𝜕𝑣 % (𝜉) 𝜕𝜉 = -𝑗 1 𝑍 # $ Y 𝜔 Ω + 𝑛Z 𝑝 % (𝜉) ( 10 
)
where

𝑍 # $ = 𝛿𝜌 ! 𝑐 # $ is the static impedance in the slab.
Thus, a series of first order partial differential equations is constructed based on Eqs. ( 9) and [START_REF] Oliner | Guided Waves on Sinusoidally-Modulated Reactance Surfaces[END_REF], which depends on the number of decompositions 𝑁 we adopt to approximate the solution,

𝑨 ; • ^𝒑< 𝒗 < a ; -𝑰 • 𝜕 = ^𝒑< 𝒗 < a ; = 0 ( 11 
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where

𝒑 < = ⟨𝑝 0< , … , 𝑝 ! , … , 𝑝 < ⟩ > , 𝒗 < = ⟨𝑣 0< , … , 𝑣 ! , … , 𝑣 < ⟩ > , 𝑨 ; = ^0 𝑨 ; ? 𝑨 ; @ 0 
a, I is the identity matrix and the subscript 𝑠 indicates the domain index. For example, in Fig. 2, 𝑠 = 1 refers to the slab resonator and 𝑠 = 2 refers to the next air medium in contact. 𝑨 ; ? and 𝑨 ; @ are both square matrices with size 2𝑁 + 1, 𝑨 ;,(%,% " ) ?
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where 𝛿 %0% " is the Kronecker function. As 𝑨 ; is function of 𝜉, Eqs. ( 11) have a solution in this form,

^𝒑< 𝒗 < a ; = D 𝑪 ;,A ) 𝑽 ;,A ) 𝑒 0B %,' ( (=(4)0= ) ) )< A/0< + D 𝑪 ;,A 0 𝑽 ;,A 0 𝑒 0B %,' $ (=(4)0= ) ) )< A/0< (14) 
where 𝑽 ;,A ± and 𝜆 ;,A ± are the 𝑖 ,C eigenvector and eigenvalue associated to the matrix 𝑨 ; respectively, corresponding to forward/backward wave propagation associated with the layer 𝑠 , 𝑪 ;,A ± are unknown coefficients which correspond to wave amplitudes. By considering the boundary conditions (continuity of pressure and velocity) between the layers in contact labeled s and s+1, and performing some algebraic manipulations, we can easily obtain the transfer matrix 𝑴 ;→;)# which is defined by,
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And the definition of 𝑪 ; ± is explained in Fig. 2. 𝑴 ;→;)# can be developed from equation ( 14) and the boundary conditions,

𝑴 𝒔→𝒔)𝟏 = ⟨𝑽 ;)# ) |𝑽 ;)# 0 ⟩ 0# ⟨𝑽 ; ) |𝑽 ; 0 ⟩ ^𝜢; 𝑂 𝑂 𝜢 ; 0# a ( 16 
)
where 𝜢 ; = ^𝜢;

) 𝑂 𝑂 𝜢 ; 0 a , 𝜢 ;,(%,% ′ ) ± = 𝑒 0B %,!$*$+ ± -% . / % 𝛿 %0% ′ and 𝑽 ; ± = 〈𝑽 ;,0< ± , … , 𝑽 ;,! ± , … , 𝑽 ;,< ± 〉 . 𝑙 ; is
the thickness of layer 𝑠, 𝑐 ; is the speed of sound in layer s. From Eq. ( 15), we constructed the transfer matrix M describing the complete system presented in Fig. 2,

𝑴 = q 𝑴 (G0A)→(G)#0A) G A (17) 
The above solution is based on PWE and the precision of the solution is related to the considered number 𝑁 of plane waves. In our work, the convergence of the result is guaranteed with 𝑁 ≥ 4.

Finally, we obtained the scattering matrix 𝑺 from the transfer matrix 𝑴 (see Appendix 1).

Using the vector describing the incident wave of positive direction

𝑱 ) = ⟨𝛿 < , … , 𝛿 ! , … , 𝛿 0< |𝑶 < ⟩ > ,
we can deduce the corresponding reflection and transmission coefficients, 𝛿 % is Kronecker function,

v 𝒓 <,) 𝒕 <,) y = 𝑺 • 𝑱 ) (9) 
where

𝒓 <,) = 〈𝑟 < ) , … , 𝑟 ! ) , … , 𝑟 0< ) 〉 > and 𝒕 <,) = 〈𝑡 < ) , … , 𝑡 ! ) , … , 𝑡 0< ) 〉 > .
Similarly, the reflection and transmission coefficients for negative incidence can be obtained using the vector associated to negative incident wave:

𝑱 0 = ⟨𝑶 < |𝛿 0< , … , 𝛿 ! , … , 𝛿 < ⟩ > , v 𝒕 <,0 𝒓 <,0 y = 𝑺 • 𝑱 0 (19) 
where 𝒕 <,0 = 〈𝑡 < 0 , … , 𝑡 ! 0 , … , 𝑡 0< 0 〉 > and 𝒓 <,0 = 〈𝑟 < 0 , … , 𝑟 ! 0 , … , 𝑟 0< 0 〉 > are the corresponding transmission and reflection coefficients, respectively. These equations allowed us to evaluate the transmission and reflection coefficients for each frequency order. We have performed a series of calculations using our theoretical model to determine the optimized design that enables unidirectional propagation and frequency conversion. The involved parameters for our optimization process are the incident angular frequency 𝜔, the modulation frequency Ω , the static density ratio 𝛿 and the phase difference between the modulations of the slabs Δ𝜙 = 𝜙 # -𝜙 " .

III. Results and discussion

III.1 Single slab resonator

In the present study, the considered intrinsic parameters for air at ambient temperature are: 𝜌 ! = 1.2 𝑘𝑔 𝑚 H ⁄ and 𝑐 ! = 343 𝑚 𝑠 ⁄ . Since the acoustic equations are linear in this study, we considered normalized incident frequency 𝐹 A% = ω (2𝜋 𝑓 I $ ) ⁄ and normalized modulation frequency

𝐹 1 = Ω (2𝜋 𝑓 I $ ) ⁄
, where

𝑓 I $ = 𝑐 # $ (2𝑑 ⁄
) is the resonance frequency of the slab without temporal modulation. Figure 3 shows the transmission results for the case of 𝛿 = 5, 𝐹 1 = 1.12 and 𝑁 = 5. In such configuration, since the modulation rate is relatively low, the conversion from the fundamental mode to higher order harmonics (|𝑛| ≥ 3) can be omitted. So only 𝑛 = 0, ±1, ±2 are shown in the figure. Fig. 3(a) displays the transmission curves for the static case without modulation (black curve) and the transmission coefficients for the temporally modulated slab for orders 𝑖 = 0, ±1, ±2 as function of the incident frequency. We can see that under temporal modulation, part of the energy of the fundamental mode is converted to higher orders modes located at 𝐹 &* ± 𝑛𝐹 ) . It indicates that if the system is properly tuned, the frequency conversion could be stronger, then the nonreciprocity is possible with some spatial bias involved. Further, we confronted these results with numerical ones from simulations based on finite elements (FE) method via the commercial software COMSOL Multiphysics v5.5. The comparison is shown in Fig. 3(b) for the chosen case of the monochromatic incident wave with frequency 𝐹 A% = 10.5. Because of the existence of timevarying parameters, the FE simulations were performed in the time domain. The length of input signal has to be much longer than the modulation period 𝑇 1 = 2𝜋 Ω ⁄ in order to guarantee the stability and accuracy of the result. In Fig. 3(b), the response of the time modulated slab is analyzed via Fourier transform. Good agreement between theory (flat symbols) and simulation (blue solid lines) was observed.

III.2 Bilayer slab resonator

As shown in Fig. 1 (b), spatial bias is introduced into the system by adding a second time-modulated slab resonator with different initial phase. We consider the two slabs with the same thickness 𝑑, located at 𝑥 = 0 and 𝑥 = 𝐿 + 𝑑, with an air medium of length 𝐿 between them. The inner air medium can be seen as a resonator as well whose resonance frequency is 𝑓 J = 𝑐 ! 2𝐿 ⁄ . In order to achieve good nonreciprocity with this system, we tune the incident frequency 𝐹 A% , the modulation frequency Ω, the static density ratio 𝛿 and the phase difference Δ𝜙 between the modulations of the two slabs, within certain ranges. Our strategy to achieve nonreciprocity is based on two-level tuning. Firstly, we tune 𝐹 A% and 𝐹 1 with properly preselected Δ𝜙 and 𝛿. By analyzing the diagrams of transmittance asymmetry difference 

!𝑇 0 + -𝑇 0 -! (with 𝑇 ! ) = |𝑡 ! ) | " and 𝑇 ! 0 = |𝑡 ! 0 | " ),
) ! " -(∑ 𝑇 𝑖 - 2 32 
)

! " !, we were able to select a proper set of 𝐹 A% and 𝐹 1 . Afterwards, a fine optimization was performed by tuning Δ𝜙 and 𝛿 with fixed 𝐹 A% and 𝐹 1 . To acquire the nonreciprocity at a specific frequency, we can scale the slab dimension 𝑑 with the tuned parameters.

The coupling behavior of the resonators in static state (without modulation) has a significant effect on nonreciprocity. A definite static coupling behavior reduces variable elements in the tuning process. To characterize the coupling behavior, we introduce coupling factor 𝛼 = 𝑓 J 𝑓 I $ ⁄ , the ratio between the resonance frequency of the inner air waveguide 𝑓 J = 𝑐 ! 2𝐿 ⁄ and the static slab resonance frequency 𝑓 I $ . In what follows, we used the configuration of 𝛼 = 1 (see Appendix B).

The static density ratio 𝛿 determines the effective sound speed and the effective density in the slab medium, thus, its static impedance. Therefore, it affects directly the scattering behavior on the boundary between slab and air, because this density change leads to mismatched impedance on the boundary which impacts the wave reflection and transmission. As 𝛿 is larger, this scattering becomes stronger, which contributes to the wave asymmetry under spatial bias. However, large 𝛿 weakens the feasibility of the system. To be more realistic, we set 𝛿 = 5. The thickness of slab is set as 𝑑 = 0.05𝑚 and the length of the air medium 𝐿 is determined by 𝐿 = √𝛿𝑑 𝛼 ⁄ .

The density of the two cascaded slabs is time-modulated as

𝜌 # = 𝛿𝜌 ! [1 + 2 • 𝑀 cos(𝛺𝑡)] and 𝜌 " = 𝛿𝜌 ! [1 + 2 • 𝑀 cos(𝛺𝑡 + 𝛥𝜙)],
where the phase difference Δ𝜙 is taken into account. In what follows, we utilized 0.5𝜋 as the preset value of Δ𝜙 which leads to spatiotemporal bias and breaks the time reversal symmetry. When Δ𝜙 = 0, the system complies with time reversal symmetry as the bilayer slab resonator system is symmetric. When Δ𝜙 = 𝜋 , although the time reversal symmetry is broken, it only leads to phase inversion between the wave transmitted in opposite directions while the amplitudes are kept the same. As asymmetry appears in Δ𝜙 ∈ (0, 𝜋) while we get no asymmetry at both limits of this range, an extremum exists. Consequently, we have first chosen Δ𝜙 = 0.5𝜋 where we expect to have the maximum effect of asymmetry (see Appendix C).

The modulation depth 𝑀 is directly related to the external energy brought into the system actively, so practically we tend to adopt relatively small values for the modulation depth. A weak modulation not only enables the feasibility of the system, but also prevents the transmitted wave from being overamplified by the modulation. Here the modulation depth is chosen as 𝑀 = 0.06. Then, we first searched for nonreciprocal wave behavior by sweeping the incidence frequency 𝐹 &* and the modulation frequency 𝐹 ) . Here we are interested in the scattering properties of the fundamental mode. ) -𝑇 ! 0 | > 0.9 and |10 𝑙𝑜𝑔 #! (𝑇 ! ) /𝑇 ! 0 )| > 20𝑑𝐵 in a wide range of 𝐹 A% , which correspond to yellow zones that are wide on the 𝐹 A% axis in the As shown in Fig. 4(c), it is difficult to achieve high level asymmetry of total transmission in this system, so the nonreciprocity here is mainly due to frequency conversion. We observe that Fig. 4(a) and(b) show some periodicity on the 𝐹 A% axis. The nonreciprocity zones tend to appear at multiples of the resonance frequency of the slab, for example, the marked point where 𝐹 A% = 8 corresponds to the actual frequency 8𝑓 I $ . In fact, far away from resonances, the reflection is dominant and the effect of frequency conversion on the transmitted waves becomes weak. Another interesting phenomenon reflected in the Fig. 4 is that when 𝐹 1 = 1, all the asymmetries disappear. In this case, the actual modulation frequency is equal to the resonance frequency of the slab, 𝑓 1 = 𝑓 I $ . In this case, the spatial biasing effect from phase difference becomes weak.

For an optimized case of nonreciprocity, we selected 𝐹 A% = 8 and 𝐹 1 = 0.76, where |𝑇 ! ) -𝑇 ! 0 | = 0.956 and |10 𝑙𝑜𝑔 #! (𝑇 ! ) /𝑇 ! 0 )| = 25.98dB (Black dot indicated in Fig. 4). Under this configuration, the positive and negative transmission coefficients of the fundamental mode are, 𝑡 ! ) = 0.049 and 𝑡 ! 0 = 0.979. While fixing the same values 𝐹 A% and 𝐹 1 , we performed a 2 nd level fine tuning where we swept for 𝛿 and Δ𝜙 (see Appendix D). A better result is achieved with 𝛥𝜙 = 0.46𝜋 and 𝛿 = 5. With this fine optimization, the transmission coefficients become 𝑡 ! ) = 0.043 and 𝑡 ! 0 = 0.979, so nonreciprocal transmission is slightly improved in comparison with the previous result. For this configuration, we plot in Fig. 5 the transmission coefficient in both propagation directions with incident monochromatic wave at the frequency of 𝐹 A% = 8 (Fig. 5(a) and (b)). We can clearly see that the 0 th order mode is dominant in the negative propagation direction while it is almost depleted in the positive direction with strong frequency conversion at higher order modes. We also plot the fundamental mode transmission in both propagation directions in Fig. 5(c To further illustrate the nonreciprocity behavior, we plot in Fig. 6 the total pressure as function of space and time based on transit FEM simulation. The figure shows the total pressure on the whole structure within a chosen duration of time. In the negative direction (Fig. 6(a)), the incident wave can pass through our structure and the wave form is little distorted, indicating the transmission of the fundamental mode with relatively low reflection in contrast to that of the positive direction. However, in the positive direction (Fig. 6(b)), we observe a different wave propagation phenomenon where the pattern of the fundamental mode is no longer dominant, and frequency conversion to higher frequency orders is observed. The modulation wave behavior shown in Fig. 6(b) corresponds to the superposition of several harmonic waves (±1 order, ±2 order, etc.).

III.3 Unidirectional frequency conversion

Since the nonreciprocity in our system is achieved owing to frequency conversion, we further exploited the unidirectional frequency conversion under the nonreciprocity premise. As schematically shown in Fig. 7, for a harmonic excitation, if the modulation frequency is chosen so that the first order corresponds to one of the resonance frequencies of the slab, this first order mode can be highly transmitted. There are numerous possibilities for frequency conversion, so we consider for instance two of them: from 0 th to -1 st and from 0 th to +1 st which are shown by arrows vertically orienting. In the example of Fig. 7, if we choose a specific frequency of modulation so that the -1 st order corresponds to one of the resonance frequencies of the slab, this order could be highly transmitted while the fundamental mode and the +1 st order being weakly transmitted. Further, if high transmission exists at both fundamental mode and one of the ±1 st order modes due to large transmission bandwidth, we can achieve both unidirectional frequency conversion and nonreciprocity by manipulating the modulation.

Figure 7. Schematic of the frequency conversion. The -1 st order mode is at the resonance frequency of the slab instead of the fundamental mode and the 1 st order mode. Thus, -1 st order mode may be transmitted with higher amplitude. To illustrate this idea, we consider the configuration of 𝐹 1 = 0.85, 𝛥𝜙 = 0.589𝜋 and 𝛿 = 12 where strong asymmetries of all the ±1 st and 0 th order modes are achieved. We plot in Fig. 8 (a) the transmission coefficient in the frequency domain for the 0 th and ±1 st orders. We can observe that the ±1 st orders modes are both dominant in the transmission for one of the directions of propagation.

At 𝐹 A% = 8.85 for instance, the -1 st orders mode (𝐹 A% -𝐹 1 ) is at a resonance frequency (8𝑓 I $ ). Figures 8 (b) and (c) display the transmission coefficient with incident monochromatic wave at 𝐹 A% = 8.85. In the positive direction, the amplitude of the -1 st order reaches 0.61 and becomes the dominant mode and the amplitude of the fundamental mode is 0.18, while in the negative direction, the fundamental mode's amplitude is 0.78 and the amplitudes of all the neighboring modes are low. In this case, unidirectional frequency conversion appears.

Regarding the experimental implementation of the system, for instance, it can be built using successive layers of air and gas with different densities, separated by an airtight thin membrane to avoid being mixed. Then, the effective density can be modulated in time using pistons that can change the volume of each cavity layer. The thickness of the layers can be chosen to operate at frequency ranges far from the flexural resonances of the membranes. The existence of the membranes will only slightly reduce the bandwidth of nonreciprocity which can still be achieved by fine tuning the parameters of the system.

Conclusion

In this work, we have demonstrated nonreciprocal acoustic transmission and unidirectional frequency conversion in cascaded fluid slab resonators based on temporal modulation of their effective densities, with phase difference of the time modulations between the slabs. A theoretical transfer matrix method based on plan waves expansion has been developed for efficient characterization of the acoustic dispersion of the system, while numerical simulations based on FEM have been conducted to assess the theoretical findings. Optimizations over the system's parameters was carried out to achieve broadband nonreciprocity and frequency conversion in the two-slab system. An acoustic nonreciprocity behavior has been demonstrated for a monochromatic incident wave, with almost 97.9% transmission in the positive direction while only 4.3% is transmitted in the negative direction. Furthermore, unidirectional frequency conversion has been achieved. Over half of the transmitted acoustic energy has been converted into one mode with higher static density ratio 𝛿 . The proposed design of nonreciprocal acoustic system displays promising functionalities, with a simple compact configuration to achieve unidirectional wave propagation and frequency conversion. Though the present system is purely theoretical and far from representing a realistic device for application, it is possible to imagine a solid system where we only consider longitudinal waves which are described with the same Helmholtz equation, thus behaves the same as acoustic waves in fluid. In this case, our approach could also be conducted by considering the time modulation of the effective stiffness of the materials using piezoelectric elements instead of density. Further, the time-modulation capability of the design is to be investigated especially when the frequency of modulation is comparable to the incident frequency of the system, our design offers a platform that could inspire futuristic devices for multiple applications, including biomedical ultrasound devices, improved energy harvesting and communication system. 

Figure 1 .

 1 Figure 1. Schematic of a single-slab (a) system and a two-cascaded-slab (b) system with time modulated effectives densities. Harmonics appear in the transmitted and reflected waves due to the modulation.

Figure 2 .

 2 Figure 2. Schematic of the transfer matrix 𝑴 !→!#$ between layers. 𝑪 ! ± is the complex amplitude of forward/backward wave at the right boundary of layer 𝑠.

Figure 3 .

 3 Figure 3. Transmission through a single time modulated slab. (a) Calculated transmission in the static case (black solid line) and transmission components |𝑡 & | for the 𝑖 '( order up to the second order. The modulation frequency in this case is 𝐹 ) = 1.12. (b) Transmission spectrum for an incident monochromatic wave at frequency Fin=10.5. Blue solid curve stands for the spectrum obtained from time dependent finite element simulation (FEM), while red flat marks stand for theoretically predicted transmission coefficients for the 0 th , ±1 st and ±2 nd orders (TMM).

Figure 4 .

 4 Figure 4. Transmission analysis between right and left propagations as function of the normalized incident frequency 𝐹 &* and the normalized modulation frequency 𝐹 ) , for ∆𝜙 = 0.5𝜋 and 𝛿 = 5. (a) Asymmetry

  difference of the 0 th order mode transmittance, standing for |𝑇 + # -𝑇 + , |. (b) Asymmetry ratio of 0 th order mode transmittance, standing for |10 𝑙𝑜𝑔 $+ (𝑇 + # /𝑇 + , )|. (c) Total transmission difference, standing for all the modes are included. The black dot in these figures marks the point where 𝐹 &* = 8 and 𝐹 ) = 0.76.

Fig. 4 (

 4 a) and (b) show the quantities |𝑇 ! ) -𝑇 ! 0 | and |10 𝑙𝑜𝑔 #! (𝑇 ! ) /𝑇 ! 0 )| for the fundamental mode, respectively, as function of the normalized modulation frequency 𝐹 1 and incident frequency 𝐹 A% . Fig.4(c) plots the normalized total transmission difference for the convenience of observation. The criterions for finding nonreciprocity are |𝑇 !

Figure 5 .

 5 Figure 5.(a) (b) Transmission coefficient for the positive direction (a) and the negative direction (b) with 𝐹 &* = 8, 𝐹 ) = 0.76, 𝛥𝜙 = 0.46𝜋 and 𝛿 = 5. (c) Theoretically calculated transmission coefficient curve

  mode (0 th order) for both directions as function of 𝐹 &* , for 𝐹 ) = 0.76, 𝛥𝜙 = 0.46𝜋 and 𝛿 = 5. The black dash lines and arrow mark the bandwidth.

  ) where we can deduce acoustic nonreciprocity around the incident frequency. The bandwidth of nonreciprocity is defined as|𝑇 ! ) (ω) -𝑇 ! 0 (ω)| > 0.5 × Max (|𝑇 ! ) -𝑇 ! 0 |).The normalized bandwidth of nonreciprocity ∆𝐹 is approximately 0.51 in this case.

Figure 6 .

 6 Figure 6. Pressure field pattern for the case reported in figure 5(a) and (b), from 30ms to 31ms. 𝜆 &* = 1 𝑓 &* ⁄ is the wavelength of the incident wave and 𝜆 ) = 2𝜋 𝛺 ⁄ is the modulation wavelength. (a) Negative direction; (b) positive direction.

Figure 8 .

 8 Figure 8. (a) Transmission coefficient in the frequency domain for the 0 th , ±1 st and ±2 nd orders with 𝐹 ) = 0.85, 𝛥𝜙 = 0.589𝜋 and 𝛿 = 12. Transmission spectrum coefficient in the positive direction (a) and the negative direction (b) at the monochromatic incident frequency 𝐹 &* = 8.85, (flat marks for theory and solid blue line for FEM based simulation).

Figure 12 .

 12 Figure 12. Results of the theoretical calculation sweeping ∆𝜙 from 0 to 𝜋 and 𝛿 from 3 to 7, with 𝐹 &* = 8 and 𝐹 ) = 0.76 inherited from the last calculation. (a) Asymmetry difference of 0 th order mode transmittance. (b) Asymmetry ratio of 0 th order mode transmittance. (c) Total transmission difference. The black dot in these figures marks the point where ∆𝜙 = 0.46𝜋 and 𝛿 = 5.

Appendix A: Conversion from transfer matrix to scattering matrix.

The schematic of the scattering system is shown is Fig. 9. The transfer matrix 𝑴 and the scattering matrix 𝑺 are defined as,

. Schematic of the system for matrix conversion

where

𝑴 $$ , 𝑴 $. , 𝑴 .$ and 𝑴 .. are matrices with 2𝑁 + 1 orders. With some algebraic manipulations, we can easily obtain the elements of the scattering matrix from the transfer matrix,

Appendix B: Determination of the coupling factor

To illustrate the static coupling behaviors, we plotted in Fig. 10 

Appendix C: Preset value of the initial phase difference

In order to verify the consistency of the preset phase difference 𝛥𝜙 = 0.5, a series of calculations were performed upon 𝛥𝜙. Figure 11 presents the absolute value of difference between the right and left transmission coefficients of the fundamental mode,

•, as function of 𝛥𝜙 for the considered modulating frequencies 𝐹 1 = 0.7, 0.9, and 1.1. For all these three cases, high level of transmission difference, indicating strong nonreciprocity, appears where Δ𝜙 is between 0.4 𝜋 and 0.6 𝜋. To conclude, it is rational to assume strong asymmetry at 𝛥𝜙 = 0.5. 

Appendix D: Second-level fine tuning

Under 𝐹 A% = 8 and 𝐹 1 = 0.76 , we performed a refinement of the optimization for stronger nonreciprocity.