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Abstract 

In the last two decades, seismic metamaterials have attracted significant attention of 

researchers because of the characteristic of the bandgap which can be used to control 

seismic surface waves. The inertial amplification mechanism has been used to design 

metamaterials capable of isolating elastic waves in rods, beams, and plates at low 

frequencies. In this work, we propose an alternative type of seismic metamaterial with 

a low-frequency bandgap induced by inertial amplification for isolating seismic surface 

waves. The characteristics of the bandgap induced by inertial amplification are 

experimentally demonstrated by using a metamaterial plate composed of 25 unit cells. 

The propagation of the flexural waves imaged by scanning laser Doppler vibrometer 

shows strong attenuation effects induced by the metamaterial plate in the bandgap. The 
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broadband attenuation is investigated by using two kinds of unit cells. Finally, similar 

structures with inertial amplification are introduced to design the seismic metamaterials 

to isolate seismic surface waves at low frequencies. 

 

Keywords: seismic metamaterials; bandgap; surface waves; inertial amplification 
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1. Introduction 

Seismic Rayleigh waves at the frequencies below 20 Hz are the greatest threat to the 

man-made buildings located in the mid and far fields of the seismic source when 

earthquakes happen [1, 2]. Seismic metamaterials (SMs) [2-11] have been proposed by 

researchers to isolate the seismic Rayleigh waves before they arrive the critical 

infrastructures and buildings. This is due to the bandgap characteristics of the SMs 

composed of the periodic arrangement of artificial unit cells. The seismic waves will be 

attenuated significantly by the SMs in the frequency range of the bandgap [12-20]. 

In 1999, the experiments [21] in a marble with prepared phononic crystals constituted 

of a periodic array of cylindrical holes showed the existence of the bandgaps for the 

surface waves. Therefore, the possible applications were obtained to attenuate seismic 

surface waves. During the last two decades, various kinds of SMs [4, 22-31] have been 

designed to isolate surface waves in seismic movements, especially at low frequencies. 

It is worth mentioning that the plate model was validated to open an attenuation zone 

(AZ) around 50 Hz by using large-scale experiments on the phononic crystal in the 

ground [6]. This work demonstrated that the SMs have the ability to attenuate the 

propagation and control the transmission of the elastic waves in the earth’s surface, 

although the working frequency is not low enough in the experiments. Therefore, when 

researchers found that the forests can attenuated seismic waves in earthquakes, the SMs 

constituted of an array of pillars on a soil substrate were proposed to achieve low-

frequencies bandgap based on the local resonance of the pillars [7, 32-34]. In addition, 

for better integration of SMs in the foundation of a building for seismic isolation 
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purposes, Yan et al. [35] proposed a 2D periodic foundation constituted of ductile cast 

iron, supper soft rubber and reinforced concrete, while Casablanca et al. [36] designed 

a periodic mass-in-mass foundation placed underneath buildings. To obtain wider 

bandgaps, the pillars with different kinds of structures [28, 37-42], and the “rainbow 

trapping effects” [8, 29, 34, 43-47] were utilized. However, the ultra-low-frequency (< 

2 Hz) bandgaps are hard to obtain by using small-size structures. 

Fortunately, the inertial amplification proposed by Yilmaz et al. [48-50], which induces 

low-frequency bandgaps by using a small mass, was utilized to design metamaterials. 

The lever-arm structures were introduced to amplify the motion of the resonate small 

mass, which in turn effectively reduces the resonance frequency. Based on the similar 

structures, Li et al. [51] proposed a phononic beam to isolate transverse waves utilizing 

inertial amplification resonators. A wide bandgap induced by inertial amplification in a 

continuous elastic rod was obtained and a general 2D realization of the inertially 

amplified system in a plate was proposed in Ref. [52]. In addition, Acar et al. [53] 

experimentally and numerically proposed a periodic solid structure which exists wide 

and deep bandgaps induced by embedded inertial amplification mechanisms. The 3D 

structures was experimentally demonstrated by using embedded inertial amplification 

mechanisms, which can isolate elastic waves in a wide frequency range [54]. Recently, 

a 2D solid structure with embedded inertial amplification mechanisms was designed by 

using topology optimization to obtain an ultrawide bandgap at low frequencies [55]. To 

enlarge the bandwidth of the bandgap and the specific stiffness simultaneously, 

Mizukami et al. [56] proposed an inertial amplification-type metamaterial by using 
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continuous carbon fibers. Furthermore, the rotary motion conversion mechanism of an 

inertial amplification of continuous structure was used to generate a wide bandgap at 

low frequencies [57]. A four-bar inertial amplification mechanism on corrugated‐core 

sandwich panels was proposed to achieve strong vibration attenuation in the range of 

low frequencies [58]. However, there is almost no research of the SMs with inertial 

amplification to achieve the low-frequency bandgaps for surface waves. 

In this work, we propose a kind of the SM with a low-frequency bandgap induced by 

inertial amplification to attenuate seismic surface waves. We first experimentally 

demonstrate the bandgap characteristics of inertial amplification effects in a 

metamaterial plate (MMP) sample formed by 5×5 periodic unit cells. The band 

structure of the simplified model of the MMP is also analytically calculated by using 

the transfer-matrix method. Then, to achieve the broadband attenuation, two kinds of 

unit cells with different positions of hinge joints are chosen to construct a new complex 

metamaterial plate (CMP). Finally, the inertial amplification mechanisms are 

introduced to design the SMs which are capable of isolating seismic surface waves at 

low frequencies. It is very known that inertial amplification mechanisms with small 

mass can achieve strong vibration attenuation at low frequencies, which property the 

SMs most need. This work demonstrates that the inertial amplification mechanisms can 

also induce the bandgap for seismic surface waves at ultra-low frequencies even with 

using the simple structures. 

2. Method and Models 

Figure 1(a) illustrates the unit cell of the MMP based on inertial amplification in the 
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experiments and utilized in the simulation calculations. The simplified model of the 

structure is also given in Fig. 1(b). The unit cell is constituted of the lever, the support 

bar, mass, spring, hinge joint and the base plate. In the MMP, the lattice constant a is 3 

cm. The thickness t of the plate is 1 mm. The other geometric parameters of the structure 

are shown in Fig. 1(c). The resonant frequency of the resonator in the model is [48, 59] 

𝑓 = 	 !
"#$

$
(&'!)!)

 ,                            (1) 

where μ = l1/ l2 is the lever ratio with l1 being the length of the lever and l2 being the 

distance between the spring and support bar; k is the stiffness of the spring; and m is the 

mass. The inertial mass will be amplified (μ-1)2 times and the resonance frequency will 

be reduced (μ-1) times when the lever is rigid and has no mass. A low resonance 

frequency f can be achieved in the following cases. First, when the stiffness of the spring 

k is small, which means the soft material is used. Second, when the lever ratio μ is large, 

which means the long lever (i.e., l1 is large) is used or the position of the support bar is 

near the spring (i.e., l2 is small). Third, when large mass (i.e., m is large) is used. 

Therefore, there are a lot of options to design elastic metamaterials with low-frequency 

bandgaps, including SMs which we will mention later. 

Figure 1(d) illustrates the experimental sample of the MMP. The sample is formed by 5

×5 periodic unit cells. In this sample, all parts are printed using 3D printer. The PLA 

rod is fabricated and the lever and the support bar are assembled with PLA rod 

horizontally installed through the holes to form the hinged part. More enlarged 

photograph of the hinged part can be found in Appendix A. The source vibrating in z 

direction is excited at one end of the MMP. Figure 1(e) shows the experimental layout. 
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Label A is a computer, which is utilized to set the output signal of the source on sample 

B and processes the input signal from the laser vibrometer C. In order to obtain clear 

and perfect propagation effects of flexural waves in the MMP, the laser vibrometer 

(Polytec PSV-500) is used to measure on the back of the MMP. In addition, a bare plate 

D, which is the same plate as in the MMP, is also measured to provide the control results. 

 

Figure 1 (a) The unit cell of the MMP considered in the numerical simulation and experiment. (b) 

The simplified model of the (a). (c) The geometric parameters of the unit cell. (d) The experimental 

sample of the MMP and (e) the experimental layout with a computer (Label A), the MMP (Label B), 
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the laser vibrometer (Label C) and the same plate (Label D) as in the MMP. 

 

In order to facilitate the realization of the 3D printing of the MMP, the material of the 

whole structure is chosen as PLA whose Young's modulus is 3.4398 GPa, density is 

1086.3 kg/m3, and Poisson's ratio is 0.35 in the both simulation and experiment [60]. 

The connections between the support bar and the base plate, the base plate and the 

spring, the lever and the mass are perfect continuous. The spring and the lever are 

perfectly glued together. It is worth noting that the material of the spring part is PLA. 

Of course, according to the Eq. (1), the spring part can be replaced by a softer material 

to obtain a less k and a lower-frequency bandgap. The connection between the lever and 

the support bar is hinge joint. The thickness of the lever along z axis is set as 0.3a to 

enhance the bending stiffness of the lever along z axis. At low frequencies, the lever 

can be regarded as a rigid part to achieve the inertial amplification.  

The simulation results in this work are all calculated by using the multibody dynamics 

module of COMSOL 5.4. The periodic boundary conditions are set on the plate of the 

unit cell along x and y directions. It is worth noting that both boundary similarity and 

pointwise constraint are utilized to achieve the periodic boundary condition in the 

multibody dynamics module. The hinge joint between the lever and the support bar 

shown in Fig. 1 is set as hinge-connection condition.  

The same structure as the experimental sample shown in Fig. 1(d) is used in simulation 

of the flexural wave propagation in the MMP. The transmission spectrums in the 

experiments and simulations are all defined as  
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TS = 20 × log10 (R1/R0),                      (2) 

where R0 and R1 are the root mean square (RMS) of the out-of-plane velocities at the 

two points a1 (a2) and b1 (b2) shown in Fig. 1(d), respectively. 

3. Analytical solutions of the simplified model 

 

Figure 2 (a) The simplified model used for analytical solution. (b) the numerical simulation results 

(COMSOL) and analytical results of the band structure of the simplified model. 

 

The transfer-matrix method can be used to analytically calculate the band structure of 

the one-dimensional periodic simplified model. As shown in Fig. 2(a), the simplified 

model used for analytical solution can be assumed as the Euler-Bernoulli beam with 

inertial amplified resonators. So, the governing equation for the flexural waves in the 

beam is 

𝐸𝐼 *
"+(,,.)
*,"

+ 𝜌𝐴 *!+(,,.)
*.!

= 0,                     (3) 

where E, I, ρ and A are Young’s modulus, section moment of inertia, density and section 

area of the beam, respectively. z(x,t) is the out-plane displacement of the beam. The 

physical quantities of the beam can be expressed in the following forms [61]:  

𝑧(𝑥, 𝑡) = 1𝐴𝑒'/0, + 𝐵𝑒/0, + 𝐶𝑒'0, + 𝐷𝑒0,6𝑒/1.,           (4) 

𝜃(𝑥, 𝑡) = 𝑦(𝑥, 𝑡)2,                         (5) 
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𝑀(𝑥, 𝑡) = 𝐸𝐼𝑦(𝑥, 𝑡)22,                       (6) 

𝑄(𝑥, 𝑡) = −𝐸𝐼𝑦(𝑥, 𝑡)222,                      (7) 

where A, B, C and D are complex coefficients; λ = 	 =𝜌𝐴𝜔" 𝐸𝐼⁄"  with ω = 2πf being 

the circular frequency is the flexural wavenumber; and θ, M and Q are the slope, 

bending moment and shear force, respectively. 

In the nth unit cell, the out-plane displacement of section 1 is 

𝑧3,!(𝑥!, 𝑡) = 1𝐴3,!𝑒'/0,# + 𝐵3,!𝑒/0,# + 𝐶3,!𝑒'0,# + 𝐷3,!𝑒0,#6𝑒/1.,    (8) 

where 𝑥! = 𝑥 − (𝑛 − 1)𝑎	and	(𝑛 − 1)𝑎 ≤ 𝑥 ≤ (𝑛 − 1)𝑎 + 𝑙". So, from the left side 

to the right side of section 1 of the nth unit cell, we obtain the transfer matrix in this 

field by following: 

𝚿3,!(0, 𝑡) = 𝐇!4J𝐴3,!	𝐵3,!	𝐶3,!	𝐷3,!K
5𝑒/1.,               (9) 

𝚿3,!(𝑙", 𝑡) = 𝐇!6J𝐴3,!	𝐵3,!	𝐶3,!	𝐷3,!K
5𝑒/1.,              (10) 

where 𝚿(𝑥, 𝑡) = 	 [𝑧(𝑥, 𝑡)	𝜃(𝑥, 𝑡)	𝑀(𝑥, 𝑡)	𝑄(𝑥, 𝑡)]5  is the state vector; and 

J𝐴3,!	𝐵3,!	𝐶3,!	𝐷3,!K
5 is the coefficient vector. Substituting Eq. (10) into Eq. (9), we 

obtain 

𝚿3,!(𝑙", 𝑡) = 𝐇!6𝐇!4'!𝚿3,!(0, 𝑡) ≜ 𝐇!𝚿3,!(0, 𝑡),           (11) 

where 𝐇! is the transfer matrix. It is shown in Appendix B. 

Similarly, the out-plane displacement of section 2 is 

𝑧3,"(𝑥", 𝑡) = 1𝐴3,"𝑒'/0,! + 𝐵3,"𝑒/0,! + 𝐶3,"𝑒'0,! + 𝐷3,"𝑒0,!6𝑒/1., (12) 

where 𝑥" = 𝑥 − (𝑛 − 1)𝑎	and	(𝑛 − 1)𝑎 + 𝑙" ≤ 𝑥 ≤ 𝑛𝑎. So, from the left interface to 

the right one of section 2 of the nth unit cell, we obtain 

𝚿3,"(𝑎, 𝑡) = 𝐇"6𝐇"4'!𝚿3,"(𝑙", 𝑡) ≜ 𝐇"𝚿3,"(𝑙", 𝑡),         (13) 
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where 𝐇" is the transfer matrix. It is shown in Appendix B. 

As for the nth lever-arm structure on the beam, the dynamic equilibrium equation is 

𝑓3!(𝑡) + 𝑓3"(𝑡) + 𝑚�̈�3(𝑡) = 0,                   (14A) 

𝑙"𝑓3!(𝑡) + (𝑙! − 𝑙")𝑚�̈�3(𝑡) = 0,                   (14B) 

where 𝑍3(𝑡) is the displacement of the nth mass of the lever-arm structure; and 𝑓3!(𝑡) 

and 𝑓3"(𝑡) are the forces of the spring and support bar on the lever, respectively. Due 

to the Hooke's Law, we obtain 

𝑓3!(𝑡) = 𝑘 S7$(.)
&'!

+ 𝑧3,!(0, 𝑡) − 𝑧3,"(𝑙", 𝑡)T,               (15) 

where k is the spring stiffness; and μ = l1/ l2 is lever ratio. Substituting Eq. (15) into Eq. 

(14), we obtain 

𝑓3!(𝑡) =
$)8!(&'!)!

)8!(&'!)!'$
[𝑧3,!(0, 𝑡) − 𝑧3,"(𝑙", 𝑡)] ≜ 𝐺![𝑧3,!(0, 𝑡) − 𝑧3,"(𝑙", 𝑡)],  (16) 

𝑓3"(𝑡) =
$)8!9'&!:;&'"<
)8!(&'!)!'$

[𝑧3,!(0, 𝑡) − 𝑧3,"(𝑙", 𝑡)] ≜ 𝐺"[𝑧3,!(0, 𝑡) − 𝑧3,"(𝑙", 𝑡)]. (17) 

Due to the continuities at the interface between (n - 1)th and nth unit cells, we obtain 

𝑧3'!,"(𝑎, 𝑡) = 𝑧3,!(0, 𝑡),                      (18A) 

𝜃3'!,"(𝑎, 𝑡) = 𝜃3,!(0, 𝑡),                      (18B) 

𝑀3'!,"(𝑎, 𝑡) = 𝑀3,!(0, 𝑡),                      (18C) 

𝑄3'!,"(𝑎, 𝑡) = 𝑄3,!(0, 𝑡) − 𝑓3!(𝑡).               (18D) 

Substituting Eq. (16) into Eq. (18), we obtain 

𝚿3'!,"(𝑎, 𝑡) = 𝐇;𝚿3,!(0, 𝑡) + 𝐇=𝚿3,"(𝑙", 𝑡),             (19) 

where 𝐇; and 𝐇= are shown in Appendix B. Due to the continuities at the interface 

between sections 1 and 2 of the nth unit cell, we obtain 

𝑧3,!(𝑙", 𝑡) = 𝑧3,"(𝑙", 𝑡),                      (20A) 
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𝜃3,!(𝑙", 𝑡) = 𝜃3,"(𝑙", 𝑡),                      (20B) 

𝑀3,!(𝑙", 𝑡) = 𝑀3,"(𝑙", 𝑡),                      (20C) 

𝑄3,!(𝑙", 𝑡) = 𝑄3,"(𝑙", 𝑡) − 𝑓3"(𝑡).               (20D) 

Substituting Eq. (17) into Eq. (20), we obtain 

𝚿3,!(𝑙", 𝑡) = 𝐇>𝚿3,"(𝑙", 𝑡) + 𝐇?𝚿3,"(0, 𝑡),             (21) 

where 𝐇> and 𝐇? are shown in Appendix B. Substituting Eqs. (11), (13), (19) and 

(21), the transfer equation of the flexural waves from the right interface of the (n - 1)th 

unit cell to the right interface of the nth unit cell is obtain 

𝚿3,"(𝑎, 𝑡) = 𝐓@3/.𝚿3'!,"(𝑎, 𝑡),                   (22) 

where 𝐓@3/. = {𝐇;𝐇!'![(𝐈A −𝐇?𝐇!'!)'!𝐇>𝐇"'!] + 𝐇=𝐇"'!}'!	 is the transfer matrix 

in which 𝐈A is a 4×4 identity matrix. 

Considering the Bloch-Floquet theory, we obtain 

𝚿3,"(𝑎, 𝑡) = 𝑒/BC𝚿3'!,"(𝑎, 𝑡),                  (23) 

where q is the wavenumber. Substituting Eq. (23) into Eq. (22), we obtain 

Z𝐓@3/. − 𝑒/BC𝐈AZ = 0.                         (24) 

By solving the eigenvalue equation, the band structure can be obtained [62].  

For instance, Fig. 2(b) shows the simulated results and analytical results of the band 

structure of the simplified model, when the lattice constant is a = 1 m; the height, 

breadth, sectional area, section moment of inertia, Young’s modulus and density of the 

beam is h = 0.05 m, b = 1 m, A = bh, I = bh3/12, 207 GPa and 7784 kg/m3, respectively; 

l1 = 0.9 m, l2 = 0.3 m; m = 15.2838 kg and k = 100,000 N/m. It is worth noting that the 

support bar and the lever are rigid. The simulation results are calculated by COMSOL 
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5.4 (Multibody Dynamics Module) to evaluate the accuracy of the analytical solution. 

The simulated results are almost in agreement with the analytical results, especially for 

the position of the bandgap. It is worth noting that the frequencies of the two bandgaps 

are consistent with the predicted result from Eq. (1). Obviously, the frequency of the 

bandgap can be controlled easily in this model by changing one or more parameters of 

the structure. For instance, an ultra-low frequency bandgap can be achieved when the 

mass m or lever ratio μ is larger, or when the spring stiffness k is smaller than the 

example shown in Fig.2. 

4. Results and Discussions of the MMPs 

 

Figure 3 (a) The band structure of the MMP along the ΓX direction. (b) The transmissions of the 

flexural waves in the MMPs and the bare plate along the ΓX direction. (c) The unit cell consisted of 
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the same plate, spring and mass as in MMP. (d) The band structure and transmission of the 

metamaterial constituted of periodic (c). The color bar represents the degree of the out-of-plane 

polarization (the displacement along the z axis). The AZ is attenuation zone. 

 

Figure 3 shows the band structure of the MMP and the transmission of the flexural 

waves in the MMP and the bare plate along the ΓX direction (i.e. x direction). In Fig. 

3(a), the out-of-plane polarization in the band structure of the MMP is given. The 

parameter of the out-of-plane polarization 𝜉 is defined as 

𝜉 = ∫ |𝑤|𝟐𝑑𝑠E / ∫ (|𝑢|𝟐 + |𝑣|𝟐 + |𝑤|𝟐)𝑑𝑆E ,             (25) 

where u, v and w are the displacement components in the three directions (x, y and z); 

and S is the whole unit cell. A wide bandgap for the flexural waves can be found from 

385 to 1200 Hz. It is worth noting that, the end parts of the second and third dispersion 

curves have high out-of-plane polarization value. However, these two bands almost do 

not affect the wide bandgap in Fig. 3(a). We can easily find these two bands are almost 

flat, especially when out-of-plane polarization value is large. It means it is just the local 

resonance at a single frequency, which can be ignored when we determine the bandgap. 

The vibration modes at these two bands are illustrated in Appendix C. As shown in Fig. 

3(b), there is a significant AZ at these frequencies in the simulated and experimental 

results. Compared with the simulated results, the attenuation effects in the experimental 

results are not particularly obvious at low frequencies in the bandgap. In addition, in 

the whole bandgap, the attenuation effects in the experimental results are weaker than 

those in the simulated results. This is due to the fact that the hinge joint in the 
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experiments is not completely perfect like how it is considered in the simulation. In the 

experiments, the friction and backlash in the hinged part are difficult to eliminate. 

Instead, in the simulations, all boundaries in the hinge joint are rigid and smooth. 

However, it is easy to find that the MMP in the experiments can obviously attenuate the 

flexural waves in the bandgap compared with the bare plate. For a better comparison, 

as shown in Fig. 3(c), a periodic structure composed of the same plate, springs and 

masses as in the MMP is considered. In the band structure and the transmission of the 

metamaterial, the first bandgap and AZ is very narrow and its lowest frequency is 

around 520 Hz in Fig. 3(d). In Fig. 1, the lever ratio μ of the proposed unit cell is about 

2, so the bandgap range of the inertial amplification mechanism is similar to the that of 

the spring-mass structure in Fig. 3(c). When the position of the support bar is near the 

spring, which means the l2 becomes smaller and μ becomes larger, the bandgap range 

significantly reduces. 

The vibration modes at the marked points in the band structures are illustrated in Fig. 

4. Points A1 (A2) and B1 (B2) are the two boundaries of the bandgaps shown in Figs. 

3(a) and 3(d). Figure 4(a) shows the strong resonance of the mass at point A1. At point 

B1, most of the displacement is around the spring part shown in Fig. 4(b). It is clear that 

the large bandgap is due to the inertial amplification system and the strong resonance 

of the mass. In Fig. 4(c), most of the displacement is only at the top of the mass, which 

increases the frequency of the bottom boundary of the first bandgap. In addition, the 

strong resonance of the mass shown in Fig. 4(d) reduces the frequency of the top 

boundary of the first bandgap. Therefore, in Fig. 3(d), the frequency of the first bandgap 
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is higher and the width of the first bandgap is narrower than that in Fig. 3(a). 

 

Figure 4 Vibration modes corresponding to points (a) A1, (b) B1, (c) A2 and (d) B2 marked in Figs. 

3(a) and 3(d). The color bar represents the degree of displacement. 

 

The velocity fields of the flexural waves on the back side of the MMP and bare plate 

were experimentally measured. At 750 Hz, for instance, the results are shown in Figs. 

5(a) and 5(b). It is easy to distinguish the attenuation and propagation of the flexural 

waves in the MMP and bare plate, respectively. In addition, the time-velocity curves for 

points a1 and a2 near the source and points b1 and b2 far away from the source are 

illustrated in Figs. 5(c) and 5(d). Comparing with the vibrations at points a1 and b1, we 

can find that the flexural waves are strongly attenuated in the MMP. Because there is 

no damping at the boundaries of the plate, the reflected waves can be found from Fig. 

5(d). Therefore, the velocity of point b2 is larger than that of point a2. The results also 
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demonstrate the strong attenuation ability of the MMP. 

 

Figure 5 Experimentally measured flexural waves on the back sides of (a) the MMP and (b) the bare 

plate at 750 Hz. The color indicates the velocity field on the samples. (c) and (d) show the Time-

Velocity curves for points a1, b1, a2 and b2 marked in (a) and (b).  

 

It is noted that a new degree of freedom (DOF) appears because of the hinge joint, 

which can be used to control the position of the bandgap. Set the center position of the 

plate as the origin of the x-axis. The effects of the hinge joint’s position along x direction 

on the bandgaps are shown in Fig. 6(a). The range from 200 Hz to 1800 Hz is illustrated 

because we focus on the lowest-frequency bandgap. The frequencies of the first and 
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second bandgaps increase significantly when the hinge joint moves from left to right. 

This is due to the fact that the magnification of inertia is constantly decreasing [48, 59]. 

 

Figure 6 (a) Effects of the hinge joint’s position along x direction on the first and second bandgaps 

of the MMP; (b) Schematics of the CMP and (c) the transmission of flexural waves propagating in 

the CMP; (d) and (e) Propagations of flexural waves in the CMP at 400 Hz (d) and 1100 Hz (e) 

marked as T1 and T2, respectively, in (c). The color bar represents the degree of the displacement. 

The AZ is attenuation zone. 

 

To achieve the broadband attenuation, different kinds of unit cells are selected from Fig. 
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6(a) to construct a new CMP. The selected criterion is obtaining a wider AZ with 

minimal kinds of unit cells. Two kinds of unit cells whose hinge joints are at -0.15a and 

0.15a are selected, due to the AZ of the them together is from 320 to 1800 Hz (Of course, 

there are many other choices). Figure 6(b) shows the schematics of the CMP. The 

periodic boundary conditions are applied on the edges along the y direction. The 

perfectly matched layer (PML) is utilized to reduce reflections of the free boundaries. 

The harmonic vibration in z direction on the line source is applied to achieve out-of-

plane displacement in the plate. Figure 6(c) shows the transmission of the flexural 

waves in the range of 200 – 1800 Hz. Compared with the transmission in Fig. 3(b), the 

range of the AZ of the CMP is wider. Two transmission peaks can be found at 750 Hz 

and 950 Hz, which is due to the coupling effects between the different unit cells. We 

believe that more unit cells are added in the supercells, better attenuation effects and 

further improvement of the bandwidth we will have [63, 64]. 

Figures 6(d) and 6(e) show the propagations of flexural waves in the CMP at 400 Hz 

and 1100 Hz. These two frequencies are in the first bandgap of the MMPs whose hinge 

joints are at -0.15a and 0.15a, respectively. Therefore, the flexural waves can hardly 

travel through the CMP at these two frequencies. In addition, at high frequencies, the 

attenuation effects of the CMP are strong.  

5. Results and Discussions of the SMs 

In this section, the similar structure with inertial amplification is utilized on a soil half-

space to induce low-frequency bandgap for surface waves. As we know, the artificial 

structure on a plate, such as the MMP, has an excellent effect in attenuating flexural 
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waves (out-of-plane vibration). The SMs’ target is attenuation of surface waves (xz-

plane vibration) on a half-space. Due to the huge difference between flexural waves and 

surface waves, the artificial structure in the MMPs that can be used to attenuate flexural 

waves are not necessarily suitable for a half-space to attenuate surface waves. However, 

some artificial structures in the MMPs can play a key role in a half-space. For instance, 

drilling holes periodically in a half-space [21], or burying pillars periodically in a half-

space [3, 6], or erecting pillars periodically on a half-space [32, 41] all can generate 

bandgaps for surface waves. Moreover, some artificial structures of the MMPs covering 

a half-space can exert unexpected effects for surface waves. For instance, two-

component [10, 65] and three-component [11] MMPs on a half space can achieve ultra-

low-frequency bandgaps for surface waves. Therefore, due to the excellent performance 

of the lever-arm structure on the plate as shown above, we introduce it into the soil half-

space to target seismic surface waves. Similar as the lever-arm structure shown in Fig. 

1, the unit cell of the SM shown in Fig. 7(a) is constituted of the lever, support bar, mass, 

spring, hinge joint and soil substrate. Comparing with the lattice constant in Fig. 1, the 

lattice constant a in Fig. 7(a) is scaled to 1.5 m. The relationship between other 

geometric parameters and lattice constant a is consistent with those in Fig. 1. 

Theoretically, the depth of the half-space should be infinitely deep. In order to facilitate 

simulation calculations and obtain relatively accurate convergence results, the depth of 

the soil substrate is selected as H = 500a [42, 47]. A part of the spring is replaced by a 

thin rubber layer with thickness of t1 to achieve bandgaps at lower frequencies. In 

addition, the SM is supposed to be constructed by the ordinary building materials, for 
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instance, steel (mass), rubber (spring) and aluminum (support bar and lever). The 

material properties [6] are shown in Table 1. The mass of the steel part of the unit cell 

is 709.317 kg. 

Table 1: The material parameters used in this paper. 

Material Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio 

Steel 7784 2.07 x 1011 0.3 

Al 2700 7 x 1010 0.33 

Rubber 1300 1.2 x 105 0.47 

Soil 1800 2 x 107 0.3 

 

 

Figure 7 (a) The unit cell of the SM for surface waves. (b) The band structure of the SM for surface 

waves along the ΓX direction in the range from 4 Hz to 6 Hz. 

 

Figure 7(b) shows the band structure of the SM along the ΓX direction when the 

thickness of the rubber is 0.02a. The area outside the dark gray area is the sound cone. 

Three bands can be found under the sound cone, which are illustrated by the blue, red 
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and green lines. A bandgap which is marked by the light gray area is shown in the 

frequency range from 4 Hz to 6 Hz. The transmission of the 1D periodic SM is 

illustrated in Appendix D. Figure 8 illustrates the vibration modes of the three points, 

A3, B3 and C3, marked in Fig. 7(b). The central sections of these vibration modes along 

the xz plane are also provided to clearly show the effects of the inertial amplification 

and the characteristics of the bandgap. The arrows in Figs. 8(b), (d) and (f) indicate the 

displacement eigenvector; and the length and direction of the arrow indicate the 

magnitude and trend of the particle movement, respectively. 

Figures. 8(a) and (b) show that the vibration mainly appears at the two ends of the lever 

which rotates around the hinge joint in the xz plane. This implies that the bandgap for 

surface waves is induced by the inertial amplification. The vibration modes illustrated 

in Figs. 8(c) and (d) show that there is almost no vibration in the xz plane. Therefore, 

Rayleigh waves cannot appear in the frequency range of the second band [37]. However, 

in the range of the third band, Rayleigh waves appear again with the particles mainly 

moving along x direction, see Figs. 8(e) and (f). So, the bandgap region shown in Fig. 

7(b) for the Rayleigh waves is between the first and third bands [37]. 

It is known that seismic metamaterials with small mass can hardly achieve bandgaps 

below 10 Hz. However, the inertial amplification mechanisms with small mass can 

easily induce low-frequency bandgap, even for surface waves. As the first time of 

introducing inertial amplification mechanisms into seismic metamaterials, our goal is 

the existence of this bandgap rather than the enormous width of the bandgap. Therefore, 

we believe that narrow bandgap in this work is acceptable. To achieve the broadband 
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attenuation, the effects of the parameters of the hinge joint and rubber are calculated 

below. 

 

Figure 8 Vibration modes and their central section along the xz plane of the SM for surface waves 

corresponding to points (a-b) A3, (c-d) B3 and (e-f) C3 marked in Fig. 7(b). The arrows in (b), (d) 

and (f) indicate the displacement eigenvector; and its length and direction indicate the magnitude 

and trend of the particle movement, respectively. The color bar represents the degree of the 

displacement. 

 

The effects of the hinge joint’s position, the rubber layer’s thicknesses and the Young’s 

modulus of the rubber on the bandgaps are illustrated in Fig. 9. The frequencies of the 

bandgap reduce significantly when the hinge joint moves from right to left along x 

direction. When the hinge joint moves from right to left, the μ increases and the f in Eq. 
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1 decreases. In addition, the frequencies of the bandgap reduce quickly when the rubber 

is provided, and keep decreasing when the thickness of the rubber increases. However, 

the relative bandwidth of the bandgap decreases with the frequency. The frequencies 

and the relative bandwidth of the bandgaps all increase when the Young’s modulus of 

the rubber increases from 50 to 350 kPa. When the thickness of the rubber decreases or 

the Young’s modulus of the rubber increases, the translational stiffness k in the vertical 

direction increases [25] and the f in Eq. 1 decreases. 

 

Figure 9 Effects of the hinge joint’s position along x direction (a), the rubber layer’s thickness (b) 

and the Young’s modulus of the rubber (c) on the bandgaps. The blue and red solid lines are the 

center frequencies and relative bandwidth of the bandgaps, respectively. 

 

Comparing with the bandgaps in Fig. 3(a) or Fig. 6(a), the bandgaps in Fig. 9 or Fig. 
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7(b) are narrow. This is an inevitable result. In Fig. 3(a) and Fig. 6(a), it is the flexural 

waves (vibration only along the z axis) that the metamaterials attenuate in a wide 

frequency range. In Fig. 9 and Fig. 7(b), it is the Rayleigh surface waves, which include 

both longitudinal (x axis) and transverse (z axis) motions, that the SMs are designed to 

attenuate at ultra-low frequencies. These two kinds of bandgaps cannot be directly 

compared. In addition, at ultra-low frequencies, the bandgap induced by inertial 

amplification is quite narrow, as shown in Fig. 2. Of course, the broadband attenuation 

effects demonstrated by using different kinds of unit cells in Figs. 6(b)-(e), can be 

achieved by using the SM. Suitable unit cells can be selected from Fig. 9 to construct a 

new seismic metamaterial to isolate seismic waves in a wide frequency range.  

 

6. Conclusion 

An alternative type of seismic metamaterial based on inertial amplification mechanism 

is presented in this work to open bandgaps for seismic surface waves at low frequency 

regime. A conceived metamaterial plate with lever-arm structures has been 

experimentally investigated and discussed. It is shown that a wide bandgap for flexural 

waves appears in a low-frequency region. The propagation analysis measured on the 

back side of the MMP has demonstrated that the lever-arm structures strongly attenuate 

the flexural waves. In addition, a new complex metamaterial plate with two kinds of 

unit cells has been constructed to enlarge the attenuation zone. Finally, the similar lever-

arm structures are introduced into a soil half-space to obtain the bandgaps induced by 

inertial amplification for seismic surface waves in a low-frequency range. The 
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significant advantage is that inertial amplification mechanisms with small mass can 

achieve strong vibration attenuation at low frequencies, a property that should be 

realized for seismic metamaterials. Comparing with the seismic metamaterials 

proposed in the literature, the width of the bandgap here is not remarkable. However, 

since it is the first time the inertial amplification mechanism is introduced and 

considered in seismic metamaterials, our goal is the creation of this bandgap rather than 

obtaining a large width of the bandgap. Therefore, the narrow bandgap in this work is 

acceptable. This work provides an alternative way to control seismic surface waves at 

low frequencies by using a small mass. In addition, the embedded inertial amplification 

mechanisms have great potential to be used to attenuate seismic surface waves in a wide 

range at ultra-low frequencies which will be the focus of future researches. 
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Appendix A. The enlarged photograph of the hinged part 

 

Figure A10 (a) The PLA rod, lever and support bar used at hinged part. (b) The assembled hinged 

part by using lever, the support bar and PLA rod. 

In the experiments, all parts are printed by using 3D printer. The PLA rod and the hole 

in the lever and the support bar shown in Fig. A10(a) are designed. The lever and the 

support bar are assembled with PLA rod horizontally installed through the holes to form 

the hinged part shown in Fig. A10(b). 

Appendix B. The matrixes used in the analytical calculation 

All the matrixes in the analytical calculation of the band structure of the simplified 

model are shown below: 
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Appendix C. The vibration modes at 2nd and 3rd bands in Fig. 3(a) 

 

Figure A11 The vibration modes at (a) 2nd and (b) 3rd bands in Fig. 3(a). 

The vibration modes at second and third bands are illustrated in Fig. A11. At second 

band, shown in Fig. A11(a), the mass is rotating resonance in xy plane. At third band, 

shown in Fig. A11(b), the mass is rotating resonance in yz plane. It is worth noting that 

these two kinds of local resonances are hard to be excited by flexural waves. It also 

demonstrates why there is no sign of these two bands in the simulated and experimental 
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transmission results. 

Appendix D. 1D periodic seismic metamaterial 

 

Figure A12 (a)The unit cell, (b) band structure and transmission of the 1D seismic metamaterial. 

Figure A12 shows the unit cell, band structure and transmission of the 1D seismic 

metamaterial. Similar as the unit cell shown in Fig. 7(a), the yellow, red, silver and dark 

grey parts are soil, rubber, aluminum and steel, respectively. The lattice constant a is 

1.5 m. The depth of the substrate H is 500a. The thickness of the rubber is 0.02a. The 

size of the steel is 0.1a * 0.1a. The length of the lever l1 and the distance between the 

spring and support bar l2 are 0.8a and 0.35a, respectively. 10 unit cells are used to 

calculated the transmission curve. The band structure and transmission show the 

bandgap and attenuation zone around 7.5 Hz. 
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