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Abstract 

In a previous work, we applied the principle of least effort to derive the Zipf and the Pareto 

power law distributions using a calculus of variation and an efficiency functional. This 

functional was arrived at by considering living systems containing a great number of agents all 

trying to achieve something with effort, similarly to thermal engines producing work from 

source energy, and a nonadditive relationship of efficiency in thermodynamics. In the present 

work, we provide a complete proof of the uniqueness of this efficiency functional, thus confirms 

the intrinsic link between the power laws and the principle of least effort.  
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1) Introduction 

Achieving more by doing less is a common rule in most if not all living systems1. Nowadays 

we refer to this rule as the principle of least effort (PLE) coined by Ferrero [1]. The connection 

of PLE to the power law distributions widely observed in living systems goes back to a remark 

of Zipf : The power laws in linguistics and in other human systems reflect an economical rule: 

everything carried out by human beings and other biological entities must be done with least 

effort (at least statistically) [2][3]. This connection has inspired a lot of work towards deriving 

mathematically the Zipf and the Pareto power laws [2][3][4] from PLE [5][6]. Nevertheless, 

this derivation has been slow in coming. The main obstacle has been the mathematical 

definition of the key quantities such as achievement and effort, both being process-dependent 

and system-specific,  and impossible to define in a general way [7][8].  

In a recent work [7][8], we proposed to derive the Zipf and the Pareto power laws using the 

principle of maximum efficiency (PME) which can be considered another side of PLE but is 

easier to implement mathematically with the calculus of variation. Here the efficiency is defined 

as the ratio of achievement to effort, similar to the efficiency  =
𝑊

𝑄
 of a thermal engine defined 

by the ratio of the output work W (achievement) to the input heat Q (effort). For a system 

containing a large number of agents all distributed randomly over a given number 𝑊 of states 

, each state having a given efficiency 
𝑖
, the overall efficiency  of the system can be described 

by the statistical average of all 
𝑖
, i.e.  = ∑ 𝑝𝑖𝑖 

𝑊
𝑖=1 , where 𝑝𝑖 is the probability to find an 

agent at the state i (a natural number) [7]. The general formula for this efficiency is given by 

[7]  

 =
∑ 𝑝𝑖

1−𝑎𝑊
𝑖=1 − 1

𝑎
. 

(1) 

where 𝑎 is a real parameter in the following nonadditive property of thermodynamic efficiency 


𝑘𝑗
(𝐶) = 

𝑘
(𝐴) + 

𝑗
(𝐵) + 𝑎

𝑘
(𝐴)

𝑗
(𝐵). (2) 

                                                 

 

 

1 We use the term “living systems” to represent the living agents such as human beings, animals, insects and the 

systems used or driven by these living agents, such as linguistic, social, economic, educational, communicational 

systems etc. 
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Eq.(2) relates the joint efficiency 
𝑘𝑗
(𝐶) of a composite system C to the efficiencies of its 

subsystems A and B, where 
𝑘
(𝐴) is the efficiency of an agent at a state k in A, 

𝑗
(𝐵) is the 

efficiency of an agent at a state j in B, and 
𝑘𝑗
(𝐶) is the joint efficiency of an agent at the joint 

state kj in C.  

Eq.(2) must be satisfied by any two agents at the state k in A and the state j in B when they 

are connected in series to form the joint agent in C [7]. The origin of this nonadditivity is in 

thermodynamics  where Eq.(2) with 𝑎 = −1 must be satisfied by any two engines connected in 

series to form a joint engine [9]. For living systems where the involved quantities (achievement 

and effort) are in general non-energy connected and non-conservative (such as money, time, 

physical effort, mental effort and so on), 𝑎 is allowed to be different from -1 [7][8].  

In our previous work, the two subsystems A and B were supposed to be statistically 

independent, i.e. 

𝑝𝑘𝑗(𝐶) = 𝑝𝑘(𝐴)𝑝𝑗(𝐵) (3) 

relating the joint probability 𝑝𝑘𝑗(𝐶) of finding an joint agent in C at the joint state kj to the 

probabilities 𝑝𝑘(𝐴) and 𝑝𝑗(𝐵) of finding agents in the two subsystems A and B at the states k 

and j, respectively.  

The efficiency functional in the form of Eq.(1) is crucial for the successful derivation of 

the Zipf and the Pareto laws as well as the Pareto rule of 20-80 from PLE and PME using 

variational calculus [7]. It is hence important to prove the uniqueness of the functional using 

Eq.(2) and Eq.(3) as basic axioms. However, in the previous work [8], we have only proved 

that Eq.(1) is the simplest form of all the possible functionals satisfying Eq.(2) and Eq.(3), 

meaning that other more complicated forms of the efficiency functional may exist and not 

necessarily lead to the power laws we want to derive using PLE and PME.  

In this work, we provide a complete proof of the uniqueness of Eq.(1) given Eq.(2) and 

Eq.(3). The aim is to demonstrate that, if living agents can be considered as thermal engines 

doing work (achievement) using source energy (effort), then the ubiquitous power laws and the 

Pareto rule of 20-80 are necessarily a consequence of PLE and PME.   

2) Uniqueness of the efficiency functional 

We propose the following axioms for the efficiency functional. 

I) The efficiency 
𝑖
 of an agent at the state i is a continuous function with respect to its 
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argument 𝑝𝑖, with 
𝑖
= 0 if 𝑝𝑖 = 0 (no agent at the state). 

II) 
𝑘𝑗
(𝐶) = 

𝑘
(𝐴) + 

𝑘𝑗
(𝐵) + 𝑎

𝑘
(𝐴)

𝑘𝑗
(𝐵) or equivalently 

1 + 𝑎
𝑘𝑗
(𝐶) = [1 + a

𝑘
(𝐴)][1 + a

𝑘𝑗
(𝐵) ] 

In what follows, for simplicity, let 𝑧 be a value of the joint probability of C,  𝑥 be a value of the 

probability of A,  and 𝑦 a value of the conditional probability of B given A, then Eq.(3), the 

statistical independence between the two subsystems A and B, can be written as 𝑧 = 𝑥𝑦. If now 

we define 𝑓(𝑥) = 1 + 𝑎(𝑥) , then the axiom II reads 𝑓(𝑧) = 𝑓(𝑥)𝑓(𝑦)  or 𝑓(𝑥𝑦) =

𝑓(𝑥)𝑓(𝑦). 

Theorem 1:  

The functional satisfying the axioms I and II is uniquely in the form 
𝑖
=
𝑝𝑖
−𝑎−1

𝑎
. 

Theorem 1 is to be proven through the following lemmas. 

Lemma 1:   

If f is a continuous function of a single variable (𝑥 or 𝑦) on the -algebra 𝐵(𝑅+)  satisfying 

the condition 

∀𝑥 ∈ ℝ+, ∀𝑦 ∈ ℝ+, 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦), then there exists 𝑏 ∈ ℝ such that  

𝑓(𝑥) = {
𝑥𝑏  𝑖𝑓 𝑥 > 0
1 𝑖𝑓 𝑥 = 0

  . 

Proof 

∀𝑥 > 0, 𝑓(𝑥) = 𝑓(√𝑥√𝑥) = 𝑓(√𝑥)2, thus 𝑓(𝑥) ≥ 0. 

Moreover if there exists a 𝑦  in ℝ+  such that 𝑓(𝑦) = 0,  we have 𝑓(𝑥) = 𝑓 (𝑦
𝑥

𝑦
) =

𝑓(𝑦)𝑓 (
𝑥

𝑦
) = 0, leading to 𝑓(𝑥) = 0 everywhere, which is contradictory to the definition of 

𝑓(𝑥) being a function of 𝑥. Thus 𝑓(𝑥) > 0. 

If 𝑥 = 0, we have 𝑓(0) = 𝑓(00) = 𝑓(0)𝑓(0) = (𝑓(0))2, implying 𝑓(0) = 1, which is in 

accordance with the definition 𝑓(𝑥) = 1 + 𝑎(𝑥) since (0) = 0 according to Axiom I. 

We now define: ∀𝑥 ∈ ℝ+
∗ , 𝑔(𝑥) = ln(𝑓(𝑒𝑥)) , 𝑔 being continuous on ℝ.  

We have, for every 𝑥 ∈ ℝ+
∗  and 𝑦 ∈ ℝ+

∗ , the following relationship: 

𝑔(𝑥 + 𝑦) = ln(𝑓(𝑒𝑥+𝑦)) = ln(𝑓(𝑒𝑥 𝑒𝑦))= ln(𝑓(𝑒𝑥)𝑓( 𝑒𝑦)). According to the condition in 

the lemma, we get 𝑔(𝑥 + 𝑦) = 𝑔(𝑥) + 𝑔(𝑦). 



4 

 

Consequently, ∀𝑛 ∈ ℕ∗, 𝑔(𝑛) = 𝑛𝑔(1), 𝑔(1) = 𝑔 (
1

𝑛
+⋯+

1

𝑛
)

⏞        
𝑛

= 𝑛𝑔 (
1

𝑛
) , and 𝑔 (

1

𝑛
) =

𝑔(1)

𝑛
. 

Thus, ∀𝑝 ∈ ℕ∗, ∀𝑞 ∈ ℕ∗, 𝑔 (
𝑝

𝑞
) = 𝑔 (

1

𝑞
+⋯+

1

𝑞
)

⏞        
𝑝

= 𝑝𝑔 (
1

𝑞
) = 𝑝

𝑔(1)

𝑞
. 

∀𝑥 ∈ ℝ+, there is a sequence (𝑝𝑛, 𝑞𝑛) in ℕ∗ ×  ℕ∗ , such that lim
𝑛→∞

𝑝𝑛

𝑞𝑛
= 𝑥. So since 𝑔 is 

continuous in x, we can write 

lim
𝑛→∞

 𝑔(
𝑝𝑛
𝑞𝑛
) = 𝑔(𝑥) = lim

𝑛→∞
 𝑝𝑛 (

𝑔(1)

𝑞𝑛
) = 𝑥𝑔(1) 

Now, ∀𝑥 ∈ ℝ+
∗ ,  let 𝑋 = ln 𝑥. This gives 

𝑓(𝑥) = 𝑓(𝑒𝑋) = 𝑒𝑔(𝑋) = 𝑒𝑋𝑔(1) = (𝑒𝑋)𝑔(1) = 𝑥𝑏 , where 𝑏 = 𝑔(1) . Lemma 1 has thus 

been proven.  

From the definition 𝑓(𝑝𝑖) = 1 + 𝑎𝑖(𝑝𝑖), we can write 1 + 𝑎
𝑖
(𝑝𝑖) = 𝑝𝑖

𝑏 or 
𝑖
=
𝑝𝑖
𝑏−1

𝑎
. 

The average of 
𝑖
 is given by  = ∑ 𝑝𝑖𝑖

𝑤
𝑘=1 =

∑𝑝𝑖
1+𝑏−1

𝑎
. 

Lemma 2 : The maximum or the minimum of  correspond to uniform distribution  

(𝑝𝑖)1≤𝑖≤𝑊 = (
1

𝑊
,… ,

1

𝑊
) 

Proof : 

Let ((𝑝𝑖)1≤𝑖≤𝑊) = ∑ 𝑝𝑖
𝑝𝑖
𝑏−1

𝑎

𝑊
𝑖=1 = ∑

𝑝𝑖
1+b−𝑝𝑖

𝑎

𝑊
𝑖=1 , we consider the function 𝜑: 𝑥 ↦

𝑥1+𝑏−𝑥

𝑎
 

defined on ]0, +∞[.  

The function 𝜑  is of class 𝐶2 on ]0, +∞[, with a second derivative 𝜑′′(𝑥) =
(𝑏+1)𝑏

𝑎
𝑥𝑏−1. 

It is obvious that 𝜑 is convex if  
(𝑏+1)𝑏

𝑎
≥ 0, and 𝜑 is concave if 

(𝑏+1)𝑏

𝑎
≤ 0.  

As a consequence, if  
(𝑏+1)𝑏

𝑎
≥ 0, we have  

(∑
1

𝑊
𝜑(𝑝𝑖)

𝑊
𝑖=1 ) ≥ 𝜑 (∑

1

𝑊
𝑝𝑖

𝑊
𝑖=1 ) = 𝜑 (

1

𝑊
∑ 𝑝𝑖
𝑊
𝑖=1 ) = 𝜑 (

1

𝑊
). 

And if 
(𝑏+1)𝑏

𝑎
≤ 0, 

(∑
1

𝑊
𝜑(𝑝𝑖)

𝑊
𝑖=1 ) ≤ 𝜑 (∑

1

𝑊
𝑝𝑖

𝑊
𝑖=1 ) = 𝜑 (

1

𝑊
∑ 𝑝𝑖
𝑊
𝑖=1 ) = 𝜑 (

1

𝑊
). 
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On the other hand 

((𝑝𝑖)1≤𝑖≤𝑊) = ∑ 𝑝𝑖
𝑝𝑖
𝑏−1

𝑎

𝑊
𝑖=1 = ∑ 𝜑(𝑝𝑖)

𝑊
𝑖=1 = 𝑊(∑

1

𝑊
𝜑(𝑝𝑖)

𝑊
𝑖=1 ). 

So if  
(𝑏+1)𝑏

𝑎
≥ 0, we obtain 

((𝑝𝑖)1≤𝑖≤𝑊) = 𝑊 (∑
1

𝑊
𝜑(𝑝𝑖)

𝑊
𝑖=1 ) ≥ 𝑊𝜑 (

1

𝑊
) = ∑ 𝜑 (

1

𝑊
)𝑊

𝑖=1 =  (
1

𝑊
, … ,

1

𝑊
). 

And if  
(𝑏+1)𝑏

𝑎
≤ 0, we have  

((𝑝𝑖)1≤𝑖≤𝑊) = 𝑊 (∑
1

𝑊
𝜑(𝑝𝑖)

𝑊
𝑖=1 ) ≤ 𝑊𝜑 (

1

𝑊
) = ∑ 𝜑 (

1

𝑊
)𝑊

𝑖=1 =  (
1

𝑊
, … ,

1

𝑊
). 

Lemma 2 has thus been proven. 

Lemma 3 : The extremum of  =
∑𝑝𝑖

1+𝑏−1

𝑎
 means 𝑏 = −𝑎, yielding  =

∑𝑝𝑖
1−𝑎−1

𝑎
. 

Proof:  

Consider the set 𝑌 = {(1 ≥ 𝑝1 ≥ 0,… ,1 ≥ 𝑝𝑤 ≥ 0)|∑ 𝑝𝑖 = 1
𝑤
𝑖=1 } , the function  =

∑𝑝𝑖
1+𝑏−1

𝑎
 is continuous on a compact set 𝑌 , and therefore admits one or more extremums 

(maximum or minimum) in 𝐶 = (𝐶1, … , 𝐶𝑤). From Lemma 2, we know that 𝐶𝑖 =
1

𝑊
, ∀ 1 ≤ 𝑖 ≤

𝑊. In addition, from physical consideration, we can exclude 𝐶𝑖 = 1 and 𝐶𝑖 = 0  ∀ 1 ≤ 𝑖 ≤ 𝑊 

since they are non-probabilistic case and irrelevant to this work. We can apply Lagrange‘s 

multiplier theorem to  =
∑𝑝𝑖

1+𝑏−1

𝑎
 and the constraint function 𝑔(𝑝) = ∑ 𝑝𝑖

𝑤
𝑖=1  over the set 𝑋 =

{(1 > 𝑝1 > 0,… ,1 > 𝑝𝑤 > 0)|𝑔(𝑝) = 1} with the multiplier  𝜆 ∈ 𝑅|𝑑𝜂(𝐶) = 𝜆𝑑𝑔(𝐶) and 

𝜕𝜂

𝜕𝑝𝑖
(𝐶) =

(1 + 𝑏)𝑝𝑖
𝑏(𝐶)

𝑎
=
(1 + 𝑏)𝐶𝑖

𝑏

𝑎
= 𝜆

𝜕𝑔

𝜕𝑝𝑖
(𝐶) = 𝜆 

Leading to 

𝜆 =
(1 + 𝑏)𝑊−𝑏

𝑎
 

In order to determine the relationship between 𝑏 and 𝑎, we should determine how 𝜆 depends on 

𝑎 or 𝑏. Considering the efficiency nonadditivity 
𝑘𝑗
(𝐶) = 

𝑘
(𝐴) + 

𝑗
(𝐵) + 𝑎

𝑘
(𝐴)

𝑗
(𝐵), 

we see that if 𝑎 goes to the zero limit 𝑎 → 0, the efficiency tends to additive limit 
𝑘𝑗
(𝐶) →


𝑘
(𝐴) + 

𝑗
(𝐵). Now taking into account 𝑝𝑘𝑗(𝐶) = 𝑝𝑘(𝐴)𝑝𝑗(𝐵) and 

𝑖
=
𝑝𝑖
𝑏−1

𝑎
=
exp (𝑏ln𝑝𝑖)−1

𝑎
, 

we expect an asymptotic behavior 
𝑖
∝ ln𝑝𝑖 when 𝑎 → 0. This requires 𝑏 → 0, or 

𝑖
=
𝑏ln𝑝𝑖

𝑎
, 
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which implies 𝑏 ∝ a  when 𝑎 → 0 . If we require 
𝑖
≥ 0  as expected in physics for 

thermodynamic efficiency, we can write 𝑏 = −𝑎 without loss of generality. This gives 𝜆 =

(1−𝑎)𝑊𝑎

𝑎
 for 𝑎 → 0. Substituting this into 𝜆 =

(1+𝑏)𝑊−𝑏

𝑎
, we obtain the general relation 𝑏 = −𝑎 

and 


𝑖
=
𝑝𝑖
−𝑎 − 1

𝑎
 

 

Lemma 3 has thus been proven. This completes the proof of Theorem 1. The uniqueness of the 

efficiency functional Eq.(1) follows as the average of 
𝑖
 given by 

 =∑ 𝑝𝑖𝑖

𝑤

𝑖=1
=
∑𝑝𝑖

1−𝑎 − 1

𝑎
. 

 

3) Conclusion 

We have provided a proof of the uniqueness of the efficiency functional Eq.(1) for living 

systems containing a great number of agents all trying to achieve something with effort, 

similarly to thermal engines producing work (achievement) from source energy (effort). Since 

the maximization of Eq.(1), as an application of PLE and PME, necessarily yields the Zipf and 

the Pareto power laws [7][8], this uniqueness strongly confirms the intrinsic link between the 

widely observed Zipf and Pareto power laws and the universal behavior of living agents to 

achieve more by doing less, following the principle of least effort. 

We would like to mention that this work on the uniqueness of efficiency functional has been 

inspired by the previous works on the uniqueness theorem of the generalized entropies [10]-

[16] as extension of the uniqueness theorem of the Shannon entropy [17][18]. The case of the 

efficiency functional is a little different from the case of entropy. On the one hand, unlike 

entropy, efficiency does not have the a priori maximum corresponding to uniform distribution. 

On the other hand, the additivity and nonadditivity of entropy are hypothetical properties of the 

entropy of the entire considered system, while the nonadditivity of efficiency is a general 

property of thermodynamic efficiency of single engines. It is worth mentioning also that in 

certain previous works [11][16], the uniqueness theorem of entropy has been formulated for 

interdependent sub-systems using conditional probability, while the uniqueness theorem in this 

work is formulated for independent sub-systems. This is one of the aims of our future work on 

efficiency. Another future challenge is the uniqueness theorem of entropy or efficiency 

functional with continuous probability distribution, an old question still open to date [19].  
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