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Abstract. Case-based reasoning (CBR) is an experience-based app-roach to 
solving problems; it adapts previously successful cases to new problems following the 
key assumption: the more similar the cases, the more similar their solutions. Despite 
its popularity, there are few works on foundations, or properties, that may underlie 
CBR models.

This paper bridges this gap by defining various notions capturing the above 
assumption, and proposing a set of principles that a CBR system would satisfy. We 
discuss their properties and show that the principles that are founded on the CBR 
assumption are incompatible with some axioms underlying non-monotonic reasoning 
(NMR). This shows that CBR and NMR are different forms of reasoning, and sheds light 
on the reasons behind their disagreements.
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1 Introduction

Case-based reasoning (CBR) is an experience-based approach to solving prob-
lems. It uses stored cases describing similar prior problem-solving episodes and 
adapts their solutions to fit new needs (or new cases). For example, a car dealer 
would guess the price of a given car by comparing its characteristics with those 
of cars that have been sold. This form of reasoning has been used in the liter-
ature for solving various practical problems including some in the medical (e.g.
[10,13,14]) and legal (e.g. [2–4,15]) domains.

Several works have been devoted to modeling CBR, and various approaches 
can be distinguished including logic-based [5,6,16] and argumentation-based [9, 
11] approaches (see [1,7,12] for surveys). However, despite its popularity, there 
are few works on foundations, or properties, that may underlie CBR models. 
Foundations are important not only for a better understanding of case-based 
reasoning in general, but also for clarifying the basic assumptions underlying 
models, comparing different models, and also for comparing case-based reasoning 
with other kinds of reasoning like defeasible reasoning.
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This paper bridges this gap. It starts by analysing the basic assumption
behind case-based reasoning, namely “the more similar the cases, the more sim-
ilar their outcomes”. It discusses three independent notions that capture (in
different ways) the assumption. Then, the paper proposes principles that a case-
based reasoning model would satisfy and analyses their properties. Some prin-
ciples ensure the three forms of the CBR assumption, and we show that they
are incompatible with some axioms underlying non-monotonic reasoning (NMR)
[8], namely cautious monotonicity. This shows that CBR and NMR are different
forms of reasoning, and sheds light on the reasons behind their differences.

The paper is organized as follows: Sect. 2 introduces CBR problems, Sect. 3
discusses various formalizations of the key assumption behind CBR, Sect. 4 intro-
duces basic principles that a model would satisfy. The last section concludes.

2 Background

Before introducing formally the basic notions of a CBR problem, let us consider
the following illustrative example borrowed from [5].

Example 1. Consider the problem of identifying the price of second-hand cars. A
car is described with five attributes, namely years old, power, mileage, the state
of equipment, and shape. Knowing the characteristics and the prices of four cars
(C1, C2, C3, C4) (summarized in the table below), the problem is to identify the
price of the new car (Cn) whose characteristics are also known.

Cases Years old Power Mileage Equipment Shape Price
C1 1 1300 20 000 poor good 8000
C2 2 1600 30 000 excellent poor 7000
C3 2 1600 40 000 good good 5000
C4 3 1500 60 000 excellent poor 5000
Cn 2 1600 50 000 poor good ?

To identify the price of Cn, any CBR model would compare the characteristics
of cars as well as their prices. Hence, it would use two similarity measures: one
for comparing prices (So) and another for comparing attributes-values (Si). In
[5], So is defined as follows:

So(u, v) =

⎧⎨
⎩

1 if |u − v| ≤ 500
0 if |u − v| ≥ 2000
1 − 1

1500 ∗ (|u − v| − 500) if 500 < |u − v| < 2000

It is easy to check that So(x, x) = 1, So(5000, 7000) = So(5000, 8000) = 0 and
So(7000, 8000) = 2

3 .
Regarding Si, it combines five measures, each of which compares the values of

an attribute. S1 compares years old (respectively mileage) as follows: S1(u, v) =
min(u,v)
max(u,v) . For instance, S1(1, 2) = 1

2 and S1(20000, 30000) = 2
3 . The measure that

compares the powers of two cars is defined as follows: S2(u, v) = 1− ( |u−v|
1000 ). For



instance, S2(1300, 1600) = 7
10 . Finally, equipment and shape are compared using

the measure S3, which assumes the ordering bad < poor < good < excellent.

S3(v, v′) =

⎧⎪⎪⎨
⎪⎪⎩

1 if v = v′
2
3

if v and v’ are consecutive
1
3

if there is exactly one element between v and v’
0 otherwise.

The similarity between (the characteristics of) two cars is the minimal similarity
of the characteristics. For instance, Si(C1, C2) = min(S1(1, 2), S2(1300, 1600),
S1(20000, 30000), S3(poor, excellent), S3(good,poor)) = min(1

2 , 7
10 , 2

3 , 1
3 , 2

3 ) =
1
3 . The table below summarises the values returned by Si for each pair of cars.

Cases C1 C2 C3 C4 Cn

C1 1 1
3

1
2

1
3

2
5

C2
1
3 1 2

3
1
2

1
3

C3
1
2

2
3 1 2

3
2
3

C4
1
3

1
2

2
3 1 1

3

Cn
2
5

1
3

2
3

1
3 1

Throughout the paper, we assume a finite and non-empty set F = {f1, . . . , fn,
f} of features, where f1, . . . , fn describe the cases (e.g. Power, Mileage, Shape)
and f is the feature being solved (price in the example). Let dom be a function on
F which returns the domain of every f ∈ F . Hence, dom(f) is the set of possible
outcomes of a CBR problem, which is finite in classification tasks. In addition
to this set, we assume the special symbols ? and Und, which denote respectively
that the value of f is pending and undecided by a CBR model. We call literal
every pair (f, v) such that f ∈ F \{f} and v ∈ dom(f), and instance every set of
literals, where each feature f1, . . . , fn appears exactly once. We denote by Inst
the set of all possible instances, and call it input space. The latter is endowed with
a similarity measure Si, which assesses how close are instances. The set dom(f)
is endowed with a similarity measure So, which compares outcomes. Recall that
a similarity measure S on a set X is a function S : X × X → [0, 1] where:

– ∀x ∈ X, S(x, x) = 1
– ∀x, y ∈ X, S(x, y) = S(y, x)

We consider two additional parameters 0 < δi ≤ 1 and 0 < δo ≤ 1, which repre-
sent the thresholds for considering respectively two instances and two outcomes
as somewhat similar. More precisely, for x, y ∈ Inst, x is dissimilar to y iff
Si(x, y) < δo and for v, v′ ∈ dom(f), v is dissimilar to v′ iff So(v, v′) < δo.

Let us now introduce the backbone of a CBR problem, the notion of case. It
is an instance labelled with an outcome.

Definition 1 (Case). A case is a pair c = 〈I, v〉 such that I ∈ Inst and
v ∈ dom(f) ∪ {?}. We call c a past case when v ∈ dom(f), and a new case
when v =?. A case base is a sample that consists of n past cases ci = 〈Ii, vi〉
(1 ≤ i ≤ n).



In [5], a case base is said to be consistent if identical cases in the base have
identical outcomes (i.e., for all cases 〈I, v〉 and 〈I ′, v′〉 in a base, if I = I ′ then
v = v′). In some problems like the one described in the above example, this
constraint may be strong as the same instances may have different but similar
outcomes. It is also possible that similar instances have the same or similar
outcomes. Imagine a second-hand car C∗ which has the same characteristics
as C1, but its price is 8400. Note that So(8000, 8400) = 1, which means that
the difference between the two prices is negligible. In what follows, we generalize
this notion of consistency using similarity measures. The idea is that fully similar
instances get fully similar outcomes.

Definition 2 (Consistency). A case base Σ is consistent iff ∀〈I, v〉, 〈I ′, v′〉 ∈
Σ, if Si(I, I ′) = 1 then So(v, v′) = 1. It is inconsistent otherwise.

It is easy to see that in a consistent case base, identical instances may receive
different but fully similar outcomes.

Property 1. If a case base Σ is consistent, then ∀〈I, v〉, 〈I ′, v′〉 ∈ Σ, if I = I ′,
then So(v, v′) = 1.

Proof. Let Σ be a consistent case base. Assume that 〈I, v〉, 〈I ′, v′〉 ∈ Σ such that
I = I ′. Since Si is a similarity measure, then Si(I, I ′) = 1. From Consistency of
Σ, So(v, v′) = 1.

Throughout the paper, we call CBR theory, or theory for short, a tuple
containing a set of attributes, their domains, two similarity measures Si,So and
their thresholds.

Definition 3 (Theory). A theory is a tuple T = 〈F , dom,Si,So, δi, δo〉.

3 CBR Basic Assumption

Case-based reasoning is heavily based on similarities between cases. It looks for
the most similar past cases to the new case, then adapts their outcomes following
the key rule:

The more similar the cases (in the sense of Si), the more similar their
outcomes (in the sense of So).

Formalizing this rule is important for developing reasonable CBR models and
also for checking whether existing models obey the rule. In [5], it has been for-
malized as a fuzzy gradual rule, which states that the similarity of two instances
should be lower or equal to the similarity of their outcomes. Throughout the
paper, we refer to this notion as strong coherence.

Definition 4 (Strong Coherence). A case base Σ is strongly coherent iff
∀〈I, v〉, 〈I ′, v′〉 ∈ Σ, Si(I, I ′) ≤ So(v, v′).



Example 1 (Cont). The case base Σ1 = {Ci = 〈Ii, vi〉, i = 1, . . . , 4} is not
strongly coherent. For instance, Si(I1, I3) = 1

2 while So(v1, v3) = 0.

Example 2. Consider the case base Σ2 = {C = 〈I, v〉, C ′ = 〈I ′, v′〉}. If
Si(I, I ′) = 0.7 and So(v, v′) ≥ 0.7, then Σ is strongly coherent. Assume now
that Si(I, I ′) = 0.1 and So(v, v′) = 1. Again, Σ2 is strongly coherent even if the
two cases are dissimilar (let δi = 0.5).

It is easy to show that fully similar cases in a strongly coherent case base
have fully similar outcomes.

Property 2. Let Σ be a strongly coherent case base. For all 〈I, v〉, 〈I ′, v′〉 ∈ Σ, if
Si(I, I ′) = 1, then So(v, v′) = 1.

Proof. Let Σ be a strongly coherent case base. Let 〈I, v〉, 〈I ′, v′〉 ∈ Σ such
that Si(I, I ′) = 1. Strong coherence of Σ implies Si(I, I ′) ≤ So(v, v′). Since
So(v, v′) ∈ [0, 1], then So(v, v′) = 1.

It is also easy to show that any strongly coherent case base is consistent.
The converse is false as shown in Example 1 (the base Σ1 is consistent but not
strongly coherent).

Property 3. If a case base is strongly coherent, then it is consistent. The converse
does not hold.

Proof. Let Σ be a case base and assume it is strongly coherent. Let
〈I, v〉, 〈I ′, v′〉 ∈ Σ such that Si(I, I ′) = 1. From Property 2, it follows that
So(v, v′) = 1.

By directly linking the similarity of outcomes with the similarity of instances,
the property of strong coherence ensures that the former is proportional to the
latter. However, the similarity measures Si and So as well as their corresponding
thresholds (δi and δo) may be different and not necessarily commensurate. This
makes the satisfaction of the property difficult in case of such measures. Let us
illustrate the issue with the following example.

Example 3. Suppose we have a case base Σ3 on student grades. There are 4
attributes corresponding to courses and which take values from the interval
[0, 20]; the outcome is a global appreciation whose range consists of 4 qualitative
levels: bad < poor < good < excellent. Let So be the similarity measure S3

in Example 1. Similarity between any pair of grades obtained in a course is
defined by S(u, v) = 1 − ( |u−v|

20 ). The similarity measure Si takes the minimal
value returned by S on the four courses. Assume Σ3 contains two students who
got respectively I = 〈20, 20, 20, 20〉 and v = “excellent” as global appreciation,
and I ′ = 〈20, 20, 15, 15〉 with appreciation v′ = “good”. Hence, Si(I, I ′) = 0.75
and So(v, v′) = 2

3 . Note that the base is not strongly coherent. In order to be
coherent, So(v, v′) should be equal to 1, which is not reasonable in the example as
the two instances are different and deserve different appreciations. Furthermore,
the scale of So does not have an intermediate value between 2

3 and 1.



In what follows, we introduce a novel notion of weak coherence, which makes
use of the two thresholds for judging similar instances/outcomes. It states that
similar cases should receive similar outcomes.

Definition 5 (Weak Coherence). A case-base Σ is weakly coherent iff
∀〈I, v〉, 〈I ′, v′〉 ∈ Σ, if Si(I, I ′) ≥ δi, then So(v, v′) ≥ δo.

Example 3 (Cont). If δi ≥ 0.75 and δo ≥ 2
3 , then Σ2 is weakly coherent.

The above example shows that a case base may be weakly but not strongly
coherent. However, weak coherence follows from the strong version when δi ≥ δo.

Proposition 1. Let Σ be a case base and δi ≥ δo. If Σ is strongly coherent,
then Σ is also weakly coherent.

Proof. Assume δi ≥ δo. Let Σ be a strongly coherent case base, and 〈I, v〉,
〈I ′, v′〉 ∈ Σ. Assume Si(I, I ′) ≥ δi. From strong coherence, δi ≤ Si(I, I ′) ≤
So(v, v′). Hence, So(v, v′) ≥ δo.

It is worth mentioning that consistency does not follow from weak coherence.
Indeed, it is possible to find a weakly coherent case base which contains two cases
such that Si(I, I ′) = 1, thus Si(I, I ′) ≥ δi, while δo ≤ So(v, v′) < 1.

The two versions of coherence compare pairs of cases of a case base. Our
next notion, called regularity, is defined on the whole set of cases and ensures
that the closest instances receive the closest outcomes. Indeed, if an instance I
is closer to I ′ than to I ′′, then its outcome should be closer to that of I ′.

Definition 6 (Regularity). A case-base Σ is regular iff ∀〈I, v〉, 〈I ′, v′〉,
〈I ′′, v′′〉 ∈ Σ, if Si(I, I ′) ≥ Si(I, I ′′) then So(v, v′) ≥ So(v, v′′).

Example 1 (Cont). The case base Σ1 = {Ci = 〈Ii, vi〉, i = 1, . . . , 4} is not
regular. For instance, Si(I1, I3) > Si(I1, I2) while So(v1, v3) < So(v1, v2).

Regularity is different from the two forms of coherence, and thus it does not
imply or follow from them. It is also independent from consistency.

4 Axioms for CBR

A CBR model is a function, which takes as input a theory and a new case, and
returns possible outcomes of the latter. Since every instance is assigned exactly
one label, one expects that a model provides a single solution. However, this is
not always possible since the new case may be close to several differently labelled
cases, and the model cannot discriminate between those labels. So, each of label
is considered as a candidate outcome. It is also possible that the new case is
dissimilar to all past cases of a base. Hence, instead of returning an arbitrary
outcome, we assume that a model may rerun the symbol Und (for undecided),
meaning no solution is proposed.



Definition 7 (CBR Model). Let T = 〈F , dom,Si,So, δi, δo〉 be a theory. A
CBR model is a function R mapping every case base Σ and new case 〈I, ?〉 into
a set O ⊆ dom(f)∪{Und} such that O �= ∅ and either O = {Und} or O ⊆ dom(f).
We write Σ ⊕ 〈I, ?〉 |∼ T,RO.

In what follows, we assume arbitrary but fixed theory T, case base Σ, new
case 〈I, ?〉 and CBR model R. We introduce some principles (or properties)
that a reasonable CBR model would satisfy. The first two principles concern
the situation where the new case is dissimilar to all the past cases of the base.
There are two possibilities. The first consists of proposing outcomes of the closest
cases. This may be undesirable in applications like medical diagnosis, where a
CBR model looks for a diagnosis of patients of the basis of their symptoms.

Principle 1 (Strong Completeness). Σ ⊕ 〈I, ?〉 |∼ T,RO with O ⊆ dom(f).

The second possibility consists of abstaining from choosing an arbitrary out-
come, and ensures that the model returns the symbol Und.

Principle 2 (Weak Completeness). Σ ⊕ 〈I, ?〉 |∼ T,R{Und} iff ∀〈I, v〉 ∈ Σ,
Si(In, I) < δi.

Note that any model which satisfies weak completeness returns Und when the
case base is empty. This is reasonable as arbitrariness is avoided.

Proposition 2. If a model R satisfies weak completeness, then ∅ ⊕
〈I, ?〉 |∼ T,R{Und}.

The strong and weak versions of completeness are incompatible, i.e., there is
no CBR model which can satisfies both at the same time. Indeed, they recom-
mend different outcomes in the above mentioned particular case.

Proposition 3. Strong completeness and weak completeness are incompatible

The third principle ensures that the model preserves the consistency of the
case base. Of course, this therefore assumes that the base is consistent.

Principle 3 (Consistency). Let Σ be consistent and Σ ⊕ 〈I, ?〉 |∼ T,R O such
that O �= {Und}. For any v ∈ O, Σ ∪ {〈In, v〉} is consistent.

The three next principles are those that capture the CBR rule discussed
previously. Strong coherence states that adding the new case labelled with any
of its candidate outcomes to a strongly coherent base would preserve coherence.

Principle 4 (Strong Coherence). Let Σ be strongly coherent and Σ ⊕ 〈I, ?〉
|∼ T,R O such that O �= {Und}. For any v ∈ O, Σ ∪{〈In, v〉} is strongly coherent.

In the same way, weak coherence ensures that a CBR model preserves the
weak coherence of a case base.



Principle 5 (Weak Coherence). Let Σ be weakly coherent and Σ ⊕ 〈I, ?〉
|∼ T,R O such that O �= {Und}. For any v ∈ O, Σ ∪ {〈In, v〉} is weakly coherent.

Proposition 4. Let T = 〈F , dom,Si,So, δi, δo〉 be a theory such that δi ≥ δo. If
a CBR model satisfies strong coherence, then it satisfies weak coherent.

Proof. Let δi ≥ δo, 〈I, ?〉 a new case, and a CBR model which satisfies strong
coherence. Let Σ ⊕ 〈I, ?〉 |∼ T,R O. It holds that for any v ∈ O, Σ ∪ {〈In, v〉}
is strongly coherent. From Proposition 1, since δi ≥ δo, then Σ ∪ {〈In, v〉} is
weakly coherent.

Regularity principle ensures that a CBR model preserves the regularity of a
case base.

Principle 6 (Regularity). Let Σ be regular and Σ ⊕ 〈I, ?〉 |∼ T,R O such that
O �= {Und}. For any v ∈ O, Σ ∪ {〈In, v〉} is regular.

In what follows, we show that case-based reasoning is non-monotonic as its
conclusions can be revised when a base is extended with additional cases. Let us
first define formally the principle of non-monotonicity.

Principle 7 (Non-Monotonicity).
⎧⎨
⎩

Σ ⊕ 〈I, ?〉 |∼ T,RO

�=⇒ Σ′ ⊕ 〈I, ?〉 |∼ T,RO

Σ ⊆ Σ′

The following result shows that non-monotonicity follows from weak com-
pleteness.

Proposition 5. If a CBR model satisfies weak completeness, then it satisfies
non-monotonicity.

Proof. Assume a CBR model R which satisfies weak completeness. Let Σ be a
case base and 〈I, ?〉 a new case. Assume Σ = ∅, then ∅ ⊕ 〈I, ?〉 |∼ T,R{Und}. Let
now Σ′ = {〈I, v〉} such that I = In. Obviously, Si(I, In) = 1 and Si(I, In) ≥ δi

(since 0 < δi ≤ 1). So, Σ′ ⊕ 〈I, ?〉 �|∼ T,R{Und}.

We show next that one of the principles capturing the basis assumption of
CBR, namely strong coherence, is incompatible with cautious monotonicity from
[8]. This means there in no CBR model which can satisfy the two properties.

Definition 8 (Cautious Monotonicity).
⎧⎨
⎩

Σ ⊕ 〈I, ?〉 |∼ T,R{v}
=⇒ Σ ∪ {〈I, v〉} ⊕ 〈I ′, ?〉 |∼ T,R{v′}

Σ ⊕ 〈I ′, ?〉 |∼ T,R{v′}

Proposition 6. Strong coherence and cautious monotonicity are incompatible.



5 Conclusion

The paper presented a preliminary contribution on foundations of case-based
reasoning. It started by formalizing the key rule behind this form of reasoning,
then proposed a set of principles that any model would satisfy. We have shown
that CBR is non-monotonic in that conclusion could be revised in light of addi-
tional information (cases). However, some of its principles are incompatible with
some axioms describing nonmonotonic reasoning in [8].

This work can be extended in several ways. First, we plan to investigate
the properties of the principles, their consequences, and properties of models
satisfying them. We also plan to develop models satisfying the axioms. Finally,
we will analyse existing CBR models against the axioms.
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Toulouse Institute is gratefully acknowledged.
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