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Abstract 

Simple mechanical systems such as idealised pendulums are quite easy to comprehend both quali-

tatively and quantitatively. The Galilean transformation does not pose any particular conceptual 

challenge either. Yet students often have problems with the application of such coordinate transfor-

mations to simple mechanical systems. With three examples I will highlight various pitfalls, thus 

confirming that it is very instructive to analyse a system from different frames of reference. 

 

1. Simple mechanical systems 

You will hardly find any physics classes at high schools or universities that do not deal with elementary idealised 

mechanical systems such as swinging pendulums or the planetary system. So, apparantly these systems have al-

ready been discussed thoroughly and do not pose any didactic challenges. 

 

2. The Galilean transformation 

This is a supposedly simple chapter: at moderate velocities �⃗⃗⃗�  the laws of nature do not change under the Galilean 

coordinate transformation  

�⃗� ′ = �⃗� − �⃗⃗� − �⃗⃗�  𝐭              {𝟏}   

from one inertial system to another. In equation {1} the constant vector �⃗⃗�  induces a shift of the coordinate system. 

The term �⃗⃗�  𝐭  describes the velocity portion of the Galilean transformation (boost). We do not discuss a possible 

additional rotation here, and we leave out time translations. When examining one-dimensional movements we can 

simplify to  

𝐱′ = 𝐱 − 𝐪 − 𝐰 𝐭 .         

Obviously, the above-mentioned simple mechanical systems can be analysed from different inertial systems with-

out expecting any difficulties in the calculations. While this is true, at least surprises and pitfalls – for students as 

well as for teachers – can show up, as I will demonstrate in the following examples. 

 

3. Example 1: A simple pendulum 

We consider an idealised horizontally oscillating spring pendulum in the system of the resting Earth (see Figure 1).  

 

Fig. 1:    Idealised spring pendulum in rest position 
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We idealise the Earth as an inertial system by ignoring its rotation and movement relative to the Sun. The pendulum 

suspension is firmly attached to our planet, friction does not occur, the coil spring is elastic and massless. The total 

energy E of the pendulum must be constant in time: 

𝐸 =  
1

2
 𝑘  (𝑥𝑝 − 𝑥𝑝 

0 )
2
+ 

1

2
 𝑚 𝑣𝑝

2 . 

Here, m is the mass of the pendulum, 𝑥𝑝 the time-dependent spatial coordinate, 𝑥𝑝 
0  the rest position, 𝑣𝑝 = �̇�𝑝   its 

velocity and 𝑘 the spring constant.  

Starting from the conservation of energy, we obtain from  

𝑑𝐸

𝑑𝑡
 = 0  

the oscillator equation  

𝑚 �̈�𝑝  + 𝑘 (𝑥𝑝 − 𝑥𝑝
0) = 0 .  

Did we get it right? Is it not also necessary to consider the Earth (mass M, without pendulum mass) and its 

oscillatory motion (with time-dependent velocity vE)? The conservation of momentum requires 

𝑚 𝑣𝑝 + 𝑀 𝑣𝐸 = 𝑐𝑜𝑛𝑠𝑡 

in every inertial system. We place ourselves here in the centre of mass system of Earth plus pendulum, so that 

𝑚 𝑣𝑝 + 𝑀 𝑣𝐸 = 0 

applies.  

The additional term in the energy formula describing the kinetic energy of the Earth thus becomes 

1

2
 𝑀 𝑣𝐸

2 = 
1

2
 
𝑚

𝑀
 𝑚 𝑣𝑝

2 . 

If we assume that the pendulum mass is of the order of 1 kg, the factor m/M is tiny because of M = 2 ·1030 kg. 

Therefore, the kinetic energy of the Earth’s movement is completely negligible and does not need to be taken into 

account. 

So far, so good. Now we consider the pendulum in a system moving with constant velocity w relative to the Earth. 

The direction of w should correspond to the line of the pendulum's motion, so that we can continue to calculate 

one-dimensionally: 

𝑥′
𝑝 = 𝑥𝑝 − w t              𝑣′𝑝 =  𝑣𝑝 − 𝑤 . 

Note that the new coordinate system is – like the Earth – at best „approximately“ an inertial system. Let the 

magnitude of w and of 𝑣′𝑝  be 1 m/s, so the non-relativistic treatment is justified. Obviously, the total energy  𝐸′  

must also be constant in the new reference frame: 

𝐸′ = 
1

2
 𝑘  (𝑥′

𝑝 − 𝑥′
𝑝 
0
)
2
+ 

1

2
 𝑚 𝑣′

𝑝
2
 

 

= 
1

2
 𝑘  (𝑥𝑝 − 𝑥𝑝 

0 )
2
+ 

1

2
 𝑚 𝑣𝑝

2  +
1

2
 𝑚 𝑤2 − 𝑚 𝑣𝑝𝑤  

𝐸′ = 𝐸 +
1

2
 𝑚 𝑤2 − 𝑚 𝑣𝑝𝑤 . 

However, because of the last term 𝐸′ is time-dependent! The error in our calculation lies in the fact that here we 

must not ignore the Earth's movement! The correct calculation in the centre of mass system of Earth plus pendulum, 

which is a true inertial system, is, using 𝑣′𝐸 =  𝑣𝐸 − 𝑤 ∶ 

𝐸′ = 𝐸 +
1

2
 𝑚 𝑤2 − 𝑚 𝑣𝑝𝑤 + 

1

2
 𝑀 𝑣′

𝐸
2
  

= 𝐸 +
1

2
 𝑚 𝑤2 − 𝑚 𝑣𝑝 𝑤 + 

1

2
𝑀 𝑣𝐸

2 − 𝑀 𝑣𝐸 𝑤 +
1

2
𝑀 𝑤2  

 = 𝐸 + 
1

2
 𝑚 𝑤2 +

1

2
𝑀 𝑤2 = const . 



In the last step we have again ignored the numerically very small term 
1

2
𝑀 𝑣𝐸

2. Now the equation is correct: the total 

energy of a closed system is constant in time. What we have learned is that the basic calculations need to be exact. 

Afterwards we may make suitable approximations. The reverse order, however, usually does not work. 

Incidentally, the by far largest term in the above equation is the last one,  
1

2
𝑀 𝑤2. It has, however, no effect on the 

movement, as it is constant in time. 

Frequently, in the context of pendulum analyses, the Earth's mass is assumed explicitly or implicitly infinite from 

the outset. In that case we can no longer accommodate the mass M in the equations at all, and may not find an 

explanation for the apparently time-dependent energy  𝐸′. 

 

4. Example 2: Car trip 

4.1 Braking  

It is common knowledge that we should not drive too fast, since the braking distance s of a vehicle increases with 

the square of the velocity 𝑣0, because 

1

2
 𝑚 𝑣0

2 = − 𝐹 𝑠 = |𝐹| 𝑠  .      {2}  

This is the conservation of energy, considered in the rest system of Earth, in which we are now going to analyse 

this process, which brings the car to a standstill. 𝑣0 denotes the initial speed relative to the ground, m the vehicle 

mass, and 𝐹 is the negative frictional force between the sliding car and the road, assumed to be constant during the 

full braking process. 𝐹 disappears before and after braking. The braking distance is 

𝑠 =  −
1

2
𝑣0

2  
𝑚

𝐹
= 

1

2
𝑣0

2  
𝑚

|𝐹|
> 0 . 

 

 

 

 

 

Fig. 2: Car immediately before (left) and after complete braking (right) 

We ignore air friction and other complications. The braking distance s is the difference of the car’s coordinates at 

the end (𝑥1) and at the beginning (𝑥0) of the braking process, see Fig. 2: 

𝑠 =  𝑥1 − 𝑥0 . 

Let the corresponding times be 𝑡1 and 𝑡0. The kinetic energy of the car after the complete deceleration from 𝑣0 to 

𝑣1= 0 is zero, therefore there is no corresponding term in the above equation {2}. If 0 ≤ 𝑣1 < 𝑣0 , then we must 

generalise to 

𝐸0 =  
1

2
 𝑚 𝑣0

2 + 0 =  
1

2
 𝑚 𝑣1

2 − 𝐹 𝑠 =  𝐸1  . 

On the left side is the sum of kinetic energy and "friction work" (here =0) before the braking process, 𝐸0. On the 

right side there are the energies at the end of the braking process, adding up to a total of 𝐸1. Here, 𝐹 < 0 still 

applies. 

Now we change the reference frame and look at the full braking process from there. The obvious choice is the 

viewpoint of the driver of a second car, initially going next to the first one at the same speed 𝑣0 but not braking. 

This represents an inertial system, too. At the start of the braking process let 𝑡′0 = 𝑡0 = 0  and 𝑥′0   = 𝑥0  . Now 

𝑣′0 = 0 and 𝑣′1 = − 𝑣0 apply to the braking car in the new reference frame. There are no fundamental changes in 

the calculation:  

0 =  𝐸1 − 𝐸0 =  
1

2
 𝑚 (−𝑣0)

2 − 𝐹 𝑥′
1 − 0 + 𝐹 𝑥′

0  

or  
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1

2
 𝑚 (−𝑣0)

2 = 𝐹 (𝑥′
1 − 𝑥′

0)   . 

Note that the force, which according to Newton is proportional to the acceleration, does not change in Galilean 

transformations, i.e. 𝐹′ = 𝐹 < 0. Therefore, we set 𝑠′ = 𝑥′1 − 𝑥′0 in the new system, which results in 

 𝐹 𝑠′ = + 
1

2
 𝑚 𝑣0

2  .         {3}   

This result equals that of {2} – however, 𝑠′ < 0 because of 𝐹 < 0. We cannot just remove the wrong sign of 𝑠′– but 

instead an alarm bell should be set ringing. We have to be aware that the braking distance is only defined in the 

rest system of planet Earth. In other reference systems, the difference 𝑠′ = 𝑥′1 − 𝑥′0 can take on any value and, 

in particular, can become negative – which makes no sense for a braking distance. The braking distance s therefore 

only has a well-defined meaning in the reference system Earth. So, how can we now calculate the required braking 

distance 𝑠 from {3}? Obviously, we will have to transform the coordinates accordingly back to the Earth system: 

𝑥′ = 𝑥 − 𝑤 𝑡             𝑥 =  𝑥′ + 𝑤 𝑡   , 

with 𝑤 =  𝑣0. Therefore:  

𝑠 =  𝑥1 − 𝑥0 = ( 𝑥′1 + w 𝑡𝐵 ) - ( 𝑥′0 + w ∙ 0 ) . 

If we calculate the Galilean invariant braking duration  

𝑡𝐵 = 𝑡′1 − 𝑡′0 = 𝑡1 − 𝑡0 = − 𝑣0  
𝑚

𝐹
 = 𝑣0  

𝑚

|𝐹|
 

and insert it, we arrive at 

𝑠 =  𝑥1 − 𝑥0 =  s′ −  𝑣0
2 𝑚

𝐹
   =  −

1

2
𝑣0

2 𝑚

𝐹
    

This is the expected result - with the correct sign!  

4.2 Accelerating 

Now the car is to be accelerated from 𝒗 = 0 to 𝒗 = 𝒗𝟎 – initially again in the Earth’s system of rest. We assume 

that the engine power 𝑷 = 𝑭 ∙ 𝒗 is constant, with F being the time-dependent accelerating force and v the current 

velocity relative to the Earth. Apparently, the force F decreases as the car speeds up – even without air friction, 

which we again neglect. This is why you can accelerate strongly when starting off, but not at high speed on the 

motorway, regardless of air resistance. With our assumptions this means that the acceleration process is by no 

means a braking process running backwards in time, because for the latter we had assumed a constant force, ac-

cording to the known laws for sliding friction.  

If we change to another reference frame moving with fixed velocity w relative to the Earth, we get different values 

for the velocities, 𝑣′ = 𝑣 − 𝑤. We can calculate the change in kinetic energy caused by an acceleration in both 

reference systems - and find a similar paradox as with the spring pendulum: the increase in kinetic energy during 

the acceleration process depends on 𝑤! The solution to this puzzle is similar to that of the pendulum: here, too, the 

movement of the Earth must be taken into account for the result to be correct. 

 

5. Example 3: Angular momentum of point masses 

With respect to the origin of the coordinate system, the orbital angular momentum for a single point mass is defined 

by 

�⃗� =  𝑟  ×  𝑝   , 

with  𝑟  denoting the position vector pointing from the zero point of the coordinate system to the point mass and 

𝑝 = 𝑚 𝑣  the particle momentum. 

5.1 Linear movement 

The simplest case is a force-free point mass that consequently moves uniformly in a straight line in an inertial 

system, at constant velocity 𝑣  and fixed momentum 𝑝 = 𝑚 𝑣  : 

𝑟 = 𝑟 0 + 𝑣  𝑡 . 



At this point already, students often have problems understanding, because although "nothing is rotating here", the 

angular momentum is generally not zero. The second difficulty is that, although 𝑟  is time-dependent, the cross 

product 𝑟  ×  𝑝  and thus the angular momentum are constant in time – as is to be expected for a closed system. 

The value of the angular momentum depends on the reference point of the position vector  𝑟 , which can be identi-

fied with the origin of the coordinate system:  

�⃗� = 𝑚 𝑟 0  ×  𝑣  . 

Note that the term 𝑣  𝑡  ×   𝑝  vanishes. 

Shifting the coordinates by the fixed vector 𝑞  results in a new value for the angular momentum: 

𝐿′⃗⃗⃗  = (𝑟 − 𝑞 )  × 𝑝 =  �⃗� − 𝑞  ×  𝑝  . 

Due to the conservation of (linear) momentum, this angular momentum 𝐿′⃗⃗⃗    is also constant in time.  

With a „Galilei boost“ of velocity w⃗⃗⃗  (and 𝑞 = 0⃗ ) the result in the new reference system is 

𝐿′⃗⃗⃗  = (𝑟 − �⃗⃗�  𝑡)  ×  𝑚 (𝑣 − �⃗⃗� ) 

= �⃗� + 𝑚 𝑡 𝑣  ×  �⃗⃗�  − 𝑚 𝑟  ×  �⃗⃗�  

= �⃗� − 𝑚 𝑟 0  ×  �⃗⃗� =  𝑚 𝑟 0  × (𝑣 − �⃗⃗� ). 

The angular momenta 𝐿′⃗⃗⃗   und �⃗�  in the two inertial systems therefore differ by an additive constant vector – which, 

of course, is allowed. So with  �⃗�  also 𝐿′⃗⃗⃗   is time-independent. 

5.2 Planetary system 

Frequently, there are discussions of a point mass in a central field, for example in connection with our planetary 

system and the gravitational field of the sun. We consider the motion of a planet in an inertial system in which the 

centre of gravity of the sun and planet is at rest and defines the origin of the coordinate system. If we assume that 

the mass of the sun generating the gravitational field is infinitely large, the sun does not move and the angular 

momentum is constant in time, because  

 �⃗� ̇ =  𝑚 𝑟 ̇ × 𝑣  +  𝑚 𝑟 × 𝑣 ̇ = 0⃗ + 0⃗    . 

This last step takes into account that we are dealing with a „central“ force 𝑚𝑟 ̈ proportional to 𝑟 , so that the torque 

𝑟  ×  𝐹  and the cross product  𝑟 × 𝑟 ̈ = 𝑟 × 𝑣 ̇ disappear.  

So that’s it!? No, because just as one may analyse the angular momentum in rectilinear motion, one may also 

consider the linear momentum 𝑝  in the orbital motion in question, which, however, is obviously not constant in 

time for a planet! Referring to the acting forces does not provide an explanation, because we are dealing with a 

closed system in which both momentum and angular momentum are conserved! This is not the only problem: If 

the reference point = origin of the coordinate system is shifted, one obtains  

𝐿′⃗⃗⃗  = (𝑟 − 𝑞 )  ×  𝑝 =  �⃗� − 𝑞  ×  𝑝   . 

But contrary to  �⃗�  ,  𝐿′⃗⃗⃗    is not constant in time! Is it possible that the question of conservation of angular momentum 

depends on the reference point? 

The solution is similar to that in Chapter 3: The solar mass M must be explicitly taken into account in the calcula-

tions, even if the planet with mass m is much "lighter", i.e. 𝑚/𝑀 ≪ 1. Now the total angular momentum in the 

centre of mass system of the two celestial bodies (which represents an "exact" inertial system) is given by  

�⃗� =   𝑀 �⃗�  × �⃗�  +  𝑚 𝑟  × 𝑣   .       {4} 

with the capitalized quantities denoting the mass, position vector and velocity of the sun. The centre of mass system 

is defined by  

𝑀 �⃗� +  𝑚 𝑟 = 0⃗  . 

Consequently, we obtain conservation of momentum: 

𝑀 �⃗�  +  𝑚 𝑣 = 0⃗  . 
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The total angular momentum {4} is constant in time, as can easily be calculated by forming the time derivative. 

Note that the planetary motion (and not the solar one) makes the dominant contribution to �⃗�  , because 

 𝑀 �⃗�  × �⃗� =  − 𝑚 𝑟  × �⃗�  =
𝑚

𝑀
  𝑚 𝑟  × 𝑣    .  

The next step consists in checking what happens when the coordinate system is shifted by 𝑞  (without boost):  

𝐿′⃗⃗⃗  =   𝑀 (�⃗� − 𝑞  )  × �⃗�  +  𝑚 (𝑟 − 𝑞 ) × 𝑣  

Using the conservation of momentum, we obtain  

𝐿′⃗⃗⃗  =   �⃗� + [ 𝑀 �⃗�  +  𝑚 𝑣  ]  ×  𝑞 =  �⃗�  

The equations are consistent now. 

5.3 Planetary system and Galilean boost 

Now that the basic questions have been answered, we finally examine how Galilean transformations with w⃗⃗⃗ ≠ 0⃗  
change the angular momentum. For the sake of simplicity we put 𝑞 = 0⃗ . In the boosted reference frame we now 

have 

𝐿′⃗⃗⃗  =  𝑀(�⃗� −  w⃗⃗⃗  𝑡) × (�⃗� − w⃗⃗⃗  ) + 𝑚 (𝑟 − w⃗⃗⃗  𝑡) × (𝑣 − w⃗⃗⃗  ). 

Combining similar terms leads to 

𝐿′⃗⃗⃗  =   �⃗� − [𝑀�⃗� + 𝑚 𝑟  ] × �⃗⃗� + [𝑀 �⃗� + 𝑚 𝑣  ]  ×  �⃗⃗�  𝑡 =  �⃗� . 

Here again we have taken advantage of the fact that the quantities �⃗� , 𝑟   and �⃗� , 𝑣  are defined in the centre of mass 

system.  

In particular, 𝐿′⃗⃗⃗   as well as �⃗�   are constant in time. This only “works” because we have not omitted the terms 

proportional to M! 

Finally, one may wonder why, so far, we have always found 𝐿′⃗⃗⃗  =  �⃗�  for the planetary system. Can that hold for 

any Galilean transformation? The answer is no – if one applies {1}, i.e. a coordinate shift and a boost at the same 

time, there will be additional terms proportional to 𝑞  ×  �⃗⃗� , which are constant in time. 

 

6. Conclusion  

By comparing the calculations carried out in different reference systems, it becomes clear that their complexities 

vary: A wise choice of reference system makes life much easier! On the other hand, by comparing the analyses in 

different reference systems, one often achieves a deeper understanding. 
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