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Abstract  

The electro-Fenton (EF) process is a powerful electrochemical advanced oxidation process. Its 

development has progressed over the past three decades as a clean and effective technique for 

wastewater treatment. Even though conventional EF has been shown to be a powerful process 

for efficient degradation/mineralization of toxic and/or persistent organic pollutants; it still 

suffers from some downsides for industrial-scale development. Recently, research has focused 

on improving its effectiveness and relevance, mainly by modifying certain operating 

parameters; improvements in electrode material and reactor configuration, as well as coupling 

with other treatment methods. Therefore, this review evaluates the current state of the EF 

process and presents the most recent advances such as 3D-EF, chelate-EF, self-powered EF, 

pulsed current EF, bio-EF, sono-EF, sulfite-EF, pyrite-EF, and ferrate-EF in addition to its 

emerging applications like disinfection, generation of value-added products, and removal of 

emerging pollutants from water. The suitability of different modified or hybrid-EF processes 

is discussed based on their performance in H2O2 generation, degradation kinetics, 

mineralization efficiency and cost effectiveness. This review article is intended to be 

comprehensive, critical and of general interest, covering recent developments and advances in 

EF process with the aim of providing a powerful method for the treatment of wastewater 

polluted with biorecalcitrant pollutants. 

 

Keywords: Electro-Fenton; Hydroxyl radicals; Electrochemical advanced oxidation; 
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1. Introduction  

Recently, advanced oxidation processes (AOPs) have received much attention for the treatment 

of recalcitrant organic pollutants (Oturan & Aaron, 2014; Scaria et al., 2021). AOPs are 

effective for the complete removal of these compounds by mineralizing them, and improving 

biodegradability of the solution (Nidheesh et al., 2022) and reducing toxicity (Babu et al., 

2019). Among the AOPs, Fenton reaction (Eq. 1) based processes have been greatly 

appreciated in their efficiencies in treating recalcitrant organic compounds. However, the slow 

ferrous regeneration rate in Fenton reaction resulted in higher ferrous ion requirements for the 

effective removal of pollutants, which ultimately resulted in higher sludge generation (Oturan 

& Aaron, 2014). This disadvantage of the conventional Fenton process was partially solved 

using heterogeneous catalysts (Nidheesh, 2015; Heidari et al., 2021) or chelating agents (Zhang 

& Zhou, 2019) or by adding external energy, such as electricity as in the electro-Fenton (EF) 

process, UV light as in the photo-Fenton process, and ultrasound as in the sono-Fenton process. 

Fe + H O → Fe + OH + HO•       (1) 

Since its beginning in 2000, EF process has gained much confidence in the researchers for its 

superior performance, simplicity and cost effectiveness (Oturan, 2000; Oturan et al., 2000; 

Brillas et al., 2009). Non-requirement of H2O2 in EF process attracted more researchers to work 

in this field as it reduces the complexity in handling H2O2 and its associated cost (Sirés & 

Brillas, 2012). EF process is able to generate H2O2 at the cathode surface by two-electron 

reduction of dissolved oxygen at acidic conditions (Eq. 2). Rapid cathodic reduction of ferric 

ions makes the process more active by the regeneration of Fe2+ (Eq. 3), and ultimately resulted 

in the optimal ferrous ion requirement of EF process as in the range of a few mg L-1 (Nidheesh 

et al., 2013; Zhou et al., 2018; Brillas & Garcia Segura, 2020).  

O + 2H + 2e ⟶ H O          (2) 
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Fe + e ⟶ Fe2+          (3) 

Versatile applications of EF process were tested in various environmental matrices. EF process 

is found as an alternative solution for reducing arsenic toxicity in drinking water by oxidizing 

arsenite to arsenate (Nidheesh et al., 2020) and for removing ammoniacal nitrogen (Menon et 

al., 2021). Treatment efficiency of EF process for reducing organic load from complex 

wastewater and real industrial effluents like landfill leachate (Oturan et al., 2015), textile 

wastewater (Nidheesh et al., 2014), pharmaceutical wastewater (Olvera-Vargas et al., 2021a; 

Ganzenko et al., 2020), municipal wastewater treatment plant effluents (Valro et al., 2017), 

mixed industrial wastewater (Popat et al., 2019) as well as mine water (Olvera-Vargas et al., 

2021b) were recently reported. Apart from the treatment of water and wastewater, superior 

performance of EF process was reported for treating soil-washing effluents (Ganiyu et al. 2020; 

Liu et al., 2020a; Trellu et al., 2019) and sludge (Burgos-Castillo et al., 2018; Olvera-Vargas 

et al., 2019a); as well as recovering nutrients from sludge (Burgos-Castillo et al., 2018).  

2. Electro-Fenton related processes 

Based on the nature of modifications, EF related processes can be divided into two categories: 

(1) modified EF processes and (2) hybrid-EF processes (Fig. 1). In modified EF process, a 

slight modification for conventional EF process were done either to improve the efficiency of 

the process or to reduce the cost. Peroxi-coagulation (PC), fered-Fenton (FF) and anodic-

Fenton (AF) are the best examples of such modified processes. In PC process, sacrificial anodes 

such as iron or stainless steel are used (instead of stable anodes in EF process) to generate 

ferrous ions in the electrolytic system (Nidheesh & Gandhimathi, 2012; Olvera-Vargas et al., 

2019b). However, controlling ferrous ion generation is quite difficult and ultimately PC process 

is considered as the combination of electrocoagulation and EF process (Nidheesh & 

Gandhimathi, 2014; Kumar et al., 2018). pH regulation is needed at regular interval to improve 
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the mineralization efficiency of PC process (Nidheesh, 2018) as EF process predominates in 

the acidic conditions, while electrocoagulation process predominates in alkaline and neutral 

pH conditions (Venu et al., 2016). FF and AF processes are the modified versions of EF and 

PC process in which H2O2 is externally added to the system to improve the efficiency (Nidheesh 

et al., 2018).  

In hybrid-EF process, additional energy is added to the EF system to improve the performance. 

Sono-EF (SEF) and photo-EF (PEF) processes are the best examples for hybrid-EF processes. 

The addition of ultrasound or UV light improves the EF treatment efficiency by generation of 

additional radical from the decomposition of H2O2 and the acoustic cavitation phenomenon (in 

the case of SEF), by improving the ferrous ion regeneration rate and reducing the passivation 

of electrode (in the case of SEF) by the continuous cleaning with ultrasound energy (Oturan et 

al., 2008; Nidheesh et al., 2018). The bio-EF process (BEF) is another version of a hybrid-EF 

process in which energy generated from bioelectrochemical process such as the use of 

microbial fuel cells as input energy in the EF process. Another type of BEF process consists of 

sequential coupling between EF and biological degradation, in which the EF process can 

constitute a pre-treatment or post-treatment step (Olvera-Vargas et al., 2016a, Ganzenko et al., 

2018).  

A few research groups reviewed the advancements of EF process (Table SI-1) and most of the 

review articles are focused on the EF process, modified EF process and hybrid-EF process, 

which are not much focused on this review. However, there are several other applications of 

the EF process tested recently like, activated carbon regeneration, disinfection, production of 

value-added products and treatment of emerging contaminants. This review article focuses on 

such applications of EF and related processes. Furthermore, other modifications for EF process 

like, chelate-EF process, 3D-EF process, self-powered EF process, sulfite EF process etc. and 



11 
 

recent advances like the use of bifunctional catalyst, cathode modifications, flow-through 

reactors etc. are included in this review. 

 

3 Advantages and inconvenient of conventional EF process  

In recent years, the EF process has been considered as one of the most frequently used EAOPs 

approaches (Ganiyu et al., 2018). A recent study highlighted the cost effectiveness (considering 

operating costs such as sludge management, chemical use and electricity consumption) of EF 

process compared to ozonation, H2O2 photolysis, Fenton and photo-Fenton at laboratory scale 

(Mousset et al., 2021). The accumulated oxygen-equivalent criterion was newly introduced and 

it showcased the superiority of EF with only 0.0004 and 0.0012 kg-O2 of dose to reach 50% 

and 99% of mineralization, respectively (Mousset et al., 2021). Nevertheless, some advantages 

and drawbacks of the EF process should be still considered. Among the advantages, following 

can be indicated (Sirés & Brillas, 2021):  

i) Low quantity and cheaper catalyst source, 

ii) In-situ production of both H2O2 and Fe2+ to produce OH in solution increases the 

effectiveness of the process, 

iii) Use of low-cost cathodic materials to produce H2O2 by O2 reduction reaction, 

especially carbon-based materials, 

iv) Suitable for treating different water matrices because of the significant amount of 

homogenous OH originated from Fenton reaction  

v) Design and construction of the electrochemical reactors can be optimized to 

efficiently feed the O2 to the cathode surface, increasing its concentration in the 

effluent, 
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vi) Novel cathodic carbon-materials can be synthetized to enhance their electro-activity 

and selectivity to produce H2O2, 

vii) Easy post-treatment separation and reusability of the treated effluents 

viii) Easy automation and operability as well as lower energy requirements when coupled 

to renewable energies, such as solar or eolic (Ganiyu et al., 2020) 

ix) EF can be combined to efficient anodic production of heterogeneous OH in 

undivided cell by using non-active anodes, such as BDD,  

x) EF can be upgraded to PEF by using photoactive anodic materials, which are 

exposed to artificial or natural irradiation (Divyapria et al., 2021) or combined to 

others processes such as biological treatment (Olvera-Vargas et al., 2016b), 

On the other hand, important drawbacks limit the applicability of conventional EF process, 

such as:  

i) Fe3+ complexes formed are difficult to be eliminated at the end of the process, 

ii) EF process is optimal in acidic pH conditions (i.e., pH 2.8 – 3.5) and requires a final 

neutralization step to obtain environmentally tolerable effluents from the 

environmental point of view, 

iii) H2 evolution at the cathode, limiting the H2O2 generation efficiency, 

iv) pH ≥ 4.5 promotes the precipitation of Fe3+ as ferric hydroxide (loss of catalyst),  

v) Non-recyclability of the catalyst used, making the technique unsuitable for 

continuous experimental process 

Although the EF process must accomplish several tasks to real applicability, this 

electrochemical technology continues to be more efficient than anodic oxidation (Ganiyu et al., 

2021a), and its efficiency can be significantly improved with the development of hybrid-EF 

processes. 
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4. Recent advances in EF process 

4.1. Advanced electrode configurations for H2O2 generation  

Electrochemical cathodic H2O2 generation is one of the key factors controlling the efficiency 

of Fenton-based EAOPs (Ganiyu et al., 2021b). The rate and quantities of H2O2 electro-

generation during electrolysis are affected by the cathode material used and cathodic 

configuration (Zhou et al., 2021). Conventional aeration suffers from O2 mass transport and 

limitation owing to its lower water solubility (Petrucci et al., 2016). As such, different reactor 

designs and cathode-aeration configurations have been studied to allow greater H2O2 

generation and higher O2 mass transfer, respectively. 

Higher O2 mass transfer and H2O2 production rate can be achieved by the gas pressure or 

turbulent state of the solution through the cathode and/or innovative reactor designs. The 

cathode designs include gas diffusion and rotating cylinder electrodes, which pressurize the 

system and create turbulence, thus improving the mass transfer of the O2. Li et al. (2020a) using 

electrode aeration, thereby providing gas directly inside the electrode (Fig. 2a) This design 

allows easier transport of gas inside the electrode to form gas-liquid-solid interfaces with a 

higher O2 mass transfer and utilization. A natural air diffusion electrode with superhydrophobic 

three-phase interface was recently used for fast production of H2O2 (101.67 mg h‒1 cm‒2) with 

high oxygen utilization efficiency (44.5% ‒ 64.9%) (Zhang et al., 2020a). The cathode matrix 

and diffuse layer allow air to naturally diffuse into the reduction reaction interface. 

Several reactor designs such as high-pressure reactor (Scialdone et al., 2015), filter-press flow-

cell (Pérez et al., 2018), jet-type vertical/horizontal flow-reactor (Yu et al., 2020) and 

pressurized jet aerators (Fig. 2b) (Pérez et al., 2018) have been reported to produce high 

quantity of H2O2 with high O2 mass transfer rate via super-saturation of pressurized O2, supply 
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of clean air and super-saturation of O2 at ambient pressure, respectively. For example, the H2O2 

production rates of 9.2 mg h‒1 cm‒2 (jet aerators) (Pérez et al., 2017) and 101. 67 mg h‒1 cm‒2 

(natural air diffusion electrode) (Zhang et al., 2020a) were reported, which is much higher 

compared to conventional aeration using graphite cathode (2.45 mg h‒1 cm‒2) (Xia et al., 2015). 

4.2. EF process without aeration  

As already mentioned in other sections, cathodic material is a key factor in the effective electro-

generation of H2O2 in EF process. It influences on the H2O2 yield, current efficiency, and 

parallel reactions. At the same time, the performance of the cathode determines the energy 

requirements and cost. From the pioneering studies related to the EF approach (Brillas et al., 

2009), it is evident that the gas diffusion electrode (GDE) favors the gas diffusion process and 

can accelerate oxygen reduction (Wang et al., 2020). Nevertheless, gas diffusion via GDE 

depends on the O2 supply (pure O2 or air) and electrochemical reactor design, occurring 

important deficiencies, such as H2O2 yield and production rate, low oxygen utilization rate and 

higher energy consumption. Then, the highly efficient and economic O2 supply methodologies 

to the cathode remain a challenge for the effective application of GDE (Zhang et al., 2021a).  

In this sense, two strategies have been developed: i) improvements on the cathodic materials 

composition and properties and ii) the use of passive O2 diffusion from air, using O2 dissolved 

in the effluents. In the former case, significant advances have been achieved thanks to the 

nanotechnology to modify, synthetize or enhance the properties of GDE to transport the gas 

via its structure or accelerating the O2 transformation to H2O2 with higher production 

efficiencies. However, the passive O2 diffusion from air to GDE is limited by the mass transport 

of O2 in solution to the cathode and its solubility in water, in the latter case.  

Obviously, the improvement on the O2 diffusion or alternative methodologies to produce H2O2 

will enhance the performance of EF approach. Therefore, in the last few years, Du et al. (2020) 
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and Wang et al., (2021a) have reported significant insights on the innovative strategies to 

enhance both H2O2 production and its utilization efficiency using natural air diffusion electrode 

(NADE) (Fig. SI-1). For example, H2O2 production on NADE reached 158% and 188% when 

0.2 and 1.2 A were applied (Zhang et al., 2021a), respectively, with the total energy 

consumption of only 7.2% and 25.4% compared to the conventional GDE. These results clearly 

demonstrated that NADE was superior to a conventional air electrode due to the ultra-high 

oxygen mass transfer efficiency and non-requirement of external aeration, which significantly 

reduce energy consumption. 

4.3. Advances in Fenton’s reagent regeneration using multifunctional catalysts  

Homogeneous EF is highly efficient in eliminating organic compounds (Arellano et al., 2020a; 

Mousset et al., 2020) however, it represents some drawbacks. The low solubility of Fe(III) in 

aqueous solution involves operation in acidic conditions (pH around 3) during electrolysis 

implying the precipitation of ferric sludge before the disposal of treated wastewater. Moreover, 

the catalyst recyclability from the sludge is then limited. Heterogeneous EF has therefore been 

subsequently proposed (Ganiyu et al., 2018).  

Iron oxide-based cathode materials (e.g., magnetite, hematite, goethite, ferrihydrite) have been 

widely considered to favor the Fenton reaction (Ortiz de la Plata et al., 2010). These catalysts 

allow an increase in the Fe(II)/Fe(III) redox cycles, but this may decrease in the meantime due 

to the selectivity toward the electro-generation of H2O2 from oxygen reduction. Recently, 

sulfur-doped iron materials (e.g., FeS2) offer promising regeneration rates of Fe(II) catalysts, 

while promoting the H2O2 electro-generation (Tian et al., 2020a). Therefore, these bifunctional 

catalysts permit enhanced degradation kinetics and mineralization of organic pollutants in 

wastewater (Fig. 3a). Other promising multifunctional catalysts such as nitrogen-doped 

graphene (Du et al., 2021a), carbon nanotubes-doped iron (Su et al., 2019) and nitrogen-doped 
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iron materials (Cao et al., 2020) have been proposed to enhance these processes. For example, 

FeOx nanoparticles embedded in N-doped hierarchically porous carbon (FeOx/NHPC) allow 

enhanced H2O2 electro-generation and Fe(II) regeneration, leading to higher EF treatment 

efficiency (Fig. 3b) (Cao et al., 2020). 

Though promising, further long-term stability and cost effectiveness studies of these catalysts 

will be required for testing the viability at industrial-scale. Moreover, the influence of those 

catalysts on alkalization rate at the cathode surface should be carried out to avoid cathode 

passivation, when dealing with real wastewater containing magnesium and/or calcium and 

carbonates (Adnan et al., 2022).  

4.4. Degradation of perhalogenated organics: ipso-substitution  

All AOPs, particularly EF process, rely on the generation of •OH, whose reactivity is quasi 

non-selective towards organic molecules (Mousset et al., 2018). Three modes of •OH action 

were typically proposed, since several decades: (1) electron transfer reactions, (2) hydrogen 

atom abstraction, (3) electrophilic addition to an unsaturated bond (Oturan & Aaron, 2014). 

More recently, the efficiency of AOPs towards the degradation of perhalogenated organic 

compounds (CxXy), especially those with fluorine-carbon (C-F) bonds, was questioned 

(Mousset et al., 2018). Moreover, they have no unsaturated bonds and hydrogen atoms, while 

there is no possibility of direct electron transfer. Therefore, reduction processes were more 

favored to treat these oxidized contaminants. An additional mechanism of •OH (fourth mode) 

attack, namely ipso-substitution (Fig. SI-2), was recently demonstrated with the degradation 

and mineralization of carbon tetrachloride by the EF process in combination or not with anodic 

oxidation using BDD anode (Mousset et al., 2018).  

This new mode further justifies the use of EAOPs to remove per- and polyfluoroalkyl 

substances, particularly perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid. 
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These fluoropolymer-based molecules are persistent and represent environmental and human 

health risk. Updated guidelines arouse interest in proposing complementary advanced 

physicochemical treatment (Trojanowicz et al., 2018), including EF process (Fig. 3c-e). PFOA 

decay rate constant of 1.15 h-1 as well as 90% of degradation rate could be obtained at -0.4 

V/SCE of cathodic potential using EF (Fig. 3c) (Liu et al., 2015). An increase of PFOA removal 

efficiency has been even noticed when BDD anode was coupled to EF (93% of TOC removal 

after 4 h electrolysis) (Fig. 3d) (Wang et al., 2019). 91% of PFOA mineralization could be 

reached in 2 h with solar photo-electro-Fenton (SPEF) like technology (Fig. 3e) (Wang et al., 

2021b). This latter combination improved the removal efficiency of EF due to synergistic effect 

of light towards H2O2 decomposition into •OH and Fe(II) regeneration. These promising lab-

scale research further needs confirmation with real matrices at pilot scale and at actual 

concentrations found in the water bodies (ng L-1 to µg L-1 range). Caution should be taken with 

the by-products, especially the release of F- ions, whose concentration need to respect 

regulations. 

4.5. Activated carbon regeneration: application to effluents with low pollutant 

concentration  

Activated carbon (AC) is a widely used adsorbent. Once the material reaches its maximum 

adsorption capacity, an optimal treatment aims at allowing (i) desorption of pollutants and 

regeneration of AC for reuse and (ii) degradation and/or mineralization of desorbed pollutants 

for avoiding any environmental contamination. 

The EF process recently appeared as a promising technique for achieving both objectives 

(Trellu et al., 2018). The concept is based on the use of AC as cathode during the regeneration 

step. Electrochemically-enhanced desorption is ascribed to electrostatic interactions between 

the cathodic material and negatively charged compounds (Xiao & Hill, 2019). Local alkaline 
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pH conditions at the cathode favor the presence of negatively charged organic compounds 

under deprotonated form (Fig. 4). Oxidant species can also participate to the regeneration of 

the material by oxidation of adsorbed pollutants into more hydrophilic by-products (Trellu et 

al., 2018; Xiao & Hill, 2019). Oxidation of organic compounds in the bulk solution is also an 

important phenomenon that enhance pollutant desorption by the continuous shift of adsorption 

equilibrium (Trellu et al., 2021) (Fig. 4). The role of these different pathways strongly depends 

on the nature of the AC material (fiber, monolith, packed bed of grains, chemical composition, 

pore size distribution), which has an influence on reactivity of the material (e.g., H2O2 

production), ohmic drops within the material (particularly for thick AC filters) and mass 

transport conditions during the electrochemical desorption. 

It was reported that the EF process allows for near complete degradation and mineralization 

(91%) of desorbed pollutants using AC fibers cathode and phenol as pollutant. Moreover, 

oxidation of the AC surface might be avoided by a protection effect from cathodic polarization 

(Banuelos et al., 2015). Therefore, it is possible to reuse AC for several cycles with low effect 

on the adsorption capacity (Trellu et al., 2018). This application of the EF process allows for 

achieving high current efficiency, since adsorption represents a pre-concentration step that 

reduces mass transport limitations. For example, a MCE of 35% and an energy consumption 

of 0.2 kWh per gram of TOC removal were reported by Trellu et al. (2018). A crucial challenge 

is now related to the process scale-up and its implementation in continuous operation mode.  

 

4.6. Hydrogen production 

Decarbonization strategies are being considered to limit global warming, including an energy 

transition plan and electrification of society, which is the forecast to lead to the advent of the 

hydrogen economy. Hydrogen could become the energy vector of the future, replacing 
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combustion engines to decrease toxic emissions (Kumar et al., 2020). Although the hydrogen 

production is not a complete eco-sustainable process, it could reach lower prices if it is coupled 

to renewable energies and water treatment processes. This process is relevant because it favors 

the green hydrogen production systems, while that, significant innovations could be generated 

when anodic reactions could receive more relevance, for example:  

i) Cathodic H2 production coupled to direct or mediated oxidation of organic pollutants or 

wastewater by using divided reactors (Santos et al., 2020a). Therefore, H2 evolution would 

become a value-added side-reaction. Other sources of green H2 production, not addressed here, 

are biofuel cells, photoelectrochemical cells and so on, 

ii) Cathodic H2 production coupled to H2O2 electro-generation at a large O2-overpotential 

anode like BDD, as in EF approach.  

Since the hydrogen production and EF usually need electrode materials having different 

electronic structures to satisfy the requirement of different reactions, the combination of the 

two reactions has been scarcely done. Therefore, it is a great challenge to couple both the 

processes for an efficient production of hydrogen and the green degradation of organic 

pollutants. 

Wang et al. (2021a) developed an electrolyzer using CoP/C cathode for H2 production and 

CoFeP/C anode for methylene blue degradation (Fig. SI-3). This process need about +1.68 V, 

which was the result of coupling H2 evolution reaction (HER) and EF, increasing greatly the 

energy utilization than the water splitting. The potential distribution on the electrode and the 

H+ concentration gradient in the reactor were evaluated by numerical simulation, optimizing 

the electrode shape and determining the influence of diffusion transport on the reaction. On the 

other hand, the HER over-potential decreased 3.3 mV at 10 mA cm−2, while the EF was 
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improved in 2-folds, in terms of efficiency, by using a flow-reactor, demonstrating the potential 

of flow-reactor for various applications.  

4.7. Flow-through reactors in EF process  

The electrochemical reactions take place on the electrode surface, on which the electrons and 

mass transfer of pollutants is important for efficiently removing pollutants. Recent works have 

found that flow-through EF reactors have more obvious advantages than traditional batch 

reactors in terms of H2O2 production and pollutant degradation (Moraleda et al., 2020). In the 

former case, the solution flows through electrodes, enhancing the mass-transfer and current 

efficiency, and thus promoting the degradation of pollutants (Ma et al., 2016). Gao et al. (2015) 

used a flow-through EF reactor with carbon nanotube (CNT) membrane stack as the cathode 

to treat oxalic acid solution, demonstrating that the degradation efficiency for oxalic acid was 

4-folds than the combined degradation efficiency of anodic oxidation and Fenton process. 

Image of the 4 layered membrane stack and role of each layer is provided in Fig. SI-4.  

The commonly used anodes in flow-through reactor are perforated Ti sheet (Liu et al., 2020b), 

dimensionally stable anode (DSA) (Ma et al., 2016) and BDD (Moraleda et al., 2020). Trellu 

et al. (2020) synthesized a sub-stoichiometric titanium oxide reactive electrochemical 

membrane anode with a mineralization efficiency of 67% for paracetamol. Carbon felt and 

carbon nanotubes are commonly used as cathodes. Liu’s research group focused on the cathode 

modification for flow-through reactor, including Au nanoclusters CNT, and FeOCl modified 

CNT (Li et al., 2020b). After 120 min treatment, the degradation efficiency of 0.04 mM 

tetracycline was 92.1% at the rate constant of 0.056 min-1. 

Flow-through EF process has been widely used to treat heavy metals, dyes, antibiotics and 

domestic sewage (Jiao et al., 2020b; Zhang et al., 2018). Zhou’s group built a novel stacked 

flow-through EF reactor to treat domestic sewage (Ren et al., 2019), fulfilling the sulfadiazine 
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removal and disinfection in domestic sewage simultaneously with a very low energy 

consumption (0.21 kWh m-3) due to higher H2O2 yield (4.41 mg h-1m-2). 

 

4.8. EF process with orbiting electrodes reactor  

As previously stated, the electrochemical reactor design is a key factor to improve the 

efficiency of the EF processes as well as the possibility to scale up the treatment technology. 

For this reason, different groups have investigated different alternatives for the electrochemical 

devices. Among the most interesting contributions, Zahrani and Ayati (2020a, 2020b) have 

reported the use of a nanocatalyst in a novel reactor with orbiting electrodes. In this case, the 

performance of EF process was significantly improved by using the heterogeneous approach. 

The EF reactor was constructed with cylindrical plexiglass with graphite electrodes, in which 

4 anodes were placed around the main container, and 4 cathodes were putted in the middle 

using a rotating mechanical stirrer. The orbital speed of the electrodes in the center was 

adjusted. The described arrangement allows to decrease the effects of the mass transport due 

to the agitation flow in one direction as well as to reduce the diffusion layer. The results clearly 

evidenced that the treatment of organic compounds was suitable over a wide range of pH, and 

is able to eliminate 90% of organics without adjusting the pH of the effluent. The authors also 

showed the reusability of zeolites-based nanocatalyst, and the lower energy requirements due 

to the use of orbiting electrodes, allowing to develop an eco-friendly EF system. It is important 

to remark that orbiting electrodes enhanced the diffusion of the in-situ generated •OH and H2O2, 

favoring an efficient elimination of the organics.  

5. Modified EF Processes 

5.1. Three dimensional EF (3D-EF) process  
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Two-dimensional electrode commonly used in EF process has disadvantages such as slow 

mass-transfer rate, small treatment capacity and low current efficiency. To overcome these 

drawbacks, the so-called 3D-EF (Robles et al., 2020a) has been developed, in which a number 

of particles are filled in between the traditional two-dimensional electrodes. The particles are 

polarized to form countless microelectrodes, (that is, the end of the particle facing the cathode 

is positively charged and the other end facing the anode is negatively charged) which further 

leads to additional electrochemical redox reactions in the system. The 3D electrode activates 

H2O2 to generate •OH, thereby achieving efficient degradation of organic pollutants. The 3D-

EF increases the specific surface area of the working electrode, shorts the pollutant transfer 

distance, which improves the mass-transfer efficiency and current efficiency.  

At present, the manufacture of 3D electrodes with high catalytic activity, including the common 

activated carbon, foamed nickel, foamed iron, iron-carbon and, so on, is a research hotspot. 

Ghanbarlou et al. (2020) synthesized a nitrogen-doped graphene-iron based electrocatalyst and 

used it as a 3D electrode, confirming that nitrogen doping improved the oxygen reduction 

activity, and the presence of iron promoted heterogeneous EF reactions. To reduce the catalyst 

dosage and to improve the treatment efficiency, Du et al. (2020b) synthesized Fe/Fe3C@PC 

catalyst, in which the micro-electrolysis of Fe0 and porous carbon were the key to improve the 

activity though the catalyst dosage was only one tenth of that reported in literature.  

The 3D-EF process has broad application prospects in wastewater treatment to remove dyes, 

pesticides, antibiotics, landfill leaches and so on. For example, Lu (2021) used an aged-refuse 

bioreactor combined with 3D-EF to treat aged landfill leachate, achieving the removal rate of 

96.2%, 94.3%, 99.2% and 93.6% of COD, NH3-N, total phosphorus and color, respectively. 

5.2 Chelate-EF process 
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As mentioned in the previous sections, EF has been typically performed at pH 3 using Fe(II) 

or Fe(III) salts dissolved in the solution/wastewater. The pH limitation to acidic values is 

related to the speciation of Fe(III) ions in the solution, which precipitate at pH values higher 

than 4 due to progressive Fe(III) hydrolysis entailing the formation insoluble species. The 

acidic operating pH of EF is an important limitation representing additional treatment costs 

related to acidification/neutralization steps, as well as Fe sludge management, even if very less 

amount is generated.  

In order to expand the operational pH to near-neutral values, chelating agents have been used 

(Zhang & Zhou, 2019; Krishnan et al., 2022). Such compounds possess the ability to form 

stable Fe-complexes in solution over a wide pH range, since the stability constants of such 

coordination compounds are higher than those of Fe-hydroxide species. In addition to the 

stability of Fe-complex in a wide pH interval, their Fenton-like reactions with H2O2 are 

generally faster than the conventional Fenton reaction, which accelerates the degradation of 

organic pollutants (Deng et al., 2018). Such behavior is explained by the greater ability of Fe-

complexes to facilitate electron transfer from Fe2+ due to the presence of the ligand, which 

tends to lower the standard reduction potential of the complex. Fe-complexes produce OH and 

other oxidizing species through a Fenton-like mechanism, which can be represented by the 

general reactions depicted in Eqs. 4-7.  

Fe(II)-L + H2O2  Fe(III)-L + OH + OH-     (4) 

Fe(III)-L + H2O2  Fe(II)-L + H+ + HO2
     (5) 

HO2
  H+ + O2

-        (6) 

Fe(III)-L + O2
-  Fe(II)-L + O2      (7) 
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Different organic and inorganic compounds have been used as chelating agents in neutral pH 

as can be seen in Table SI-2. The most common organic compounds include 

aminopolycarboxylates such as ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-

N,N’-disuccinic acid (EDDS), while polyphosphates have been the most used inorganic ligands 

(Deng et al., 2018; Krishnan et al., 2022). The advantage of inorganic ligands like 

polyphosphates is that they do not act as OH scavengers unlike organic chelates (EDTA and 

EDDS) (Deng et al., 2020). Finally, the reduction of Fe(III)-complexes to regenerate Fe(II)-

complexes involves several mechanisms (Fig. SI-5), that are determined by the chemical 

properties of the ligands such as orbital hybridization, spin state of the metal ions and functional 

groups. Such mechanisms include electrochemical reduction at the cathode surface by direct 

electron transfer or through introduced atomic H*, and chemical reduction in the bulk solution 

(Liu et al., 2020c).  

In addition to their ability to form stable Fe-complexes in solution at near-neutral pH values 

and accelerate the Fenton reaction, some organic ligands have also been used as reductants to 

enhance Fe2+ regeneration. In the case of EF, the cathodic electrochemical reduction of Fe3+ to 

Fe2+ is a major feature ensuring continuous Fe2+ regeneration. However, some efforts have 

been made to boost such important catalyst regenerative process including the use of electrode 

surface functional groups or mediators to enhance Fe3+ reduction (Liu et al., 2021). 

 

5.3. Self-powered EF process  

The developments of self-powered EF process aims at (i) decreasing operating costs, (ii) 

decreasing environmental footprint of the process and (iii) promoting the application of the 

process in areas with limited access to the electricity grid (Ganiyu et al., 2020; Ganiyu & 

Martínez-Huitle, 2020). 
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The first approach is to use conventional renewable energy (RE) sources such as solar 

photovoltaic (PV) energy or wind turbines as power source. RE can be used for directly 

powering the EF process. Solar PV cells have been the most widely used (Ganiyu et al., 2020). 

The main advantage of this configuration is its ease of implementation (Garcia-Segura & 

Brillas, 2014). However, the level of current supply is difficult to control since it depends on 

solar irradiation. The implementation of batteries is required for avoiding such intermittent 

energy supply (Zhang et al., 2016). However, these batteries must be able to provide the 

required energy of the EF installation (in terms of capacity and power) and they represent an 

additional cost to take into consideration. Besides, the use of triboelectric nanogenerators has 

been recently proposed as a new energy source for powering EF process (Tian et al., 2020b). 

Another approach is based on the production of energy directly from the reactor, without 

external power supply. These reactors are based on the development of microbial fuel cells 

(MFCs) or photocatalytic fuel cells (PFCs). For MFCs, the anode is used as final electron 

acceptor by microorganisms, which can participate to biodegradation of organic compounds 

(Santoro et al., 2017). The EF process is usually implemented in the cathode chamber where 

H2O2 is electrochemically generated and subsequently activated to •OH through Fenton or 

Fenton-like reactions. Photo-active anodes are used for implementation of PFCs (instead of 

bioanodes for MFCs) (He et al., 2022). When it is irradiated by a UV or visible light source, 

these photo-active anodes allow for the release of electrons by photo-excitation as well as the 

oxidation of organic compounds by reactive oxygen species generated from excited holes 

formed by photo-excitation (Ganiyu et al., 2020). Implementation of the EF process in the 

cathode chamber allows for improving the removal of organic compounds in the so-called PFC-

EF process (Zhao et al., 2017). The main current limitation of these so-called MFC/PFC-EF 

processes is the low current density and power density that can be obtained. Thus, much slower 

degradation kinetic is usually reported for MFC/PFC-EF processes, compared to conventional 
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EF process. For example, it was reported 95% decolorization of Rhodamine blue and 90% TOC 

removal in 12 h of treatment by MFC-EF process (Zhuang et al., 2010). Some studies have also 

reported the use of MFCs and PFCs for generating electricity and powering ex-situ the EF 

process (Zhu & Logan, 2013).  

5.4. Pulsed current EF process  

The concept is based on the implementation of “on-off” cycles for powering the EF process. 

The objective is to maintain process effectiveness, while decreasing energy consumption. For 

example, similar COD removal was obtained by Thanapimmetha et al. (2017) when using 

pulsed current with a 2.5 kHz pulse frequency (and 25% “on” mode), compared to constant 

DC supply (Thanapimmetha et al., 2017). However, the process is different from conventional 

EF treatment, since a sacrificial iron anode was used as iron source and H2O2 was externally 

added. 

Arellano et al. (2020b) recently proposed a slightly different approach based on the use of bi-

electrical current. Two different currents were applied sequentially during the treatment. Two 

modes were compared: 600 mA during 30 min - 50 mA during 60 min (600, 50) and vice versa 

(50, 600). Similar TOC removal rate was obtained in both cases, but energy consumption was 

much lower in the first case (600, 50). In fact, at 600 mA, the formation of •OH in the bulk 

solution reached a maximum after 30 min of electrolysis and then continuously decreased with 

time, most probably because of parasitic reactions.  

Farhat et al. (2018) have also shown the suitability of an intermittent current supply for the 

oxidation of organics at a BDD anode. In this study, the current was switched on during 5 min 

and switched off during 15 min. When sodium sulfate was used as electrolyte, they observed 

that the target pollutant (diatrizoate) was also degraded within 15 min without current supply. 

For a similar degradation yield (90%), the use of such intermittent current supply allowed for 
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decreasing energy consumption by 36%. These results were explained by the role of 

electrochemically activated sulfate in radical chain reactions after switching off the current. 

5.5. EF with reactive membrane bioreactor 

Carbon-based membranes have also been used in membrane bioreactors (MBR) to control 

membrane fouling (caused by organic compounds) through •OH radicals formed by EF process. 

For this, two approaches have been explored. In the first case, two electrodes are placed inside 

the MBR, including a carbonaceous cathode producing H2O2, which decomposes in the 

presence of Fe2+ in the solution. In this system, •OH assist the degradation of organic matter by 

the microorganisms, which also contribute to the decrease of membrane fouling (Jia et al., 

2015). Since the electrodes are in contact with the wastewater mixed with activated sludge, 

•OH also induce cell damage and modifications to the microbial communities with beneficial 

effects for pollutant removal.  

In the second approach, the filtration unit also serves as an EF cell that functions as an anti-

fouling system. For this purpose, carbon-based membranes such as carbon nanotube hollow 

fiber membranes loaded with Fe2+ ions were used as both cathode and filtration materials 

(Trellu et al., 2020). Such EF-MBR reported by Yang et al. (2020) achieved 93% and 88% of 

COD and NH4
+ removal, respectively, in 100 days at a hydraulic retention time of 8 h. During 

the EF membrane recovery phase, the initial transmembrane pressure was retrieved due to the 

efficient fouling control effect entailed by •OH produced by the EF reactions.  

6. Coupling with other processes  

The efficiency of the EF process can be significantly enhanced by coupling with other 

wastewater treatment techniques. Most of these technologies are performed simultaneously 



28 
 

with EF with the aim of enhancing the regeneration of Fenton’s reagent or concurrent 

production of additional reactive species.  

6.1. Coupling of EF with sulfite/sulfate radical  

EF–sulfite and EF–SR-AOPs involve simultaneous activation of sulfite and peroxide 

precursors (persulfate (PS) and peroxomonopersulfate (PMS)) during EF process by the same 

catalyst used in the EF process and partial activation at electrode surface. The mechanisms of 

reactive species generation in these coupled technologies are summarized in Eqs. (8‒13) 

(Ganiyu et al., 2021b).  

HSO5
‒ + Fe2+ → SO4

•‒ + Fe3+ + OH‒   k1 = 3.56 × 104 L mol‒1 (8) 

HSO5
‒ + e‒ → SO4

•‒ + OH‒ or SO4
2‒ + •OH   E0 = 1.75 V/NHE  (9) 

S2O8
2‒ + Fe2+ → SO4

•‒ + Fe3+ + SO4
2‒   k1 = 12 L mol‒1  (10) 

S2O8
2‒ + e‒ → SO4

•‒ + SO4
2‒    E0 = 2.01 V/NHE  (11) 

SO3
2‒ + Fe2+ → FeSO3

+ + e‒ → Fe2+ + SO3
•‒  k = 0.19 s‒1   (12) 

SO3
2‒ → SO3

•‒ + e‒     E0 = 0.63 V/NHE  (13) 

EF and photoelectro-Fenton (PEF) coupled with PMS was reported for the treatment of real 

washing machine wastewater (Ghanbari & Martínez-Huitle, 2019). Fe3O4 nanoparticles used 

for simultaneous activation of H2O2 and PMS to •OH and/or SO4
•‒ and SO5

•‒. UV light 

accelerated the process efficiency by generating more reactive species via PMS activation and 

Fe2+ regeneration, achieving 97.1% TOC removal efficiency at optimum conditions. EF-sulfite 

process using FeC (Song et al., 2021) also exhibited enhanced degradation of carbamazepine 

compared to EF. Reactive species •OH, SO4
•‒, O2

•‒ and 1O2 were generated by FeC/Fe3+ 

catalytic and/or electrocatalytic activation of SO3
2‒ and H2O2. EF-sulfite using pyrite modified 

carbon felt (FeS2/CF) was reported for the degradation of anthracene over pH 3 – 9 (Chu et al., 
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2020). Enhanced degradation of anthracene was achieved by FeS2/CF (85.9%) compared to 

anodic oxidation with CF alone (34.0%), and EF (75.3%) at pH 3 and 10 mA cm‒2.  

6.2. Coupling with photoelectrocatalysis 

Photoelectrochemical–EF is a self-powered system where electricity generated by 

photocatalytic fuel cells (PFCs) is utilized to power EF process (Ganiyu et al., 2020). PFCs 

involve photo-excitation of electrons at the photoactive anode surfaces, creating excited holes 

that interacts with H2O/OH‒ to produce •OH/O2
•‒ and excited electrons that reduces O2 to H2O2 

(Bai et al., 2016). PECs–EF coupled photocatalysis using photoanode/cathode and EF was 

reported to degrade various classes of pollutants (Mousset & Dionysiou, 2020).  

PEC-PEF using Pt-decorated TiO2 photoanode and air diffusion PTFE cathode was reported to 

enhance degradation efficiency of organic pollutants and textile dye with TOC removal 

efficiency following the sequence PEC (80%) < EF (87%) < PEC-PEF (97%) (Almeida et al., 

2015). Nordin et al. (2017) utilized PFC-EF for the degradation of Reactive Black 5 using 

ZnO/Zn photoanode, which achieved 84.6% dye removal efficiency with 15.37 mW cm‒2 

power output.  

6.3. Coupling with ultrasound (sono-EF)  

Sonolysis utilize ultrasound irradiation to generate •OH via water pyrolysis. 

Sonolysis/ultrasound assisted EF (sono-EF) involves sonication of EF system. Therefore, 

additional H2O2 and •OH are generated by sonolysis (Eqs. (14 and 15)) in addition to •OH of 

formed through Fenton reaction (Menon et al., 2021).  

H2O + ))))))) → •OH + H•        (14) 

2•OH → H2O2         (15) 
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Accelerated destruction of 4,6-dinitrol-o-cresol and 2,4-dichlorophenoxyacetic acid was 

achieved by sono-EF compared to EF, whereas no improvement was observed for the 

degradation dye azobenzene (Oturan et al., 2008). Enhanced degradation of 4-chlorophenol 

was reported for sono-EF, achieving >99.9% removal compared to 83% and 1.85% obtained 

with EF and sonolysis alone (Nazari et al., 2018).  

6.4. Bioelectro-Fenton process  

BEF process couples MFCs with EF. There are two configurations of BEF in literature: i) 

MFCs–in-situ EF, where EF operates at the cathode chamber of the MFCs and (ii) MFCs–ex-

situ EF, where external EF reactor is powered by MFCs (Ganiyu & Martínez-Huitle, 2020; 

Ganiyu et al., 2020). Enhanced medicinal herbs wastewater remediation was reported in a 

continuous flow BEF equipped with Fe@Fe2O3/graphite plate cathode, achieving up to 93% 

COD removal (Birjandi et al., 2020). Coal gasification wastewater was treated by BEF using 

FeVO4/CF cathode with maximum power output of 849.7 mW m‒3 and 91.5% TOC removal 

efficiency obtained at pH 7 (Xu et al., 2018). A second type BEF consists of sequential coupling 

between EF (as pre-or post-treatment step) and biological degradation (Olvera-Vargas et al., 

2016a, 2016b; Ganzenko et al., 2018). 

6.5. Ferrate-EF process  

Recently, a new and promising hybrid process by a coupling between EF and ferrate was 

described (El Kateb et al., 2021). This coupling is based on selective oxidation of organics by 

ferrate and strong mineralization power of the EF. The use of ferrate as a pre-oxidation step 

followed by EF treatment led to an effective removal of paracetamol as well as the acute 

toxicity of treated solution. The recycling of iron from ferrate oxidation step as catalyst for EF 

process constitutes an interesting future of this coupling. Thus, the coupling of EF with a pre-
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oxidation by ferrate appears as a promising combination for an effective treatment of 

wastewater contaminated by persistent organic pollutants.  

6.6. Synergy effect of EF coupled AOPs processes 

The synergy effects of PEF and SPEF occur as a result of regeneration of Fe2+ (one of the 

components of Fenton’s reagent) beside production of •OH, which can catalyze the Fenton 

reaction (Brillas et al., 2009). Light irradiation used in PEF and SPEF also enhance the 

mineralization of organic complex (Garcia-Segura & Brillas, 2014). Sono-EF generate H2O2 

leading then to the formation of •OH, which also accelerates the Fenton reaction (Menon et al., 

2021). Photo-electrocatalysis coupled with EF (PEC-EF) and PFCs-EF combine generation of 

additional oxidants via both photocatalysis and photoelectro-Fenton processes to compliment 

the EF process. The synergy effect of EF-sulfite/SR-AOPs is due to the production of additional 

oxidants as well as in-situ regulation of pH (sulfite and peroxymonosulfate lowers the pH of 

solution to acidic range at which EF is optimum) (Song et al., 2021).  

6.7. Economic prospect and challenges of coupled processes  

PEF, PFCs-EF, PEC-EF and sono-EF have high operating cost compared to EF alone, which 

includes maintenance and energy consumption of UV-lamp or ultrasound use for the 

irradiation/ultrasonication. However, using natural sunlight (solar energy) source as in SPEF 

process minimize the energy and operating cost of PEF, thus SPEF and solar powered PFCs-

EF/PECs-EFs are technically and economically more effective compared to EF alone. For 

example, energy consumption during PEF and SPEF treatment of Acid Blue dye solution 29 at 

50 mA cm‒2 was 257 and 57 kWh (kg TOC‒1), respectively, demonstrating the effectiveness 

of SPEF (Salazar et al., 2019).  

 

7. Emerging Applications of EF process 
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7.1. Disinfection  

Electrochemical disinfection is an emerging field in electrochemical treatment of water and 

wastewater and is found to be a cost effective alternative for conventional chlorination or 

ozonation (Martínez-Huitle & Brillas, 2021; Srivastava et al., 2021). Inactivation of 

Escherichia coli, somatic coliphages, heterotrophic bacteria, enterococci, Clostridium 

perfringens spores, eukaryotes (amoebae, flagellates, ciliates and metazoa) (Anfruns-Estrada 

et al., 2017), helminth eggs (HE) (Robles et al., 2020b), antibiotic-resistant bacteria and 

antibiotic resistance genes (Chen et al., 2020) by EF process was reported recently. Lysis of 

cell walls by the attack of oxidants generated via electrochemical reactions is the main 

disinfection mechanism proposed. Reactive oxidant species inactivate the microorganisms via 

direct attack of cellular membrane, by reducing cells viability and by attacking intracellular 

biomolecules after diffused into the cells (Valero et al., 2017). Apart from the attack of reactive 

oxidant species, electric field is also able to inactivate the microorganism via oxidation effect 

of intracellular coenzyme A (Matsunaga et al., 2000) or by causing permanent pores generation 

on microbial cells, imparting irreversible permeability by destabilizing cytoplasmic membrane, 

and by destructing chemical gradients (Kourdali et al., 2018). 

Even though, EF process is very effective for the disinfection of microorganisms, its 

application for the disinfection of drinking water supply is not advisable due to (a) inefficiency 

of EF process for providing residual protection of drinking water during water supply due to 

the short lifespan of •OH, (b) addition of salt is required to improve the conductivity of water 

(for enhancing EF process performance) and further treatment is needed for removing these 

added salts and (c) increased cost of treatment. However, this process is an alternative to 

disinfection of real wastewater (including municipal wastewater) as the wastewater contains 

adequate salts and the EF process is able to disinfect the wastewater while removing the 

pollutants.  
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7.2. Generation of value-added products 

EF oxidation is able to produce biofuels and biochemicals from lignin (Zhang et al., 2021b), 

glucose from cellobiose (Keller et al., 2021), and renewable biopolymers from potato starch 

(Dang et al., 2019); as well as able to recover phosphorous from sludge (Burgos-Castillo et al., 

2018). Lignin degradation during EF treatment resulted in the generation of 23 by-products 

and at the optimal operating conditions, which aimed for the optimal production of long-chain 

fatty acids yielded 138.41 mg g-1 of palmitic acid and 112.31 mg g-1 of octadecanoic acid 

(Zhang et al., 2021b). Chelate-EF process is able to produce thermally stable biomaterial from 

potato starch and the produced materials have carbonyl and carboxyl contents of 0.81 per 100 

anhydroglucose units (AGU) and 0.79 per 100 AGU, respectively (Dang et al., 2019). The 

biomaterial produced from potato starch have higher viscosity and the production was 

controlled by molar ratios of iron-citrate complex to H2O2. 

Controlling of Fenton oxidation is a challenge for improving the yield of required value-added 

product. Non-selective attack of •OH is the main hurdle to optimize the production of targeted 

compound. For example, glucose produced from cellobiose further undergoes oxidation and 

converted to organic acids, aldehydes or may be mineralized (Keller et al., 2021). Keller and 

co-workers coupled EF process with layer-by-layer nanofiltration process to improve the yield 

of glucose. The used membrane system is able to retain 80-90% of iron and cellobiose, (which 

enhances the effective oxidation of cellobiose), while allowing glucose to permeate through 

the membrane. Thus, EF process is able to produce glucose from cellobiose near to its highest 

possible production (25%) after coupling with nanofiltration units. 

7.3. Degradation of emerging micropollutants 

Treatment of emerging micropollutants from water medium is a great challenge due to its 

recalcitrant nature, toxicity and imperceptible concentration. These chemicals are not included 
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in regulatory standards and their limiting concentration in any environmental matrices, and 

their effect on ecology and human health are still not very clear. Their presence in water 

treatment plant (Tran & Gin, 2017) and wastewater treatment plant (Mailler et al., 2016) reveals 

the inability of conventional water and wastewater treatment process to treat such pollutants 

and AOPs are found as an essential treatment units required for treating such toxic compounds  

Scaria et al., 2021).  

EF process is found to be effective for treating various types of emerging pollutants (Table SI-

3). Higher pollutant degradation and mineralization efficiency of EF process for wide range of 

pollutants including cefazolin (Heidari et al., 2021), monolinuron (Diaw et al., 2020), 

clopyralid (Santos et al., 2020b), sulfamethazine (Sopaj et al., 2020), and chloroquine (Midassi 

et al., 2020) indicates the adequacy of EF process for treating emerging pollutants. EF process 

using BDD anode was found more effective than EF process using Pt anode (Oturan et al., 

2013) and even than anodic oxidation process. Ability of BDD to generate persulfate and 

sulfate radicals from electrolyte containing sulfate ions (Divyapriya & Nidheesh, 2021) in 

addition to •OH generation via Fenton reaction and anodic oxidation of water, enhanced the 

efficiency of EF process significantly (Midassi et al., 2020). The enhancement in treatment 

efficiency of EF process, further improved by coupling with other process such as anodic 

photo-electrochemical oxidation (Orimolade et al., 2020; Titchou et al., 2022), photo-EF (Ye 

et al., 2020; Espinosa-Barrera et al., 2021) and sono-EF (Hasani et al., 2020). For example, 

cefixime removal efficiency of EF process and sonication was reported as 81.7% and 9%, 

respectively, against 97.5% removal efficiency of sono-EF process (Hasani et al., 2020).  

Biodegradability enhancement and toxicity reduction are the main advantages of EF process 

for the treatment of emerging pollutants. EF treatment of a complex pharmaceutical mixture 

containing 13 pharmaceutical compounds resulted in a strong biodegradability enhancement 

within 3 h of treatment (Ganzenko et al., 2020). This enhanced biodegradability is mainly due 
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to the formation of intermediates and by-products during EF treatment as mentioned in Table 

SI-3. Toxicity test using Escherichia coli and Staphylococcus aureus for the synthetic 

wastewater containing cefixime antibiotic and sono-EF treated wastewater indicated the 

toxicity reduction during EAOPs treatment (Hasani et al., 2020). Similar results were observed 

by Orimolade et al. (2020), with Vibrio fisheri growth inhibition test. However, intermediate 

and by-products generated during EF treatment may be more toxic than parent compound(s). 

This behavior was observed for the treatment of pharmaceutical mixture (Ganzenko et al., 

2020) where the biomass took more time to acclimatize with EF treated solution. Therefore, 

toxicity must be removed after EF treatment of emerging pollutants and before further 

biological treatment or disposal process. 

8. Conclusions and perspectives  

Since the publication of pioneer works in the early 2000s, the EF process has continued to 

develop and become one of the most powerful EAOPs for removing biorecalcitrant 

organic/inorganic pollutants from water/wastewater. First, concerning electrode materials, the 

use of non-active anodes in an EF undivided cell, such as BDD or sub-stoichiometric TiO2, 

enhanced significantly the efficiency of the EF process by generating supplementary OH at 

the anode surface. Although carbon-felt and GDE remain the main cathode materials, modified 

carbonaceous electrodes have been developed to enhance H2O2 generation, or incorporate iron 

oxides as catalysts into the cathode surface for heterogeneous EF. In fact, some of the main 

disadvantages of the process (acidic pH around 3 and loss of the catalyst in treated effluent) 

have been overcome by using solid catalysts in heterogeneous EF. Second, several EF 

variations have been developed to increase the efficiency and its applicability, such as 3D-EF, 

chelate-EF, self-powered EF, pulsed-current EF, etc. Third, different hybrid processes like 

sono-EF, photo-EF, bio-EF, and ferrate-EF have been proposed to reduce treatment costs or 

enhance the mineralization power of the process.  
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At the current state, the EF process stands out as a promising sustainable technique for the 

treatment of toxic/persistent organic/inorganic pollutants in contaminated water. Currently, 

bench-scale studies have considerably progressed, including optimization of operating 

parameters and reactor design. The next challenge is mainly related to the development of 

large-scale applications for smart water solutions to guarantee sustainability in the water sector, 

which is the premise of the Sustainable Development Goal 6 from United Nations: clean water 

and sanitation. To achieve such objective, the design of suitable reactors (with low cost and 

sustainable electrode materials) assessed with real wastewaters, and the integration with other 

treatment processes, are required. For field scale applications, the main challenge remains in 

the development of more efficient, stable and cost-effective electrodes materials along with 

suitable reactor design. Development of cost effective and stable anodes to replace BDD and 

TiOx, and new composite cathodes which incorporating iron as catalyst and allowing high 

H2O2 generation seems to be the main challenges to overcome. Further cost comparison studies, 

including energy consumption, will be required at large scale to better evaluate the cost 

effectiveness of the emerging EF-based technologies.  
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Figure captions 

Figure 1. Schematic diagram of EF and related processes 

Figure 2: (a) Inside-electrode aeration and (b) jet aerator: 1. Funnel-like piece 2. Support Plate 

3. Gasket 4. CF electrode 5. Feeder 6. Support 7. Methacrylate spacer 8. IrO2-based anode. (a): 

Reprinted with permission from (Lie et al., 2020). Copyright 2021, Elsevier and (Perez et al., 

2018). Copyright 2018, Elsevier, respectively. 

Figure 3. (a) Comparison of S/Fe doped cathode material (FeSCA-900) with other electrodes for 

electro-Fenton process (Reprinted with permission from (Tian et al., 2020a). Copyright 2020, 

Elsevier), (b) comparison of N/Fe doped cathode material (FeOx/NHPC750) with other electrode for 

electro-Fenton process and with other processes (Reprinted with permission from (Cao et al., 2020). 

Copyright 2020, Elsevier), (c) PFOA removal by electro-Fenton compared with electrosorption 

combined or not with electrocatalysis (Reprinted with permission from (Liu et al., 2015). Copyright 

2015, American Chemical Society), (d) mineralization of PFOA solution with BDD, Pt or carbon stick 

anode (Reprinted with permission from (Wang et al., 2019). Copyright 2019, Elsevier), (e) SPEF 

removal of PFOA compared with other processes (Reprinted with permission from (Wang et al., 

2021b). Copyright 2021, Elsevier). 

Figure 4. Main mechanisms occurring during EF regeneration of AC. Reprinted from Trellu 

et al. (2018), Copyright 2018, Elsevier. 
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3. Gasket 4. CF electrode 5. Feeder 6. Support 7. Methacrylate spacer 8. IrO2-based anode. (a): 
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Figure 3. (a) Comparison of S/Fe doped cathode material (FeSCA-900) with other electrodes for 

electro-Fenton process (Reprinted with permission from (Tian et al., 2020a). Copyright 2020, 

Elsevier), (b) comparison of N/Fe doped cathode material (FeOx/NHPC750) with other electrode for 

electro-Fenton process and with other processes (Reprinted with permission from (Cao et al., 2020). 

Copyright 2020, Elsevier), (c) PFOA removal by electro-Fenton compared with electrosorption 

combined or not with electrocatalysis (Reprinted with permission from (Liu et al., 2015). Copyright 

2015, American Chemical Society), (d) mineralization of PFOA solution with BDD, Pt or carbon 

stick anode (Reprinted with permission from (Wang et al., 2019). Copyright 2019, Elsevier), (e) SPEF 

removal of PFOA compared with other processes (Reprinted with permission from (Wang et al., 

2021b). Copyright 2021, Elsevier).  
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Figure 4. Main mechanisms occurring during EF regeneration of AC. Modified from Trellu 

et al. (2018), Copyright 2018, Elsevier. 

 


