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Evolutionary Multiobjective Clustering Over
Multiple Conflicting Data Views

Mario Garza-Fabre , Julia Handl , and Adán José-García

Abstract—Multiview data analysis provides an effective means
to integrate the distinct information sources which are inher-
ent to many applications. Data clustering in a multiview setting
specifically aims to identify the most appropriate grouping for
a collection of entities, where those entities (or their relation-
ships) can be described from multiple perspectives. Leveraging
recent advances in multiobjective clustering, we propose a new
evolutionary method to tackle this challenge. Designed around
a flexible and unbiased solution representation, together with
strategies based on the minimum spanning tree and neighborhood
relations, our algorithm optimizes multiple objectives simulta-
neously to effectively explore the space of candidate tradeoffs
between the data views. Through a series of experiments, we
investigate the suitability of our proposal in the context of a
bioinformatics application, clustering of plausible protein struc-
tures, and a diverse set of synthetic problems. The specific case
of two data views is considered in this article. The evaluation
with respect to a variety of reference approaches demonstrates
the effectiveness of our method in discovering high-quality par-
titions in a multiview setting. Robustness against unreliable data
sources and the ability to automatically determine the number
of clusters are additional advantages evidenced by the results
obtained.

Index Terms—Clustering methods, multiobjective clustering,
multiview learning, representation, unsupervised learning.

I. INTRODUCTION

HOW CAN we balance the bias introduced by model
assumptions and the efficiency of the subsequent search

over model parameters? The definition of a flexible, yet effi-
cient representation is arguably a key requirement for the
design of a versatile algorithm for multiobjective clustering.
Previously, this has been achieved through the adoption of a
graph-based encoding, and the use of the minimum spanning
tree (MST) and nearest neighbor relations to direct the search
toward the most plausible regions of the solution space [1], [2].
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The resulting approach assumes the preservation of local
neighborhood relationships only, without introducing bias at
the level of the individual clusters (e.g., regarding shape) or
intercluster relations. Consequently, it is sufficiently flexible to
be useful in the context of vastly different clustering criteria.

Can such a framework be extended to multiview cluster-
ing (MVC)? MVC encompasses scenarios in which multiple
data sources exist (e.g., separate feature spaces or different
measures to determine relational information), and where the
potential complementarity of these sources should be exploited
to produce higher quality partitions. Previous multiobjective
clustering approaches [1], [2] reach their limits in such a set-
ting, as the computation of the MST and the determination
of neighbor relations is currently rooted in a single, specific
dissimilarity space. This potentially prevents the fair and full
consideration of multiple views during the search process,
hindering the direct application of the approach to MVC.

This article focuses on addressing this limitation. Our aim
is to propose a new MVC method that can benefit from the
flexibility of a graph-based representation but also supports the
effective integration of multiple data views. We explore two
different strategies for the use of MST information, effectively
redefining the search space of candidate partitions from the
perspective of multiple views. Our method capitalizes on these
strategies by framing MVC as a multiobjective problem and
simultaneously optimizing separate objectives to account for
individual data views. The resulting approach has the ability
to identify the number of clusters automatically, but can also
exploit this domain knowledge, when available.

We analyze the suitability of our proposal in the context
of a bioinformatics application: the clustering of candidate
protein structures. In addition, we consider a collection of
synthetic datasets of varying characteristics. Our analysis
involves comparisons against a set of single-view and mul-
tiview (including multiobjective) reference approaches. It is
important to highlight that the design of our algorithm, as
described in this article, assumes the use of a reduced num-
ber of data views (two or three), and that our experimental
evaluation includes test scenarios with two data views only.
Although the implications of an increased number of views
and potential adaptations are discussed, the evaluation of our
proposal under this setting is beyond the scope of this study.

The organization of this article is as follows. First, Section II
provides background concepts and discusses related works.
Our proposed approach is introduced in Section III. Section IV
describes our experimental setup. Section V presents the results
and analyzes our findings. Finally, Section VI concludes.
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II. BACKGROUND AND RELATED WORK

In this section, the necessary background is presented
together with a discussion of the most relevant literature.

A. Multiobjective Clustering

We are interested in a type of machine learning problem
that is prevalent in unsupervised learning settings and regularly
appears across a wide range of application domains. Cluster
analysis involves the identification of distinct clusters (groups)
from a given collection of N data entities, X = {x1, . . . , xN},
such that these clusters reflect the similarities and differ-
ences between those entities. More formally, the goal is to
find the best possible partition of X into k disjoint clus-
ters, C∗ = {c1, . . . ck}, such that f (C∗) = min {f (C)|C ∈ �},
without loss of generality. Here, � denotes the set of all
possible partitions, i.e., the search space, and f : �→ R

is a clustering criterion (also known as cluster validity
index).

From the above definition, the important role of criterion
f is evident: it is responsible for enabling an effective dif-
ferentiation between candidate solutions and, therefore, needs
to correctly evaluate the properties that determine partition
quality. Although no consensus exists regarding those proper-
ties, most definitions agree that the fundamental characteristics
of clusters are homogeneity (compactness) within and hetero-
geneity (separation) across groups. Many clustering criteria
have been proposed [3], [4], each evaluating, in particular
ways, one of these properties or a combination of them.
It is unlikely, however, that a single solution can simulta-
neously optimize all the desirable, but usually conflicting,
characteristics [5].

To the best of our knowledge, Delattre and Hansen [6] were
the first to recognize the multicriterion nature of clustering,
proposing an algorithm which relies on two specific crite-
ria. More generally, posed as a multiobjective optimization
problem, clustering becomes the problem of optimizing a
vector function f(C) = [f1(C), . . . , fm(C)]T , where fi : �→ R

denotes the ith clustering criterion to be considered. Under
this formulation, and given the potential conflict between
the m optimization criteria, the goal now becomes to iden-
tify the best possible tradeoff solutions, namely, to find the
Pareto-optimal set P∗ = {C∗ ∈ � | �C ∈ � : C ≺ C∗}, whose
image in the objective function space is the so-called Pareto
front.1 The simultaneous optimization of multiple clustering
criteria affords a more comprehensive description of cluster
quality and often leads to the discovery of higher quality par-
titions, which can be difficult to obtain by optimizing a single
criterion.

Multiobjective approaches for clustering started to attract
increasing attention when multiobjective evolutionary algo-
rithms (MOEAs) were proposed to tackle this problem [1], [7].
MOEAs (and other population-based metaheuristics) are well

1≺ denotes the Pareto-dominance relation: C dominates C′ (C ≺ C′) if and
only if ∀i : fi(C) ≤ fi(C′)∧∃j : fj(C) < fj(C′), i, j ∈ {1, . . . , m}. All solutions
in P∗ are said to be nondominated with respect to each other.

suited to the multiobjective formulation, as they can approx-
imate P∗ in a single execution and exhibit flexibility with
respect to the specific optimization criteria used [8].

B. Multiview Clustering

MVC extends the definition of clustering to leverage sce-
narios where multiple data views are available [9]. Each data
view can be seen as a different representation (or modality) of
the same data. The idea of MVC is to exploit the complemen-
tary perspectives that multiple views can provide, in order to
discover higher quality partitions.

Scenarios with multiple data views present themselves in
different forms and arise in diverse application domains.
On the one hand, data views may correspond to multiple
feature spaces characterizing the same entities. For exam-
ple, José-García et al. [10] considered an application to
breast tumor classification where five separate feature spaces
describe different aspects of ultrasound images. Analogously,
Devagiri et al. [11] used independent subsets of features to
define views describing the operation, performance, and con-
text of the heating and tap-water subsystems in the domain
of smart buildings. Zeng et al. [12] reported an application of
MVC to the identification of groups of closely related genes
in a genome. To this end, the authors extract features from two
heterogeneous sources, gene expression data and text literature
data, and consider each as a separate data view. He et al. [13]
used gene expression data as one of the views, in combina-
tion with a second view based on DNA methylation expression
data, in an effort to identify groups of patients with specific
cancer subtypes.

On the other hand, multiple distance or proximity measures
can be exploited to obtain a more complete picture of the sim-
ilarity between entities [14]. Multiple dissimilarity matrices
can be determined through the application of either a single
proximity measure to separate feature spaces, or different mea-
sures within a single, fixed feature space [15]. Liu et al. [16],
for example, use both the Euclidean distance and the path
distance [17] as distinct data views to increase robustness
when dealing with a range of data properties (e.g., spherically
or irregularly shaped clusters). Based on a similar rationale,
José-García et al. [10] explored the use of the Euclidean, cosine,
and maximum edge [18] distances as separate data views.

The use of multiple similarity measures as data views is par-
ticularly relevant in scenarios where defining feature spaces is
not straightforward [10], [19], and there is significant ambi-
guity in how best to define similarity. For this reason, MVC
has seen significant use in the analysis of Web-search results.
Saha et al. [20] and Saini et al. [21] employed problem-specific
similarity measures to define separate, semantic, and syntactic
views. In contrast, Mitra et al. [22] combined semantic and
syntactic information into a single view, the textual view, but
use a separate similarity measure to generate an additional
view from the images contained in Web documents. In this
article, we explore another such application, the clustering of
candidate protein structures. A meaningful feature space is dif-
ficult to define in this domain, and even pairwise comparisons
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between structures are not straightforward. Exploiting multiple
structural similarity measures may therefore provide a signif-
icant advantage in this particular context.

C. Multiobjective Approach to Multiview Clustering

The success of Pareto-based optimization for clustering
has motivated recent interest in extending this approach to
the MVC setting. Although complementary clustering criteria
have sometimes been employed in an MVC setting [23], [24],
the main focus has been on optimizing a single criterion,
evaluated separately for each data view. The multiobjective
approach to MVC is thus expected to facilitate the discovery
of tradeoff partitions that reflect the consensus (or conflict)
that may exist across the multiple data views available.

To the best of our knowledge, Brusco and Stahl report
one of the earliest works explicitly formulating MVC as a
multiobjective problem [25]. The authors consider multiple
dissimilarity matrices computed independently from different
feature sets, and then define separate objectives based on these
matrices. However, the advantages of the multiobjective for-
mulation are not fully exploited, as scalarization is applied to
transform the problem back into a single-objective one.

Caballero et al. [23] also evaluated a single clustering cri-
terion independently for multiple dissimilarity matrices (a
scenario where different criteria are computed separately for
multiple dissimilarity matrices is also considered). In con-
trast to the above work by Brusco and Stahl, Caballero et al.
explicitly treat MVC as a multiobjective problem so as to
approximate the Pareto front in a single execution of their
scatter tabu search algorithm. In proposing a multiobjective
spectral clustering approach to MVC, Wang et al. [26] empha-
sized the relevance of handling data views through individual
optimization objectives: the multiobjective approach avoids
assumptions of compatibility across data views (an inherent
assumption of methods based on the direct aggregation of
views), and removes the need to define weights that reflect
the importance (or reliability) of these different sources.

Perhaps, the first application of MOEAs in the context of
MVC is the one reported by Wahid et al. [27], [28]. In fact,
multiple views are used only during the initial stage to seed
the proposed clustering ensemble method with a diverse set
of partitions. The subsequent, evolutionary-based stage opti-
mizes the combination of clusters from these initial partitions.
Another early application of MOEAs to MVC is reported
by Saeidi et al. [24] to address the problem of software
systems modularization. The authors find that treating MVC
explicitly as a multiobjective problem, using a Pareto-based
approach, produces better results in comparison to using a
linear combination of the objective functions. More recently,
Jiang et al. [29] evaluated the performance of five well-known
MOEAs at addressing this task. This study shows that a
multiobjective approach frequently obtains higher quality par-
titions than three single-objective MVC methods from the
literature.

Liu et al. [16] designed MOEAs to tackle an MVC scenario
consisting of two dissimilarity matrices, each computed using
a different distance function. The first MOEA optimizes a

measure of cluster compactness simultaneously for both matri-
ces, and is intended for situations where k is known in advance.
The second proposal modifies the objective functions to incor-
porate information on cluster separation, which facilitates the
automatic discovery of k. In the works of Saha et al. [20] and
Mitra et al. [22], each data view is handled as a separate objec-
tive function, but an additional objective is included to evaluate
the agreement between the partitions encoded across the differ-
ent views. Solutions to the resulting problem are obtained by
using a simulated annealing-based multiobjective optimizer. A
similar approach is later reported by Saini et al. [21], where
alternative data views and a search engine based on differential
evolution are considered.

Even though some of the above studies argue that the meth-
ods proposed can scale to any number of views and the
corresponding number of objective functions [20], they primar-
ily focus on problems with two or three views (our work also
centers on problems with such a reduced number of views).
A notable exception is the work of Jiang et al. [29], where
problems involving four and six data views are considered.
Recently, José-García et al. [10] proposed a many-view clus-
tering approach with the aim of addressing this limitation
and improving the applicability of MVC to scenarios where
a larger number of views are available. This study evidences
that having the opportunity to increase the number of views,
and exploit the complementary information they provide, can
translate into meaningful increases in clustering performance.

D. Discussion of the Related Works

Here, we further discuss the existing multiobjective
approaches to MVC (Section II-C) from the perspective of two
important design aspects: the solution representation used and
the ability to automatically determine the number of clusters,
k. With a few exceptions [21], [27], [28], most metaheuris-
tic methods adopt either a label-based or a prototype-based
representation. On the one hand, the label-based approach
directly encodes cluster memberships [16], [24], specifying
which cluster each of the N data entities belongs to. Despite
offering a straightforward encoding, this representation scales
poorly with respect to the problem size N and has been shown
to be highly nonsynonymously redundant [30], [31].

On the other hand, the prototype-based representation
encodes partitions most commonly by means of cluster cen-
troids [20], [22], [29]. Although this approach presents better
scalability properties, it does not offer a direct mapping to
partition space under an MVC setting. That is, a solution
is interpreted as a partition by assigning data entities to the
cluster represented by the closest centroid; however, this is
likely to result in multiple distinct partitions, as the notion
of closeness changes with the different subsets of features or
dissimilarity measures associated with each particular view.
Moreover, this representation is only applicable if the views
are available in the form of feature spaces, which is not always
the case, as discussed at the end of Section II-B. An alterna-
tive to cope with this last issue is the use of cluster medoids
rather than centroids [10], [23]. Also, it has been shown that
the availability of scalarizing vectors, within a many-objective
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optimization approach [32], can be exploited to address the
assignment issue [10]. Nevertheless, prototype-based represen-
tations are known to be inherently biased toward spherically
shaped clusters, which remains a limitation.

The multiobjective MVC methods discussed in
Section II-C either require the value of k to be fixed in
advance [10], [23], [29], or they keep this parameter vari-
able and try to automatically determine its value during
optimization [16], [20], [21]. The former approach is not
always realistic, as the correct value of k can be unknown
in practice. The latter is more generally applicable, but
completely disregards any insight or domain expertise that
might be available.

The multiobjective approach described in Section III uses
a graph-based encoding which: 1) captures solutions with any
number of clusters of arbitrary shapes; 2) ensures that every
candidate solution is interpreted as the same partition across all
data views; and 3) is explicitly leveraged as a mechanism for
data view integration. Our method is able to identify k auto-
matically but can also exploit the availability of this domain
knowledge in order to improve clustering performance.

III. PROPOSED ALGORITHM

This section introduces the evolutionary multiobjective algo-
rithm that we propose to address the challenge of MVC.
Our method is referred to as �MV, since it builds upon
the �-MOCK algorithm recently proposed in the context
of multiobjective clustering [2]. Note, however, that �MV
involves significant adaptations to handle the new MVC
setting.

A key aspect of any MVC method is the specific mecha-
nisms that enable the integration of multiple data views. In
�MV, a graph-based solution encoding and strategies based
on the MST allow us to define a search space of candi-
date partitions that represent different tradeoffs between the
data views considered. Then, the simultaneous optimization
of multiple objective functions, each accounting for a separate
data view, allows �MV to search for the optimal tradeoff par-
titions within this set. Our proposal is able to automatically
determine the number of clusters, k, but is also able to exploit
any insight available regarding the value of this parameter.
These are the main features distinguishing �MV from other
multiobjective MVC approaches reported in the literature.

The overall optimization framework, main design compo-
nents, and source code availability of our implementation of
algorithm �MV, are discussed in the following sections.

A. Multiobjective Optimization Framework

The overall functioning of our �MV algorithm is out-
lined in Algorithm 1. In the first stage, problem granularity
is defined (intended for scalability purposes, as described in
Section III-B) and a population of candidate individuals (clus-
tering solutions) is initialized. Then, in the optimization stage,
the evolutionary cycle of renewing the population by means
of mating, the genetic operators (recombination and muta-
tion), and survivor selection, is repeated for a given number

Algorithm 1 Algorithm �MV
Require: Problem granularity level (δ), Population size (P),

Generations (Gmax) [, Number of clusters (k)]
Ensure: Pareto front approximation (P∗[, P∗k ]), Final solution

recommendation (x∗)
STAGE 1: Problem preparation and initialization

1: set_problem_granularity(δ)
2: P ← initialization(P)

3: if 〈 k provided as input 〉 then
4: A,Ak ← update_external_archives(P, P)

STAGE 2: Evolutionary-based optimization
5: for generation← 1, . . . , Gmax do
6: P̂ ← mating_selection(P)

7: P ′ ← genetic_operators(P̂)

8: if 〈 k provided as input 〉 then
9: A,Ak ← update_external_archives(P ′, P)

10: P ← survival_selection(P ∪ P ′)
STAGE 3: Model selection and output generation

11: if 〈 k provided as input 〉 then
12: P∗,P∗k ← A,Ak

13: x∗ ← select_final_solution(P∗k )

14: else
15: P∗ ← Pareto_nondominated(P)

16: x∗ ← select_final_solution(P∗)

of generations (Gmax). The final stage produces a Pareto-
front approximation and selects a promising nondominated
individual in order to provide the user with a final solution
recommendation. Note that when a value of k is provided
as input, external archives are used to store the Pareto-front
approximation, as explained in Section III-E. These archives
are updated after initialization and every time a new set of
individuals is created by means of the genetic operators.

B. Graph-Based Representation of Variable Granularity

Choosing a suitable representation is critical, as this com-
ponent effectively determines the space of clustering solutions
that can be reached by the evolutionary algorithm. As such,
we leverage our method’s representation so that each potential
solution defines a tradeoff concerning multiple data views. We
provide a general description of our representation below, but
details on how this approach is further adapted and exploited to
cater for the MVC setting are discussed later in Section III-C.

The adopted graph-based representation, illustrated in
Fig. 1, is based on the original proposal by Park and Song [33]
and a coarse-grained version devised more recently [2], [34].
Rather than using a separate node to represent each of the
N data entities, as done in the original representation, we
preprocess the dataset in advance to identify groups of enti-
ties that can be handled jointly in a coarse-grained manner.
This strategy can reduce solution length, therefore signifi-
cantly shrinking the search space, which improves our ability
to solve large problem instances reliably. Note, however, that
our representation still preserves the advantages of the origi-
nal proposal: it can encode partitions with varying numbers of
clusters without the introduction of bias regarding their shape.

Authorized licensed use limited to: University of Exeter. Downloaded on November 10,2023 at 11:14:46 UTC from IEEE Xplore.  Restrictions apply. 



GARZA-FABRE et al.: EVOLUTIONARY MULTIOBJECTIVE CLUSTERING 821

Fig. 1. Graph-based representation of variable granularity. A node of the
graph can represent a set of entities and is accounted for by a separate gene
of the genotype. The ith gene, when assuming an allele value of j, encodes
a link connecting node ni to node nj; for example, the second gene of the
genotype shown has a value of 3, which defines a link from node n2 to node
n3. Here, four nodes represent N = 10 entities, and a partition with k = 2
clusters is defined by the connected components formed by the links encoded.

Defining our representation involves two steps: 1) setting
the granularity level by identifying the groups of entities that
will be represented as nodes of the graph and 2) deciding
on the possible alleles for each gene of the genotype, which
determines the links that can be established between the nodes.

The first step is crucial, as the initial groups of data entities
serve as the basis of all candidate partitions generated during
optimization. Building upon previous work [2], [34], these
groups are defined by the connected components obtained
when removing the most relevant subset of links from the
MST, see Fig. 2. The relevance of an MST link is given by its
degree of interestingness (DI) [2], whose computation details
are provided in the supplementary material accompanying this
article. Parameter δ is used to control problem granularity,
denoting the percentage of the N − 1 total links that will be
retained (0 ≤ δ < 100). More specifically, �(δ/100)(N − 1)�
less relevant (lowest DI) MST links will be preserved, and
only the remaining �([(100− δ)]/100)(N − 1)� most promi-
nent (highest DI) MST links will be removed to produce
the initial set of cluster building blocks. Note that using
δ = 0 is equivalent to adopting the original (fine-grained)
representation.

The second step enables further control of the regions of the
search space on which �MV will focus. We restrict the set of
possible allele values for the ith gene of the genotype to only
those values that create links within the following three cate-
gories, which represent meaningful changes at the phenotype
level (i.e., they either result in distinct nodes being separated
or merged): 1) a link connecting node ni to itself; 2) a link
connecting ni to a node nj which contains one of the L nearest
neighbors of a member of ni; and 3) a link from ni to a node
nj enclosing an entity to which a member of ni was directly
connected in the MST. A similar approach was considered
previously [2], [34]. However, a key difference in this previous
work is that links were defined at the data entity level, rather
than at the node level, as done here (where each node may
represent multiple entities). Consequently, although defining
links between distinct pairs of entities, multiple alleles could
ultimately translate into connections between the same pair
of nodes, introducing redundancy. Our new approach removes
this redundancy and ensures that possible changes at the phe-
notype level are sampled with equal probability. We adopt a
setting of L = 10, as in previous studies [2], [34].

Fig. 2. Removal of relevant links splits the MST into a set of connected
components, which serve as the building blocks of candidate partitions when
using the coarse-grained encoding.

C. Adaptations to Integrate Multiple Data Views

We investigate two distinct approaches to integrate multiple
data views, which are realizations of the strategies described
in Section III-B for defining the initial set of cluster building
blocks and the possible allele values of our method’s repre-
sentation. A subscript is used to distinguish between these
variants of our �MV method, as specified below.

1) Aggregation of Data Views (�MVavg): The dissimilarity
matrices corresponding to all data views are first (inde-
pendently) normalized to the range [0, 1]. Then, these
matrices are averaged, resulting in a new dissimilarity
matrix that is used during the construction of the MST
and the generation of the nearest neighbor information
(which is used to determine the relevance of MST links
and possible allele values for each gene of the genotype).

2) Separation of Data Views (�MVsep): MSTs are con-
structed independently for each data view and then
individually split into multiple connected components.
This results in different coarse-grained versions of the
problem, which are later merged into a single final ver-
sion. As further explained and graphically illustrated
in the supplementary material, the nodes of the final
coarse-grained problem are given by the (nonempty)
intersections computed for all combinations of nodes
from the individual problem versions. Given the poten-
tial lack of agreement between the data views, this
merging process is likely to result in a final coarse-
grained problem larger than expected in a single-view
setting for the same value of parameter δ. Since sep-
arate MSTs are constructed, and the nearest neighbor
information changes from one view to another, the def-
inition of the possible allele values also needs to be
adapted. The set of alleles for a given gene of the
genotype will comprise those alleles that define links sat-
isfying the conditions of the three categories described
in Section III-B, for at least one of the data views.

Approach �MVavg can be expected to be more successful
in exploiting the existing consensus between the data views,
as it biases the search toward those partitions. We hypothe-
size, however, that �MVsep can be more suitable when the
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views are conflicting with each other, or when one of them is
significantly more reliable (e.g., less affected by noise) than
the other; the separation of views enforced by �MVsep gives
it a better ability to cater for these potential situations.

An important aspect is the scalability of these approaches
in terms of the number of data views. In principle, both the
computation of an average dissimilarity matrix in �MVavg and
the merging of coarse-grained problem versions in �MVsep
can generalize to an arbitrary number of views. Nevertheless,
increasing the number of views is expected to accentuate the
above-discussed tendency of �MVsep to increase the size of
the resulting coarse-grained problem and the number of allele
choices (leading to a larger search space), which diminishes
the benefits of the variable-granularity representation.

D. Optimization Criteria and Delta-Evaluation

We formulate MVC as a multiobjective optimization
problem. A single clustering criterion, the average silhouette
width (ASW) [35], is computed independently for each data
view, resulting in a set of objective functions. ASW evalu-
ates aspects of both intracluster homogeneity and intercluster
separation, showing a promising performance when compared
with respect to other well-known clustering criteria [3].

The silhouette width estimates the extent to which an entity
is correctly assigned to its cluster. This is evaluated by measur-
ing the dissimilarity of the entity to all other entities within the
same cluster, and contrasting this measurement to that com-
puted with respect to the entities of the closest neighboring
cluster. Criterion ASW is thus defined as the average of the
silhouette width estimates across all entities

ASW(C) = 1

N

N∑

i=1

b(i)− a(i)

max {a(i), b(i)} (1)

where C is a candidate partition; a(i) is the average dissimi-
larity between data entity i, belonging to cluster c ∈ C, and all
other entities j �= i such that j ∈ c; and b(i) is the minimum of
the average dissimilarities between i and all entities l ∈ c′, for
any c′ ∈ C such that c′ �= c. ASW takes values in the range
[−1, 1] and is to be maximized. The supplementary material
includes an illustrative example of the computation of ASW.

The use of a variable-granularity representation enables
the delta-evaluation of candidate solutions. As explained in
Section III-B, groups of data entities are initially identified,
which represent a partial clustering upon which all other solu-
tions will be constructed (i.e., by merging these initial groups).
Hence, our method leverages this strategy and evaluates solu-
tions incrementally: it first precomputes ASW in advance for
such a partial solution, and then updates this criterion to
account for the peculiarities of each final clustering evaluated
during the search. We applied a similar strategy before [2],
where the delta-evaluation of the intracluster variance and
connectivity criteria was found to be a major contributor to
the computational efficiency of algorithm �-MOCK.

E. Determination of the Number of Clusters

As discussed earlier, the genetic representation adopted
enables the generation of solutions with variable k. Leveraging

this flexibility, our method is able to determine k automatically,
but it can also receive a recommendation as input to bias the
search and ensure the delivery of solutions with specific k.
In the former case, the optimization criteria are responsible
for guiding the search toward partitions that fit the natural
grouping of the data without introducing any particular bias
on the value of k. Hence, due to the potential conflict between
the data views (each accounted for by a separate objective
function) and the fact that each view could favor partitions
with different k, the Pareto-front approximation generated by
�MV will likely contain solutions exhibiting a range of val-
ues for k. This approximation solution set, P∗, together with a
final solution recommendation, x∗ ∈ P∗, is delivered by �MV
as output, as shown in Algorithm 1.

In the latter case, �MV exploits available domain knowl-
edge regarding the value of k. However, rather than enforc-
ing this as a constraint, we acknowledge the fact that this
information can be inaccurate in practice (it is unavailable
in most cases), and treat it as a recommendation to bias the
search process. This is achieved by using an additional (helper)
objective function defined as the absolute difference between
the number of clusters in the candidate partition and the target
k value. In this way, solutions with the desired k are favored,
but the simultaneous optimization of the original criteria still
leads to solutions with different k whenever they better fit the
real grouping of the data according to the views considered.

As indicated in Algorithm 1, when a value of k is given as
input, �MV’s output includes two distinct approximations to
the Pareto front of the original multiobjective problem (exclud-
ing the additional objective described above), namely, P∗ and
P∗k (it also recommends a final solution, x∗ ∈ P∗k ). Both
P∗ and P∗k consist of approximation sets constructed and
maintained throughout the search process using corresponding
external archives, A and Ak. Whereas A stores nondominated
solutions irrespective of their value of k, Ak filters solutions
and only stores those satisfying the target k value. These
archives are updated every time new candidate solutions are
generated, both by the initialization routine and by the genetic
operators. A maximum size of |A| = |Ak| = P has been
adopted (where P is the size of the population), and discrimi-
nation among nondominated solutions is carried out by means
of the crowding distance measure [36].

F. Initialization and Genetic Operators

Our initialization routine creates an initial population
exhibiting diversity, but at the same time high-quality indi-
viduals. First, the full MST-based solution (k = 1) is added to
the population, see Fig. 3. This is followed by the inclusion of
promising MST-based solutions for which k is uniformly cho-
sen, without replacement, from the set {2, 3, . . . , kmax}, where
kmax is a user-defined parameter. Solutions are included one
by one until the population is full or the possible k values are
exhausted. Note that this process needs to be repeated multiple
times when using approach �MVsep, which operates on MSTs
computed independently for each data view. If the possible k
values are exhausted, the remaining population slots are filled
with randomly generated solutions.
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Fig. 3. MST-based solution is created by restoring the links originally
removed from the MST to define the coarse-grained version of the problem
(see Fig. 2 and Section III-B). To create a solution with k clusters, all links are
restored except for the k − 1 most relevant ones (according to measure DI). In
these examples, restoring all links results in the full MST-based solution with
k = 1, and restoring all but the two most relevant links results in a solution
with k = 3 clusters.

The mating strategy adopted is based on (deterministic)
binary tournament selection. Uniform crossover and uni-
form mutation are chosen as the genetic operators (with
probability parameters pc and pm, respectively). Finally, the
survivor selection scheme uses nondominated sorting and
crowding distance, as in the Nondominated Sorting Genetic
Algorithm-II (NSGA-II) [36]. Note that this Pareto-based
population replacement strategy imposes limitations on the
number of data views, and corresponding objective functions,
that �MV can effectively handle. This is due to the inabil-
ity of the Pareto-dominance relation to induce an effective
discrimination in many-objective scenarios (involving four or
more objectives), which significantly decreases selection pres-
sure and thus the effectiveness of methods relying on this
concept. An increase in the number of data views would
therefore imply the adaptation of �MV’s optimization engine,
adopting strategies specifically designed for many-objective
optimization [32].

G. Automated Model Selection

The selection of a single solution from the Pareto-front
approximation is a final step in multiobjective clustering and
often represents the ultimate goal in practical contexts. In the
more general area of multiobjective optimization, the final
solution is commonly taken from the knee regions, as they
offer the most promising tradeoffs and usually correspond to
the preferences of decision makers [37]. Such a strategy has
been adopted in multiobjective clustering as well, for instance,
in the original version of the MOCK algorithm [1].

However, the assumptions motivating the selection of the
best tradeoffs do not necessarily apply in the specific setting
of MVC. As we analyze in Section V-B, we may deal with
data views presenting varying levels of reliability. We observe
that, when one view is significantly more reliable (less noisy)
than the others, the extreme region of the Pareto front for the
corresponding objective function tends to coincide with the

location of the optimal partition. Also, the more reliable the
data view, the better defined the cluster structure tends to be,
yielding better values for the optimization criteria.

We therefore define a simple, yet effective selection strat-
egy based on the above observations. Our strategy selects the
solution which leads to the highest sum of (unnormalized)
objective values. Given that the objectives refer to the same
clustering criterion but are computed independently for each
data view (see Section III-D), and that higher objective values
are obtained for more reliable views, our strategy involves an
implicit weighting of the views based on their reliability.

H. Source Code Availability

The source code of �MV (written in C++) and the datasets
used in our experiments are made available to the research
community through the following repositories: https://github.
com/garzafabre/DeltaMV, https://evoclustering.github.io.

IV. EXPERIMENTAL SETUP

The following sections summarize the clustering algorithms,
test datasets, settings, and performance indicators considered
in the experiments presented in Section V.

A. Clustering Methods Evaluated

Four variants of our �MV algorithm are evaluated in order
to investigate the impact of certain design choices: �MVavg
and �MVsep, which refer to our two strategies to handle
multiple data views (see Section III-C), and the corresponding
versions of these approaches which receive a specific value
of k as input, denoted by �MVk

avg and �MVk
sep. We adopt

the following parameter settings during the evaluation of our
proposal: population size, P = 100; number of generations,
Gmax = 300; recombination probability, pc = 0.7; mutation
probability, pm = 1/n, where n is the genotype length; max-
imum number of clusters for initialization, kmax = 50; and
neighborhood parameter, L = 10. This has been decided based
on preliminary testing, ensuring that exactly the same set-
tings are considered for all �MV variants (and the baseline
evolutionary methods described below). This favors a fair com-
parison and enables a more focused assessment of the specific
strategies implemented by each approach. A proper sensitivity
analysis (not considered here) might reveal better choices to
further boost the performance of individual approaches.

Given that our primary case study, namely, the bioinformat-
ics application described in Section IV-B, involves datasets
which are only available in the form of dissimilarity matri-
ces (rather than feature spaces), our selection of reference
methods is limited to approaches that can readily operate in
this setting (methods based on cluster centroids are therefore
excluded). Note that some of the references considered are
single-view clustering methods (PAM, SL, AL, and SVEA,
as described below). Throughout our experiments, a subscript
will be added to the acronyms of these approaches when eval-
uating their performance from the perspective of the first (v1)

or second data view (v2) of the clustering problems adopted.
Three categories of reference approaches are considered:
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1) Multiview Clustering Methods From the Literature: Our
comparative analysis includes the multiview multiobjective
clustering (MVMC) algorithm by José-García et al. [10].
MVMC is a recently proposed multiobjective approach to
MVC that has shown promising results when evaluated with
respect to previous multiobjective approaches [22], [29].
We also compare against the Multiview Spectral Clustering
Algorithm (SC) proposed by Kanaan-Izquierdo et al. [38],
which obtained highly competitive results when compared
against seven other multiview algorithms from the literature.

2) Well-Known Single-View Clustering Methods: We
include the Partitioning Around Medoids (PAM) algorithm,
which uses data entities as cluster representatives (medoids),
and two variants of Agglomerative Hierarchical Clustering,
namely, Single-Linkage (SL) and Average-Linkage (AL).

3) Baseline Single-View and Multiview Evolutionary
Approaches: Additional baselines allow us to verify whether
the performance of �MV is explained by the use of multiple
data views or its specific optimization framework. SVEAk and
MVEAk are, respectively, single-view and multiview evolu-
tionary approaches, implemented within the same framework
and based on the same components as �MV. Whereas SVEAk

focuses on the individual data views, MVEAk focuses on the
aggregation of views and is therefore applied to the aver-
age dissimilarity matrix (the same matrix used by �MVk

avg).
Both SVEAk and MVEAk receive k as input, which they
handle through an additional objective function, as done by
our method (see Section III-E). Because of this, both SVEAk

and MVEAk are indeed multiobjective methods; however,
MVEAk optimizes a single objective to account for the (aggre-
gated) views, in contrast to �MVk

avg which uses a separate
objective for each view (hence, MVEAk can be seen as a
single-objective version of our strategy �MVk

avg).

B. Multiview Clustering Problems

A total of 420 MVC problems are used in the experiments
of this article. Out of these problems, 400 correspond to our
primary case study, a real bioinformatics application. We addi-
tionally include 20 2-D, synthetic datasets with the aim of
ensuring that our evaluation is comprehensive and considers
clustering problems of varying characteristics regarding cluster
shapes, overlap, and separability. All the problems considered
involve two data views, which will be referred to as v1 and v2
throughout this study.

1) Bioinformatics Application: Clustering is an important
task in structural bioinformatics. For example, it has recently
been used for the structure-based classification of proteins of
SARS-CoV-2 and other coronaviruses, with the aim of aiding
the rational design of drugs and vaccines [39]. Another exam-
ple is the application of clustering to analyze the diversity of
(experimentally determined) structures in the protein data bank
(PDB) [40] for various purposes, including the identification
of unique protein-ligand complexes [41] and the definition of
structural classes for specific regions (e.g., loops) of protein
chains [42]. The clustering of protein structures is also rele-
vant to the study of protein function; given that a protein’s
function is strongly dependent on its shape, clustering can

facilitate functional inference from cluster members, which
are in close proximity in structure space [43]. Finally, cluster-
ing is a common task within protein structure prediction (PSP)
pipelines. PSP involves determining a protein’s structure from
its amino acid sequence, a challenge that has eluded a defini-
tive solution for decades (although substantial progress has
recently been reported [44], [45]). In PSP, clustering is fre-
quently used during model (decoy) selection, step at which
promising structures are chosen for further refinement from
large collections of candidates initially produced at a lower
resolution; the clustering-based approach consists in identify-
ing groups within those collections and selecting representative
structures from the most populated ones [46], [47], [48].

An important decision when applying clustering in these
contexts concerns the adoption of a measure to determine the
similarity between candidate structures. A variety of such mea-
sures exists, but there is no consensus as to which of them
should be used. In this study, we acknowledge the intrin-
sic multiview nature of this task: multiple measures can be
exploited simultaneously as data views, to assess the similarity
of candidate structures more comprehensively.

A new collection of 400 MVC problems was created, using
five different measures of structural similarity as alterna-
tive data views: 1) Hamming distance between contact maps
(CMP); 2) global distance test—total score (GTS); 3) global
distance test - high accuracy (GHA); 4) distance between
extreme points of secondary structure elements (SSX); and
5) distance in torsion (dihedral) angle space (TOR). Multiview
scenarios thereby correspond to the

(5
2

) = 10 possible ways to
choose v1 and v2 from these measures. Further details on these
measures are provided in the supplementary material, where
we also describe the distribution of the 400 problems based on
the ten possible multiview scenarios, their number of clusters,
k∗ ∈ {5, 10, 15}, and their size, N ∈ {500, 1000, 1500}.

Problems were defined following a two-stage process, which
we briefly summarize below (for a detailed description, the
reader is referred to the supplementary material). First, a
diverse set of candidate structures for a given protein was
identified. Then, each of these candidates was used to seed
a series of iterative perturbation processes aimed at pro-
ducing new structures around the initial configurations. In
this way, a cluster of candidate structures was populated for
every seed structure used. Varying the distance (radius) within
which structures were generated from the seed, allowed us
to control problem difficulty by affecting cluster homogene-
ity and the extent to which clusters can overlap with each
other, as illustrated in Fig. 4. In all the cases, the initial
cluster seeds were sampled from a collection of structures
produced by independent runs of the state-of-the-art method
Rosetta [49]. Moreover, all cluster members obtained from
such seeds were generated using Rosetta’s structural pertur-
bation operators (namely, fragment insertions). Thus, all the
datasets constructed consist of plausible structures that can
be reached during the search process of actual prediction
protocols.

2) Synthetic Problems: For the 20 synthetic problems, data
view v1 is given by the Euclidean distance, whereas v2 is
given by the maximum edge distance (MED) [18]. Integrating
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Fig. 4. Generation of clusters of protein structures. Clusters of different
homogeneity are obtained by varying the radius r (root-mean-square devia-
tion, measured in Å) within which cluster members (gray) are created starting
from a seed structure (orange). Four cluster members are considered in these
example clusters; their best possible alignment with respect to the seed struc-
ture is shown to illustrate cluster homogeneity. (a) Seed structure. (b) Cluster,
r = 5 Å. (c) Cluster, r = 10 Å.

these particular dissimilarity measures in a multiview set-
ting has been shown to increase robustness to arbitrarily
shaped clusters [10]. Out of the 20 problems considered, 7 are
explored for the first time in this study: blobs2, blobs3, cir-
cles1, circles2, long4, moons3, and moons5. The remaining 13
problems have been taken from [1]: fourty, long1, longsquare,
sizes1, sizes5, smile1, spiral, spiralsquare, square1, square4,
triangle1, triangle2, and twenty. As detailed and graphically
illustrated in the supplementary material, these 20 problems
vary in size, N ∈ {900, 1000, 1500, 4000}, number of clusters,
k∗ ∈ {2, 4, 5, 6, 8, 10, 20, 40}, and overall data characteristics
(e.g., shape, overlap, and separability of the clusters).

C. Performance Assessment

Section V reports statistics computed from 31 independent
executions performed for each clustering method studied, for
every problem considered. The ability of an algorithm to pro-
duce high-quality partitions is assessed using the adjusted rand
index (ARI) [50], which analyzes the pairwise co-assignment
of data entities between the partitions obtained and the correct
partition (ground truth, which is known for all the problems
considered). The ARI measure is defined in the range [∼0, 1],
and higher values indicate a better clustering performance. An
important aspect of our algorithm is its ability to determine the
number of clusters, k, automatically. For this reason, the dif-
ference between the k values obtained and the correct number
of clusters k∗ is also analyzed.

To further understand the performance and behavior of
our �MV method, we analyze the characteristics of the
Pareto-front approximations produced. This analysis relies on
the visualization of the differences between the (first-order)
empirical attainment functions (EAFs) of different �MV vari-
ants [51]. The plots for such visualizations, generated using the
tools provided by López-Ibáñez et al. [52], allow us to iden-
tify whether and in which particular regions of the objective
space a variant performs better than others. Every plot con-
trasts two approaches and shows the differences which favor
each of them. In all the cases, the x-axis and y-axis corre-
spond to the objective function values (silhouette width, to be
maximized) computed individually for data views v1 and v2,
respectively. Solid lines in these plots represent the grand best
(upper line) and grand worst (lower line) attainment surfaces,

while the dashed line denotes the median attainment surface.
In addition, some plots include specific markers to illustrate
the location of the optimum and examples of the solutions
selected automatically by our method.

The (nonparametric) Mann–Whitney U test is used to inves-
tigate the statistical significance of the performance differences
observed between the approaches compared. In all the cases,
a significance level of α = 0.05 is considered. Only specific,
relevant pairs of approaches are analyzed, and Bonferroni
correction is applied to account for multiple testing issues.

V. RESULTS

This section discusses the results of a series of experiments
conducted to investigate the performance of our MVC algo-
rithm, �MV. First, Section V-A presents an overall evaluation
of different variants of �MV and comparisons with respect to
a set of reference methods. The ability of our method to auto-
matically determine the number of clusters is also analyzed
in that section. Next, Section V-B explores the robustness
of our algorithm (and reference approaches) when dealing
with noisy data views. Then, the effectiveness of our auto-
mated model selection strategy is studied in Section V-C.
Finally, Section V-D analyzes the effects of varying problem
granularity through our graph-based genetic representation.

A. Overall Results and Comparisons

This section analyzes the results obtained by our �MV
algorithm, and compares its performance with respect to
a set of single-view and multiview reference methods (see
Section IV-A). The results of this comparison are summa-
rized in Fig. 5. Tables with specific results for separate
problem categories (protein datasets) and individual problems
(synthetic datasets), and more detailed results of the statisti-
cal significance analysis, are included in the supplementary
material.

As shown in Fig. 5, our method �MV is the best overall
performer. In particular, �MVk

avg and �MVk
sep, variants that

receive k as input (similar conditions to all of the reference
methods considered), score better (higher) ARI values than the
contestant approaches, with statistically significant differences
in most cases [the only exception is MVMC, for which no sig-
nificant difference is observed with respect to �MVk

avg in the
synthetic problems, see Fig. 5(b)]. The analysis of individ-
ual instances (supplementary material) reveals that �MVk

avg
significantly outperforms �MVk

sep in 176 cases (out of 420).
Although this suggests that the multiview strategy adopted by
�MVk

avg is more effective, �MVk
sep performs significantly bet-

ter in 80 problems, and no significant differences are observed
between these approaches in the remaining 164 cases; the
overall results of Fig. 5 also indicate that the differences
between �MVk

avg and �MVk
sep are not statistically significant.

Subsequent analyses presented in Sections V-B and V-C allow
us to further discuss the key differences between these specific
variants and to identify scenarios where one of them may be
expected to perform better than the other.

Variants of �MV that automatically determine k, namely,
�MVavg and �MVsep, also exhibit a highly competitive
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Fig. 5. Clustering performance (ARI) scored by all methods on the (a) protein
and (b) synthetic datasets. Marker • at the top of the plots indicates the
method with the highest median ARI value; marker + indicates a statistically
significant difference with respect to this best performing method, whereas
marker ◦ indicates that no significant difference is observed.

performance. In fact, our analysis reveals that in 339 and
329 problems, the performance differences between these vari-
ants and their corresponding counterparts having access to k
(�MVk

avg and �MVk
sep) are not statistically significant. Fig. 6

confirms that both �MVavg and �MVsep succeed in cor-
rectly identifying (or closely approximating) the value of k
in the majority of the cases. All the above findings confirm
the suitability of algorithm �MV for MVC settings, and its
capacity to find high-quality partitions even in the absence of
information regarding the correct value for parameter k.

The multiview spectral clustering approach, SC, shows out-
standing results for the protein structure datasets. However,
its performance decreases for the synthetic problems, espe-
cially when dealing with overlapping clusters. Conversely, the
multiobjective approach MVMC is effective across the diverse
characteristics in the synthetic datasets, scoring results com-
parable to those of �MV. The prototype-based representation
offers MVMC some robustness to overlapping clusters, and
the availability of a data view based on the MED distance
allows the algorithm to deal with challenging cluster shapes,
in spite of its representation. Despite these remarkable results,
the performance of MVMC drops for the protein structure
datasets; we hypothesize that this performance drop relates to
the lack of a mechanism to help MVMC cope with irregular
clusters, when the MED distance is not used as an additional
data view (as is the case in this particular experiment).

The fact that all the single-view methods (PAM, SL, AL, and
SVEAk) are clearly outperformed by the multiview approaches
supports the relevance of MVC. In particular, the results for

Fig. 6. Ability of approaches �MVavg and �MVsep to correctly determine k.
The absolute differences between the k obtained and the correct value k∗ are
shown for (a) protein structure and (b) synthetic datasets (in logarithmic scale).

the protein structure datasets [Fig. 5(a)] provide conclusive
evidence of the benefits that MVC can bring to this domain.
Single-view methods are unable to perform reliably well across
all scenarios. While a given view can favor competitive results
in some cases, the same view can lead to a poor performance
when it becomes incompatible with the characteristics of
the data. This is evidenced by the results for specific syn-
thetic datasets (supplementary material): using the Euclidean
distance (v1), SVEAk yields good results in problems with
spherical clusters (e.g., blobs3, sizes5, and square4) but com-
pletely fails in cases of irregular, nonlinearly separable clusters
(e.g., circles1 and spiral). On the contrary, problems with non-
linearly separable clusters are easily solved when SVEAk uses
the MED distance (v2) instead. Using only the MED dis-
tance, however, SVEAk fails when presented with overlapping
clusters (e.g., sizes5 and square4).

As described in Section IV-A, SVEAk and MVEAk can be
seen as the single-view and single-objective multiview coun-
terparts of �MVk

avg, respectively. On the one hand, MVEAk

performs significantly better than SVEAk (as well as all other
single-view references) in the majority of the cases, highlight-
ing the advantages of MVC. On the other hand, �MVk

avg

scores significantly better results than MVEAk in most cases,
confirming that the adoption of a multiobjective approach is
promising in tackling the MVC challenge.

B. Robustness in the Presence of Unreliable Data Views

Most studies on MVC evaluate clustering methods under the
implicit assumption of equal reliability across the data views.
It can be the case, however, that some views are more reli-
able (e.g., less noisy) than others. Rather than contributing,
would the inclusion of an unreliable data view impact neg-
atively on performance? How robust MVC methods are for
handling views of different reliability? We conduct an experi-
ment to investigate the extent to which varying noise levels in
either one or the two data views may affect the performance of
our proposed �MV method and some reference approaches.
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Fig. 7. Robustness to noise introduced independently to data views v1
and v2. Each plot corresponds to a different configuration of noise levels,
for n1, n2 ∈ {0, 20, 40}. This figure integrates the results for both protein and
synthetic datasets.

A new set of problems was created by independently adding
noise to the data views of our original problems. Let ni be the
level of noise for data view vi, i ∈ {1, 2}. Noise is added to
vi by swapping the columns and rows associated with random
pairs of data entities, within the dissimilarity matrix describing
that view. The value of ni represents the percentage of entities
affected. Effectively, this strategy perturbs the original data
views, ensuring that they become increasingly independent of
each other. Given that problem difficulty may depend on the
specific pairs of entities affected, the noise was added in an
incremental, controlled fashion; that is, if a < b, then the
pairs of entities affected when ni = a are a subset of the pairs
affected when ni = b. This ensures that problems become
more challenging as the level of noise increases.

This experiment focuses on subsets of ten protein problems
and ten synthetic problems for which a good performance is
observed across the algorithms evaluated; this suggests that
the original data views are sufficiently accurate and can be
used as the starting point for noise addition in a controlled
manner. We use n1, n2 ∈ {0, 10, 20, 30, 40} and explore the
25 configurations resulting from the possible combinations of
these noise levels. To account for randomness, five problem
samples were independently generated for each of the 25 noise
configurations, for each of the 20 problems considered. This
results in a total of 2500 multiview problems, for which we
ran every algorithm 21 times independently. Fig. 7 summa-
rizes the results of this experiment. Due to space limitations,
the figure covers only nine of the 25 noise configurations,
using n1, n2 ∈ {0, 20, 40}. Results for the full range of noise
levels, presented separately for protein problems and synthetic
problems, can be found in the supplementary material.

On the one hand, Fig. 7 allows us to confirm certain
expected behaviors. The performance of the single-view base-
lines SVEAk

v1
and SVEAk

v2
consistently drops as noise levels

n1 and n2 are independently increased, indicating that our
mechanism for noise addition directly and effectively controls

problem difficulty. Furthermore, the performance of all meth-
ods considered (both single-view and multiview) is equally
affected and gradually decreases when n1 and n2 increase
together, n1 = n2 (main diagonal of plots in Fig. 7).

On the other hand, more interesting behaviors are observed
for the multiview methods in scenarios where n1 �= n2. In
particular, increasing the noise in one view, while keeping
it constant in the other, reveals that the reference algorithm
MVMC and our method’s variant �MVk

sep are the only mul-
tiview approaches that can manage situations where one of
the views is reliable but the other is not. The multiobjective
strategy adopted by MVMC is based on the use of scalariz-
ing vectors, which effectively weigh the objective functions
accounting for the individual data views. Given the use of a
diverse set of scalarizing vectors, with some of them practi-
cally ignoring (assigning a low importance to) the noisy view,
MVMC is able to succeed in this type of scenario.

The robustness shown by �MVk
sep can be explained by the

separate handling of data views that is enforced in the defini-
tion of the search space (possible genotypes) and throughout
the entire clustering process. Such a separation gives �MVk

sep
the ability to exploit a reasonably accurate data view in spite
of the low quality of the other. This can be difficult to achieve
in approaches like �MVk

avg and MVEAk, which rely on the
aggregation of data views (by optimizing separate objective
functions to account for the different data views, �MVk

avg still
presents an advantage over MVEAk). Similarly, the signifi-
cant conflict introduced between data views poses a challenge
for the effective computation of the common eigenvectors on
which SC operates, explaining the low performance of this
method during this experiment.

To further investigate the performance differences between
�MVk

avg and �MVk
sep, Fig. 8 exemplifies how the noise

conditions may impact on the location of the optimum, rel-
ative to the Pareto-front approximations produced. When
the two views present a similar reliability (n1 = n2), the
optimum tends to be located around central regions, where
�MVk

avg seems to offer a better convergence (this may explain
why �MVk

avg is identified as the best overall performer in
Section V-A). Contrarily, when one view is significantly more
reliable than the other, the optimum is located closer to the cor-
responding extreme region of the Pareto front, where �MVk

sep
provides a clearly superior performance. The separate handling
of data views is what grants �MVk

sep access to such regions
of the objective space (regions that may even be rendered
unattainable for �MVk

avg due to the aggregation of views).

C. Pareto-Front Approximations and Model Selection

With the aim of better understanding the behavior and
performance differences between variants �MVk

avg and
�MVk

sep of our proposed method, we contrast the char-
acteristics of the Pareto-front approximations they produce.
Furthermore, we analyze the effectiveness of our strategy to
automatically select a final partition from these approximation
solution sets.

First, from the EAFs of �MVk
avg and �MVk

sep, as exem-
plified in Fig. 9, we can see that �MVk

avg tends to achieve a
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Fig. 8. EAFs of approaches �MVk
avg and �MVk

sep. The same example
protein problem and original data views are considered in all the cases, but
distinct levels of noise n1 and n2 are introduced, as specified for each indi-
vidual plot. In the plots, the x-axis and y-axis refer to data views v1 and v2,
respectively. Differences in the point attainment probabilities are encoded by
different colors, and a red marker shows the relative location of the optimal
solution (see legend at the top). (a) n1 = 0 and n2 = 0. (b) n1 = 0 and
n2 = 40. (c) n1 = 40 and n2 = 0. (d) n1 = 40 and n2 = 40.

better convergence toward central regions of the Pareto front,
as opposed to �MVk

sep, which performs better at the extreme
regions. This behavior is evidenced by the results for several
problems [e.g., Fig. 9(a)–(d)], confirming previous observa-
tions of Section V-B. Central regions correspond to a balanced
tradeoff between the data views. Due to its direct aggregation
of views, �MVk

avg is able to concentrate its efforts on these
central regions. In scenarios where data views are both reliable,
this strategy may give �MVk

avg an advantage over �MVk
sep.

Contrarily, we would expect better solutions to be closer to an
extreme point of the front if one view is more reliable than the
other. This is the case for the problem considered in Fig. 9(c),
where v1 (GTS, on the x-axis) is clearly more reliable than v2
(TOR, on the y-axis). Accordingly, the optimum is found near
the extreme region corresponding to v1, an area that is more
readily accessible to the approach based on the separation of
views, �MVk

sep.
The varying reliability of the data views, and the fact that

the characteristics of the Pareto front are highly problem-
dependent, create challenges for model selection. Fig. 9 sug-
gests that the implicit weighting of data views in our strategy
offers some robustness, allowing our method to frequently
identify solutions near the optimal partition. A clear example
is shown in Fig. 9(e). Given the elongated clusters in the syn-
thetic problem long4, the second view (MED distance, on the
y-axis) is the one which contributes the most, causing signifi-
cantly higher objective values in comparison to the first view
(Euclidean distance, on the x-axis). These higher objective
values dominate the ranking (based on the sum of objective
values) and ensure that our method favors solutions near the
optimum (at the extreme end of the front).

Fig. 9. Differences between the EAFs of approaches �MVk
avg and �MVk

sep.
(a)–(d) Results for a random sample of protein structure problems, indicating
the specific pairs of data views used. (e)–(h) Results for specific synthetic
problems, as indicated. In the plots, the x-axis and y-axis refer to data views
v1 and v2, respectively. Differences in the point attainment probabilities are
encoded using different colors, and specific markers illustrate the location of
the optimum as well as examples of solutions selected automatically by our
method (see legend at the top).

To further investigate our strategy for model selection,
Fig. 10 contrasts the quality of the solutions selected with
respect to the following baselines: 1) the best and worst solu-
tions available, representing upper and lower bounds on the
attainable ARI values; 2) the extreme points of the Pareto-
front approximation, Ext(v1) and Ext(v2), which refer to a
naive strategy always prioritizing one of the data views; and
3) a randomly selected solution, an approach that should be
beaten by any reasonably informed selection mechanism. The
large discrepancy seen between the best and worst attainable
ARI values highlights the diversity of solution qualities that
the approximation sets present. Our strategy is able to cor-
rectly identify the best solution (or one of similar quality) in
many cases, outperforming the baselines. More specifically,
our analysis of statistical significance indicates that the solu-
tions selected are comparable in quality to the best available
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Fig. 10. Effectiveness of our automatic model selection strategy when
applied to the Pareto-front approximations produced by approaches �MVk

avg
and �MVk

sep. Results are presented separately for (a) protein datasets and
(b) synthetic datasets.

solution in 152 (∼36%) and 166 (∼40%) of the 420 test sce-
narios, according to the results for �MVk

avg and �MVk
sep (see

the supplementary material). However, a significant drop in
quality occurs in the remaining majority of the cases, evidenc-
ing the challenging nature of model selection and motivating
future research to improve this aspect of our proposal.

D. Impact of Representation Granularity

As described in Section III-B, our variable-granularity rep-
resentation aims to address the main criticism of the original
graph-based encoding: its limited scalability. Although the
focus of this article is on the ability of our method to handle
multiple data views, rather than on its potential to scale to
large datasets, it is important to consider this aspect which is
a consequence of our chosen genetic representation.

Our method partly overcomes scalability issues inherent
to the graph-based representation by narrowing the set of
alternative allele values for each decision variable. The reduc-
tion of genotype length, achieved by using a value of δ > 0,
contributes further to this end and directly translates into a
reduction of the search space. Whilst this may not necessarily
translate into an improvement in final clustering performance
(ARI value reached at the end of the search), as seen in
Fig. 11, it can have a major impact on convergence speed,
as illustrated in Fig. 12. This means that we can potentially
produce higher quality partitions using a lower number of
generations.

Computational efficiency also benefits from the delta-
evaluation of candidate solutions, which is enabled by our
flexible representation as discussed in Section III-D. As shown
in Fig. 13, we can achieve meaningful reductions in problem
size, and the incremental evaluation of solutions can lead to

Fig. 11. Impact of parameter δ on the clustering performance of
approaches �MVk

avg and �MVk
sep. Four different settings are considered,

δ ∈ {0, 80, 90, 95}, and results are shown separately for (a) protein problems
and (b) synthetic problems.

Fig. 12. Convergence of approach �MVk
avg when using δ ∈ {0, 90}.

The average ARI reached is shown for the first 50 generations. Results are
presented for (a) and (b) two sample protein problems and (c) sample synthetic
problem.

significant savings in execution time. From the figure, it is
possible to observe that this is particularly true for strategy
�MVk

avg. Strategy �MVk
sep, on the other hand, will not always

achieve the desired reduction in problem size due to the poten-
tial conflict between data views. Consequently, we can see that
the savings in execution time vary from problem to problem
and correlate strongly with the reduction obtained in represen-
tation length. As discussed in Section III-C, an increase in the
number of data views would certainly aggravate this behavior,
preventing �MVk

sep from fully exploiting the advantages of
our variable-granularity representation.

VI. CONCLUSION

This article highlights mechanisms to efficiently adapt
graph-based representations, as used in algorithms MOCK [1]
and �-MOCK [2] for cluster analysis, to a multiview learn-
ing setting. The resulting method, �MV, exhibits properties
that we generally deem favorable in multiobjective cluster-
ing: robustness toward nonspherical clusters as well as toward
changes in the reliability of different objectives. Experiments
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Fig. 13. Effects of problem granularity on computational efficiency. Using
δ = 90, the plot contrasts the problem reductions achieved against the resulting
savings in execution time, quantified relatively to the original problem sizes.
Results are shown for the full set of 420 clustering problems.

with different design choices emphasize the important trade-
offs between bias, flexibility, and search performance that we
would expect to see in any difficult optimization problem.
These underline the relevance of our proposals and help
highlight the boundaries for graph-based representations in
multiview settings. On the whole, our algorithm reports a
strongly competitive performance with respect to existing mul-
tiview methods. More generally, our work identifies a route
forward for the transfer of evolutionary graph-based clustering
approaches to MVC scenarios.

The evaluation of our proposal considers the problem of
clustering plausible protein structures, an important applica-
tion from the field of bioinformatics, as the primary case
study. Our results support the inherent multiview nature of
this challenge which, to the best of our knowledge, had not
been previously considered from this particular perspective.
This finding confirms that multiview learning and the clus-
tering methods proposed in this article can find a significant
impact in practical contexts.

Our analysis is limited to the case of two views and a sin-
gle clustering criterion (the Silhouette width). Future work will
consider the performance of our approach for more than two
views, as well as experimentation in settings where objectives
may involve a combination of different views and cluster-
ing criteria. In principle, the proposed method can cater for
both settings. However, the expected difficulties include fur-
ther increases in the size of the search space and approximation
front, and these aspects will warrant additional attention.

Multiview settings may sometimes involve partial views,
i.e., feature or dissimilarity measurements for a subset of enti-
ties only. Our methodology is currently silent on the integra-
tion of such views into the process of MST and neighborhood
construction. Extending its applicability to such scenarios will
require additional investigation and development.
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