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Introduction

Proton exchange membrane (PEM) fuel cell shares the advantage of low operating temperature, high power density, and easy scale-up, making it one of the most suitable clean energy devices [START_REF] Ogungbemi | Selection of proton exchange membrane fuel cell for transportation[END_REF]. Though promising for various industrial applications, e.g., fuel cell electric vehicles (FCEV), current PEM fuel cells still suffer from limited durability [START_REF] Dhimish | Investigating the stability and degradation of hydrogen pem fuel cell[END_REF]. A promising solution is to use a multistack fuel cell system (MFCS), i.e. to put several stacks in parallel, to provide the power. First, the growing power demand requires a fuel cell system with a higher capacity which can be satisfied by using MFCS. Additionally, multi-stack PEM fuel cell systems enable flexible operating mode among the stacks, and the parallel structure greatly improves the system reliability compared with a single stack configuration. Finally, the possibility of power-sharing among stacks can improve both the overall system efficiency and durability.

Prognostics and Health Management (PHM) techniques including a multi-layer based Energy Management Strategy (EMS) can address the durability challenge of fuel cells. In addition, the hierarchical architecture of PHM enables to handle fuel cell system management from the observation stage to diagnosis analysis, deterioration modeling, lifetime prediction, and finally to decision making [START_REF] Yue | An online prognostics-based health management strategy for fuel cell hybrid electric vehicles[END_REF].

One of the challenges of developing EMSs for a PEM fuel cell system lies in the integration of its deterioration aspects into the decision-making procedure, thus forming a health-aware EMS. Fuel cell deterioration can be estimated thanks to online measurements. Then, the remaining lifetime of the stack can be predicted based on a deterioration model. However, fuel cell deterioration or aging is due to complex electrochemical, mechanical, and thermal mechanisms, which are difficult to model. Current studies on fuel cell deterioration mainly focus on either deterioration mechanism understanding or empirical model developing Pei et al. (2008), so there is no standard formula for modeling fuel cell aging. For instance, an online system parameters identification power distribution-based method is proposed to reduce fuel cell system hydrogen consumption [START_REF] Wang | Hydrogen consumption minimization method based on the online identification for multistack pemfcs system[END_REF]. In [START_REF] Wu | Convex programming energy management and components sizing of a plugin fuel cell urban logistics vehicle[END_REF], the energy distribution is performed by solving a convex optimization problem minimizing the overall energy costs of a hydrogen vehicle. A typical empirical fuel cell load-dependent aging model is proposed by [START_REF] Pei | A quick evaluating method for automotive fuel cell lifetime[END_REF]. The load varying, start-stop, high power load are identified as the main aging factors for the fuel cell.

However, a few works in the literature take into account stack aging and deterioration. In [START_REF] Herr | Decision process to manage useful life of multi-stacks fuel cell systems under service constraint[END_REF], the authors proposed a postprognostics decision process to manage the energy distribution of an MFCS. In this paper, the fuel cell deterioration is linked with the load. Thus, a change in the load distribution will also change the predicted stack life. [START_REF] Zhou | Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems[END_REF] further studied a scenario-oriented EMS for MFCS. An optimal stacks allocation scheme is analyzed with respect to different stacks numbers, application scenarios, and system efficiency. However, the estimation of the system lifetime is based on a deterministic deterioration model which limits the interests of the proposed method. Indeed, one of the specificities of fuel cells is their individual variability, both in terms of dynamic behavior and deterioration. These individual variabilities affect the reliability of the prediction of the behavior of the multi-stack system and therefore require the use of stochastic modeling to account for this source of uncertainties.

This work proposes a load allocation strategy based on the deterioration information of an MFCS to extend the system's lifetime. Firstly, the overall resistance is chosen as the fuel cell deterioration index. Then, a load-dependent stochastic deterioration model based on the Gamma process is built. The decision-making process takes the fuel cell resistance of the different stacks as inputs and decides the optimal load allocation for the PEM fuel cell system. The behavior and performance of the proposed allocation strategy are assessed by Monte Carlo simulation for dynamic load demands. To be as close as possible to the actual behavior of MFCS, different variances of the internal resistance deterioration behavior, as well as heterogeneity between the stacks deterioration behaviors, are considered. Finally, the lifetime distribution results obtained with the proposed load allocation strategy are compared with those of the classical average load split method.

Problem Statement

The MFCS consists of n parallel connected stacks (Figure 1). All the stacks are identical but are providing different load power, denoted

{L i } i=1,••• ,n .
The global load demand is noted L d . As the system provides exactly the total amount of power, the contribution of each stack can be written as a part of the global load demand, and be written as:

L i = γ i L d , where n i=1 γ i = 1 (1)
The external load demand dynamics are considered as a sequence of piecewise constant values, each value representing an event for which the optimal load distribution will be calculated, Figure 1.

The problem addressed in this paper can be splitted into two parts. The first part of the problem is to build a load-dependent model of fuel cell deterioration. Then, the second part is to build an optimal EMS for MFCS based on this model.

Fuel cell deterioration indicator

The deterioration indicator is taken from the empirical equation proposed in [START_REF] Kim | Modeling of proton exchange membrane fuel cell performance with an empirical equation[END_REF]:

V s = n E 0 -RI -A ln(I) -m 1 e (m2I) (2)
where V s is the stack voltage, n is the number of cells, I is fuel cell current density. E 0 is open circuit voltage, A is the Tafel parameter for oxygen reduction, R is the overall resistance, m 1 and m 2 are transfer coefficient related parameters.

The output power of a fuel cell stack (L) is then expressed as L = V s I. It has been shown in [START_REF] Zuo | Post-prognostics decision making strategy to manage the economic lifetime of a two-stack pemfc system[END_REF] that the overall resistance R is representative of the stack degradation level. Thus, the overall resistance R is chosen as the health indicator.

System lifetime and failure definition

A fuel cell stack is assumed to fail when its deterioration level R exceeds a fixed threshold, which is called the failure threshold F T . The failure time corresponds to the first hitting-time of level F T by R(t). Then, the fuel cell stack lifetime denoted T R , is defined as the time duration from the time the stack is put into use to the time of stack failure, and is written :

T R = min t (R(t) > F T ) (3) 
For a multi-stack system, the system failure is defined as the end of the system's ability to supply the external global load demands. Thus, the failure of one stack does not necessarily correspond to the MFCS failure, as long as the external power load demand can be provided by the other stacks.

Fuel cell load-dependant deterioration model

The load and the load variations are considered to build the load-dependent deterioration model. The fuel cell resistance aging model is expressed as:

∆R = ∆R L + ∆R ∆L ( 4 
)
where ∆R is the overall resistance increment. ∆R L is the load level contribution and ∆R ∆L is the load variation contribution to the resistance increment.

The deterioration due to the load is modeled as a Gamma process, which means that the increment of the deterioration level due to the load level between time t 1 and t 2 writes:

∆R L (t 1 , t 2 ) = R L (t 2 ) -R L (t 1 ) ∼ Ga(∆α, β)
(5) where Ga(•) represents the probability density function of the Gamma law; α is the shape parameter of the Gamma process (∆α = α(t 2 ) -α(t 1 )) and β is the scale parameter.

The nominal conditions offer a relatively better reaction environment (water content, heat condition, etc) for fuel cells, thus they are associated to the lowest deterioration rate. On the contrary, deviating the load with respect to the nominal conditions will gradually increase the deterioration rate due to the less favourable operating conditions. The deterioration parameters under nominal conditions, i.e. α 0 , β 0 are estimated from fuel cell aging test data [START_REF] Gouriveau | Ieee phm 2014 data challenge: Outline, experiments, scoring of results, winners[END_REF]. The empirical average resistance deterioration rate function D(L) with respect to the load is thus formulated as:

D(L) = A (L -L nom ) 2 + B ( 6 
)
where A is expressed by two parts with respect to the load range, i.e. of A 1 , A 2 , B are estimated from the expected lifetime data, see Figure 2. Thus, the shape parameter α(L) can be estimated from the relation:

A = A 1 , L min ≤ L < L nom and A = A 2 , L nom ≤ L ≤ L max .
D(L) = α(L)β (7)
as the scale parameter β is not varying. More details can be found in Zuo et al. (0). The resistance deterioration increment due to the load variation (∆L) is:

∆R ∆L = K∆L (8) 
where K = 7.58 × 10 -6 (Ωcm 2 / Wcm -2 ) [START_REF] Pei | A quick evaluating method for automotive fuel cell lifetime[END_REF].

Energy Management Strategy

Decision-making principle

The external load demand dynamics are considered as a sequence of piecewise constant values, each value corresponding to what will be called hereinafter as an "event". The decision-making process is event-based, i.e. the load repartition is estimated at each new event. We assume here that several future events are known. Figure 3 depicts the diagram of the event-based decision-making process with m future known events. The current event E 0 ind is the beginning of current decision. The decision horizon ranges from E 0 ind to E m ind . T j is the time length of event j (j = 0, • • • , m). The system is required to produce exactly the amount of external load demands, and the output power of each stack is constrained within the fuel cell production range, i.e. from L min to L max .

{R 0 f ci } i=1,••• ,n are the resistance levels of all stacks at initial event E 0 ind which is assumed to be measured. The deterioration levels at decision m are estimated by Eq. ( 4). The future global deterioration weighted by the distance of current deterioration to the failure threshold F T is defined as the optimization index J. With all combinations of load allocations γ i L j d , the optimal decision is decided by minimizing J. The calculation of J will be derived in the following Section 4.2. In this way, the global system aging is being balanced which helps to improve system lifetime.

Objective function formulation

The objective function is formulated so as to minimize the resistance increments along the decisionmaking horizon. Then the proposed dynamic optimization problem is formulated as:

Minimize J = n i=1 ω 0 i m-1 j=0 (∆R j L,i + (∆R j ∆L,i ) 2 ) subject to L min ≤ γ 0 i L i ≤ L max , n i=1 γ 0 i = 1 ∆R j L,i = D(γ 0 i L j d ) • T j ∆R j ∆L,i = K(γ 0 i L j+1 d -γ 0 i L j d ) (9) 
where T j is the time length of event j; L j d defines the external dynamic load demands; γ 0 i is the load allocation ratio for FCi (assuming same allocation ratio for all events); and ω 0 i is the corresponding weight of the overall FCi aging (R 0 f ci ). Note that the deterioration term due to load variation ∆R j ∆L,i is expressed with a quadratic form for the optimization convenience. K is given in Eq. ( 8).

The distance of the deterioration level to the preset failure threshold F T is leveraged to formulate the weight factor ω 0 i :

ω 0 i = 1/(F T -R 0 f ci ) n i=1 1/(F T -R 0 f ci ) (10) 
The defined weight terms (ω 0 i ) aims to balance the aging of all stacks, i.e., by adjusting the value of weights to force the less deteriorated stacks to operate under less desirable conditions so as to allow the more deteriorated stacks to work at relatively more desirable conditions. More details on the system lifetime control effects will be further discussed in Section 5.

Results and Discussions

Simulation settings

As a first attempt, the studied MFCS is assumed to consists of two identical stacks (n = 2). Table 1 summarizes the key parameters of the stacks. The other chosen parameters are β 0 = 4.4 × 10 -4 , F T = 0.2775 Ω cm 2 , and R 0 = 0.1803 Ω cm 2 .

Figure 4 depicts the dynamic demand cycle used in the simulation. It consists of two levels of load demand, chosen to frame the nominal value. The whole simulation cycle is a repetition of these two levels with a load duration of 250 s. To study the performances of the EMS, deterioration trajectories with different variances but the same average trend are simulated. Hence, the initial shape 

α ini = α 0 /ℓ, β ini = β 0 • ℓ (11)
where ℓ = 5, 10, 20, 30 so as to gradually increases the deterioration trajectory variance.

In addition, this work also investigates the influence of deterioration imbalance between the stacks. This is done by assigning different initial resistance values (R ini f c1 and R ini f c2 ):

R ini f c1 = R 0 + ∆R 0 , R ini f c2 = R 0 (12)
The modified increment terms of ∆R 0 = 0.0, 0.01, 0.02, 0.03 Ω cm 2 are studied. Using the previous setting, simulations on a 2stack system are performed. One future event is being considered (i.e. m = 1) in the objective function. The Sequential Least-Squares Programming (SLSQP) algorithm is used to solve the optimization problem. Due to the stochastic behavior of the stack aging, modeled by a Gamma process, the system lifetime is estimated with Monte Carlo simulations. The simulation of the system from the beginning of use till system failure (denoted as one-run) is repeated N times, obtaining N system lifetime samples. Then the average system lifetime (T R,dec ) is estimated by the average of those lifetime samples. According to the simulations, N = 300 ensures the convergence of T R,dec .

The results are compared with the classic average load split method, which distributes the overall load demand evenly among stacks.

Simulation performance indicators

Two lifetime-related indicators are established to assess the performance of the proposed strategy. The first indicator gives the relative improvement in lifetime compared to the average load split strategy which is computed by:

∆T R,pct = T R,dec -T R,ave T R,ave × 100% (13) 
where T R,dec stands for the average lifetime of the proposed load allocation decisions. T R,ave is the average lifetime of the average split method.

The second indicator T + R,pct represents, in percentage terms, the number of the simulated lifetimes that are higher than those of the average split method. Let N + denote the number of lifetimes where the lifetime obtained by the load allocation decision (T R,dec ) is larger than the results of average split (T R,ave ). Then the proposed indicator is written as:

T + R,pct = N + /N × 100% (14) 

Simulation results

Analysis of the proposed startegy behavior on a single realization

Firstly, the decision strategy behavior is examined on a single simulated deterioration path, according to the predefined parameter settings (Section 5.1), ℓ = 5, ∆R 0 = 0.01 Ω cm 2 are chosen, denoted as case 1.

Figure 5 presents the overall resistance values and the optimal allocation decisions of studied four events in case 1. It is noticed that for the previous two decisions, the FC1 is more deteriorated. And the aging trend is reversed for the last two decisions (Figure 5 (a)). Combing with the optimal allocations (Figure 5 (b)), it is confirmed that our strategy lets the more deteriorated stacks operate at relatively more desirable conditions than the ones that are less deteriorated. According to the recorded deteriorations, the sudden increment of R f c2 is due to the load effect, i.e. ∆R f c2,L (increased 4.185×10 -3 Ω cm 2 from event 2 to event 3 while the other increments are nearly zero) which confirms the stochasticity in ∆R L . This stochasticity is investigated by a stochastic gamma process with different initial resistance and increment variance to account for individual variabilities in an MFCS (see section 5.3.2).

Figure 6 shows the overall load decisions distribution of our strategy. It can be seen that most of the allocation decisions are distributed between 2 to 2.25 W cm -2 on the left side and between 2.5 to 2.75 W cm -2 on the right side. Instead of assigning demands with a fixed average split, our strategy optimally decides the load allocations conditionally to the estimated system resistance at the decision stage.

Overall performance analysis

Let now examine the results of the N = 300 simulation histories. Figure 7 presents the lifetime histograms and corresponding fitted Gaussian probability distribution functions (pdf) for ∆R 0 = 0.01 Ω cm 2 and different deterioration variances. In all these figures, the pdf of our strategy presents a higher mean value than the average split strategy, proving thus that an extended lifetime is achieved. Additionally, the pdfs curves widen as the value of ℓ increases, i.e., as the variance of stack aging becomes larger. According to the definition of system lifetime (Eq. 3), a greater variance in the R trajectories will widen the interval of the firsthitting-time of F T and thus that of the simulated lifetimes as well. In Figures 7 (a), (b), and (c), it is seen that the pdf curve of our strategy is more centered on the mean than the one of the average split method. However, in Figure 7 (d), the two pdf curves are similar in terms of the pdf curve width. This is caused by the growing variance in R trajectories. The calculated standard deviation results further justify the observations. In Figure 7 (a), the standard deviation of our strategy is 47.52, whereas that of the average split is 66.37. The standard deviation of our method (137.61) is slightly bigger than the average split (133.67) in Figure 7 (d). In the obtained results, the histograms results of ∆R 0 = 0.0, 0.02, 0.03 (Ω cm 2 ) show similar trends.

The two proposed lifetime-related performance indicators are computed and listed in Tables 2 and3. In general, the ∆T R,pct results of the groups with initial increment (i.e. ∆R 0 > 0) are higher than the group with identical initial resistance. This proves the efficiency of the proposed strategy in dealing with imbalanced deterioration in MFCS. Moreover, in Table 2, the ∆T R,pct values are monotonically increasing as ℓ increases. In comparison, the value of ∆T R,pct shows a fluctuation trend. These results show that the R trajectory variance and deterioration level of all stacks have a mutual influence on the lifetime control effects. Setting a bigger variance will vary the resistance values of all stacks. The proposed strategy tries to reverse this imbalanced aging through optimized load allocations, which helps to decrease the overall system deterioration, thus improving the lifetime. But in the cases where ∆R 0 is much bigger or variance is too high, it will limit the control effects of the proposed strategy. These findings encourage us to study the behavior of the proposed strategy under different variance levels (e.g. consider the random effects in the Gamma process). The results of T + R,pct in Table 3 confirm that generally over 60% lifetimes simulated with allocation decision are better than the average split method. In some cases, T + R,pct even reaches 85%. for ∆R 0 = 0.01 Ω cm 2 .

Conclusion

This work proposed a load allocation strategy for an MFCS. The dynamic load demands are considered as the application scenario. Fuel cell overall resistance is chosen as a health indicator, and the load and the variation of load are considered as two major deterioration drivers. The main contribution is to propose a stochastic Gamma process-based deterioration model for handling multi-stack fuel cell system individual variability in terms of their deterioration. The load allocations are then decided by solving a sequential optimization problem. Our strategy can help improve system lifetime by 18.7% (ℓ = 10, ∆R 0 = 0.03 Ω cm 2 ) compared with average split method.
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Table 1 .

 1 Fuel cell stack parameters.

	Conditions L (Wcm -2 ) Lifetime (h)	α 0
	Minimal	0.8035	100	2.227
	Nominal	2.3811	1788	0.125
	Maximal	3.084	100	2.227
	and scale parameters (α ini , β ini ) of the studied
	Gamma process are modified by introducing a
	constant ℓ:			

Table 2 .

 2 Simulation results for ∆T R,pct .

	∆R 0 (Ω cm 2 )		∆T R,pct (%)	
		ℓ = 5 ℓ = 10 ℓ = 20 ℓ = 30
	0.0	5.8	6.3	6.7	15.1
	0.01	6.5	8.9	12.8	13.9
	0.02	9.6	12.4	10.3	13.7
	0.03	17.6	18.7	10.7	14.8

Table 3 .

 3 Simulation results for T + R,pct .

	∆R 0 (Ω cm 2 )		T + R,pct (%)	
		ℓ = 5 ℓ = 10 ℓ = 20 ℓ = 30
	0.0	66.7	63.5	59.3	67.3
	0.01	66.0	66.7	62.3	66.7
	0.02	74.0	69.0	61.7	64.3
	0.03	85.7	75.7	61.0	61.3