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Abstract 

Nonreciprocal mechanical devices are of great interest for directional elastic wave 

manipulation. In this letter, we introduce a design of a compact low-frequency nonreciprocal 

metamaterial for flexural waves, whose dimension is less than 1/3 of the operating wavelength. 

This structure is made of two well-placed coil-cantilever-magnet resonators where the 

electromagnetic forces can be temporally modulated, which enables time varying of the 

effective stiffness of the resonators. A phase shift is introduced between the stiffness 

modulations of these two resonators which breaks the time-reversal symmetry and enables 

nonreciprocal wave propagation at the resonance frequency of the structure. A semi-analytical 

method based on harmonic waves decomposition is developed to describe the system, leading 

to results that match well with the numerical predictions from finite element method. We also 

experimentally demonstrate nonreciprocal flexural wave propagation with good agreement 

with the predictions made. Our system could inspire the design of compact nonreciprocal 

devices for flexural waves. 

 

 

  



Breaking reciprocity in classical waves has been gaining increasing interest in the last decade, 

motivated by the need for unidirectional wave propagation and robust one-way waveguding1–

5. Nonreciprocal materials or devices, i.e., diodes, are highly desired for the manipulation of 

the energy carried by the wave. In acoustics, a popular approach to realize nonreciprocal wave 

propagation by breaking the time reversal symmetry is the realization of acoustic circulators6–

8 which is inspired from optical ones9,10. The circulator is a three-port system with a central 

ring cavity endowed with a circulating fluid flow to introduce the acoustic bias6. Another 

mainstream approach is modulated phononic crystals and metamaterials1. This idea can be 

traced back to last mid-century in photonics and electrical circuits, where permittivity, 

permeability or the electrical impedance is harmonically modulated both in space and time to 

create unidirectional band gaps for waves11–13. The spatiotemporal modulation can also break 

the time reversal symmetry, leading to asymmetrical frequency conversions in opposite 

propagating directions. In elastodynamics, the spatiotemporal modulation is performed over 

the intrinsic properties of the material, namely the effective stiffness, using exotic physical and 

technical approaches. For the achievement of nonreciprocity for elastic waves, the challenge 

was to come up with a realizable method that can enable dynamic modulation of the stiffness 

with speed comparable to the propagating wave velocity. Wang et al.14 were the first to 

experimentally perform such modulation using coupled magnet rings and coils where the 

coupling can be varied in time via dynamically changing the magnetic force from the coils 

which in turn leads to the time modulation of the effective stiffness. The system is equivalent 

to a series of masses and springs connected to the ground where the effective stiffness of the 

springs is modulated both in space and time. This magnet-coil based approach was proven to 

be very effective for modulating the effective stiffness in time at high speed which enables 

nonreciprocal wave dispersion. Chen et al.15 designed a tunable elastic metamaterial made of 

periodic resonators distributed on a plate. Each resonator is constructed with a permanent 

magnet and a coil to control its effective stiffness, which led to a demonstration of 

unidirectional propagation of flexural waves. Another interesting yet different approach was 

proposed by Goldsberry et al.16 who used nonlinear large deformations to spatiotemporally 

vary the effective stiffness and enable nonreciprocal wave propagation. Differently, Ruzzene 

et al 17–19 proposed an efficient and fast approach to demonstrate nonreciprocal reflection and 

transmission of flexural waves. In their case, the modulation of the effective stiffness is 

performed using piezoelectric patches connected to well elaborated and controlled electrical 

circuits. Besides, a mechanical approach was introduced by Attarzadeh et al.20. They used a 

series of local resonators where their effective stiffness was modulated by varying the second 



area moment of inertia of each resonator’s arm through dynamically changing its angular 

orientation. However, these experimental works rely on using several periods of the phononic 

crystal or the metamaterial in order to introduce a waveform variation of the effective stiffness 

both in space and time. This makes the design cumbersome and hard to be considered for 

subwavelength applications where compact and integrated designs with high performance 

wave functionalities are desired. Furthermore, in these proposed designs, a programmable 

micro-controller unit (MCU) is needed to synchronize the temporal modulation which 

seriously complicates the system. Nevertheless, promising solutions for enabling 

nonreciprocity using compact devices were proposed in acoustics which are based on only two 

cascaded local resonators. These include slab resonators21, Helmholtz resonators22, air cavity 

resonators23, and thin membranes24. The compactness of those structures makes them to be of 

great usability for miniaturized acoustic devices.  

In this research, we designed and fabricated a compact low-frequency nonreciprocal waveguide 

for flexural waves using only two time-modulated mechanical resonators. Inspired by the work 

of Chen et al15 and Wang et al.14, the resonators are physically realized by a coil-cantilever-

magnet system with controllable effective stiffness via the application of an alternating current 

(AC). These resonators can be modeled as spring-mass equivalent system with time-dependent 

effective stiffness. By introducing a phase shift between the applied alternating current (AC) 

of these two resonators, their effective stiffness is harmonically modulated in time with a 

controllable phase shift which provokes a spatial bias, and leads to nonreciprocal flexural wave 

transmission. A simplified analytic approach based on plane wave decomposition is developed 

to analyze the flexural wave propagation in the system. The analytical results support the 

observed experiment ones around the adopted operating frequency. The dimension of the 

cascaded resonator structure is less than 1/3 of the operating wavelength.  



 
FIG. 1. (a) Realization of a coil-cantilever-magnet bi-resonator system with temporally modulated 

effective stiffness through an applied AC in the coil. (b) Schematic of the equivalent model for the 

cascaded mass-spring resonator system. AC is the alternating current, 𝑚 is mass of the resonator, 𝜅 is 

its stiffness, 𝐼  is the real-time current, 𝑤!  is the incident wave, 𝑤"  is reflected wave, and 𝑤#  is 

transmitted wave. (c) Fabricated on-beam coil-cantilever-magnet resonator in our experimental setup. 

(d) Schematic design of the coil-cantilever-magnet resonator system.  

 

We begin by conducting a theoretical study where we model our system by the equivalent 

cascaded mass-spring resonator system shown in Fig. 1(b). The thickness of the beam 

waveguide denotes ℎ, and its width denotes 𝑑. Two mass-spring resonators are attached to the 

beam, whose mass is denoted 𝑚, and the time-varying spring stiffness is 𝜅 . The distance 

between the centers of the two resonators is 𝑙. The damping is not considered in this theoretical 

study. Fig. 1(a) shows the physical realization of this system where the resonator is made of a 

flexible cantilever in which a permanent magnet is fixed to the base of cantilever, and a coil is 

fixed to the flexible part of cantilever (Fig.1(d)). Fig. 1(c) shows the fabricated sample with 

𝑤𝑖
𝑤𝑟

𝑤𝑡

Coil-cantilever-magnet resonators

AC 1 AC 2

𝑤𝑖
𝑤𝑟 𝑤𝑡

Spring-mass resonators

𝑚 𝑚
𝜅(𝐼1) 𝜅(𝐼2)

(a)

(b)

(c)

Electrical coil 

Magnet

Cantilever

Waveguide

(d)

N
S



the two coil-cantilever-magnet resonators system. When no temporal modulation is applied, 

the coil-cantilever-magnet resonator behaves as a simple mass-spring resonator with constant 

mechanical properties. On the first resonance mode of the coil-cantilever-magnet structure, the 

displacement of the coil is only out-of-plane (see Supplementary information), the cantilever 

and the coil can be considered as the spring and the mass respectively. When the displacement 

of the coil is relatively small, the out-of-plane force on the coil has a linear relationship with 

the displacement, respecting the Hooke’s law. The equivalent effective spring stiffness and 

mass can be evaluated via eigenfrequency study by numerical simulation using finite element 

method. We used the commercial software COMSOL Multiphysics 5.6 to perform such 

simulation (see Supplementary information). As for the temporal modulation, it is realized 

via the electromagnetic force between the coil and the magnet. When applying an AC to the 

coil, an attraction or repulsion force, depending on the current direction and magnetic pole 

orientation of magnet, appears between the magnet and the coil. This force has a linear 

correlation with the relative displacement between the magnet and the coil when the 

displacement amplitude is relatively small15 (see Supplementary information). So, an 

additional stiffness, which could be positive or negative, is provided by the magnet-coil design 

and can be linearly superposed with the static stiffness of the coil-cantilever structure. 

Consequently, we can dynamically change the total stiffness by varying the AC applied to the 

coil. 

To theoretically characterize the wave propagation in this system, we have considered the 

mass-spring model with variable effective stiffness of the springs. The out-of-plane 

displacement fields of the incident, reflected, and transmitted waves are denoted as 𝑤!, 𝑤", and 

𝑤# (Fig. 1(a) and (b)). In the one-dimensional theoretical model, the plate model is adopted, 

and the dimensions of the resonator are not considered. We first start with a system with only 

one resonator located at 𝑥 = 0. The temporal modulation on the spring stiffness of the form 

𝜅(𝑡) = 𝜅$ + 𝜅% cos(𝛺𝑡 + 𝜙) is considered where 𝛺  is the modulation frequency, 𝜙  is the 

initial phase, 𝜅$ is the static spring stiffness associated with the flexible cantilever, and 𝜅% is 

the additional modulation stiffness added by the magnet and coil interaction. The spring 

stiffness can be decomposed in the generalized Floquet form, 

𝜅(𝑡) = 6 𝜅&𝑒'(#)*!
+

&,-+

(1) 

  



where 𝜅±+ equals to 0.5𝜅%. At low frequency, the generalized Floquet form of flexural wave 

displacement in a thin plate can be expressed as the sum of harmonic propagation and 

evanescent modes15, 

𝑤 = 6 :𝐴/𝑒-'01 + 𝐵/𝑒'01 + 𝑎/𝑒-01 + 𝑏/𝑒01?𝑒'(3)/4)#
6

/,-6

(2) 

where 𝑘 is the wave number, and 𝜔 is the operational angular frequency. The displacement of 

the mass in the resonator is, 

𝑤%(𝑡) = 6 𝑤/%𝑒'(3)/4)#
6

/,-6

(3) 

The conditions of continuity on the displacement 𝑤, slope	𝜑, moment balance 𝑀, and beam 

shear force balance 𝑉, apply in the waveguide25 at 𝑥 = 0, 

G

𝑤) −𝑤- = 0
𝜑) − 𝜑- = 0
𝑀) −𝑀- = 0
𝑉) − 𝑉- = 𝐹

(4) 

The positive and negative signs mean right and left of the position 𝑥 = 0 of the beam. And the 

slope, the moment and shear force are, 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜑 =

𝜕𝑤
𝜕𝑥

𝑀 = 𝐸𝐼
𝜕7𝑤
𝜕𝑥7

𝑉 = −𝐸𝐼
𝜕8𝑤
𝜕𝑥8

(5) 

where 𝐼 = ℎ8 12(1 − 𝜐7)⁄  is the section moment of inertia, and 𝐸  and 𝜐  are the Young’s 

modulus and Poisson’s ratio of the waveguide, respectively. 

At 𝑥 = 0, 𝐹(0) = (𝑤)(0) − 𝑤%)𝜅(𝑡), and an extra equation of the force balance on the mass 

exists, 

𝑚
𝜕7𝑤%

𝜕𝑡7
= 𝐹(0) (6) 

The dispersion relation is known as 𝑘 = (𝐸𝐼 𝜌ℎ𝜔7⁄ )-
"
# , where 𝜌  is the density of the 

waveguide. We insert Eqs (1) to (3) into Eqs (4) to (6); and by considering a finite number 𝑁 

of plane waves and by eliminating 𝒘%,6 , we are able to obtain the transfer matrix 𝑴 of 

dimension 4(2𝑁 + 1), 



Y
𝑨),6
𝑩),6
𝒂),6
𝒃),6

^ = 𝑴Y
𝑨-,6
𝑩-,6
𝒂-,6
𝒃-,6

^ (7) 

where 𝑨),6 ,  𝑩),6 , 𝒂),6 , 𝒃),6 , 𝑨-,6 , 𝑩-,6 , 𝒂-,6  and 𝒃-,6   are of the form 𝑿:,6 =

⟨𝑋-6: , … , 𝑋$:, … , 𝑋)6: ⟩; where X can be either 𝑨, 𝑩, 𝒂 or 𝒃 and 𝑠 takes either the sign “−” or 

“+”, and	  𝒘%,6 = ⟨𝑤-6% , … , 𝑤$%, … , 𝑤)6% ⟩; . This transfer matrix 𝑴 can be converted to the 

scattering matrix 𝑺 

Y
𝑨),6
𝒂),6
𝑩-,6
𝒃-,6

^ = 𝑺 Y
𝑨-,6
𝒂-,6
𝑩),6
𝒃),6

^ (8) 

The incident, reflected and transmitted wavefields are 𝑤! = ∑ :𝐴<-𝑒-'01?𝑒'(3)/4)#6
/,-6 , 𝑤" =

∑ :𝐵<-𝑒'01 + 𝑏<-𝑒01?𝑒'(3)/4)#6
/,-6 , and 𝑤# = ∑ :𝐴<)𝑒-'01 + 𝑎<)𝑒-01?𝑒'(3)/4)#6

/,-6 , 

respectively. With a given 𝑤!, 𝑤" and 𝑤# can be calculated. If the points of the measurement 

are far enough from the two resonators system (one wavelength away), the evanescent terms 

in the 𝑤" and 𝑤# can be ignored. 

 

 
FIG. 2. Experimental platform for flexural wave transmission. AMP: amplifier. 

Figure 2 shows the experimental setup of the system. We first have constructed a beam 

waveguide by 3D printing using PLA material and the beam width and thickness are 𝑑 =

20	mm and ℎ = 3	mm, respectively. Damping adhesives were sticked on the two extreme 

boundaries of the beam to eliminate the flexural wave reflections at low frequency, and ensure 

weak reflection above 120	Hz. The whole length of the beam is over 3	m, and the usable length 

of this beam is approximately 0.8	m , about 3 wavelengths at 126	Hz . A large circular 

piezoelectric patch with a radius of 15	mm was used as an excitation source, which prevents 

the appearance of torsional modes on the beam. An additional amplifier was connected to the 

piezoelectric patch to perform a strong excitation while reducing the influence of the 
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background noise. The manually mounted resonators were glued on the beam. The two-channel 

external source generator and the two-channel amplifier were connected to the coils to drive 

the temporal modulation. The amplifier was indispensable because the electrical impedance of 

the coil at 20	Hz is about 15	Ohm and the power consumption of a single coil is up to 3.4	W 

(with an effective current of 0.46	A ). The necessary current to reach a required 𝜅%  was 

estimated via finite element simulation, and the real current needed in the experiment was 

higher than the simulation results due to the fabrication imperfections of coils (see 

Supplementary information). The magnet is rigidly bonded to the base of the cantilever, 

which is glued on the beam (Fig.1(d)), and the measurement was performed via laser 

vibrometer. The coil is glued on the skeleton of the cantilever, which enables the out-of-plane 

movement. The mass of the coil is 2.5	g, the frequency of the first resonance mode is about 

115	Hz, and the distance between the centers of the two resonators is 70	mm. The spring 

stiffness 𝜅$  under 20°C is approximately 1600	N/m (See Supplementary information for 

the details of evaluations of the effective stiffness 𝜅$ and the effective mass 𝑚). We optimized 

the effect of nonreciprocity upon the modulation frequency 𝛺, the modulation strength 𝜅%, and 

the distance between the two resonators 𝑙 using genetic algorithm. The magnet and the coil 

should be strictly coaxial and concentric. If not, the AC itself could become an excitation source 

at the AC frequency  𝛺. In this situation, high noise at the harmonics of the AC frequency 

would be generated. 

 

In the experimental setup, the power consumption leads to a rapid heating of the resonators 

which may at some points makes the PLA lose its original rigidity and effects the resonance 

mechanism and the measurements. To reduce the heating effect, we adopted a low effective 

current 0.46	A and shortened the power-on time of the coils. With this current, the modulation 

strength 𝜅%  we can reach is approximately 200	N/m . The Fast Fourier Transform (FFT) 

resolution of the laser vibrometer was set to 1 Hz, and the measurements were performed on 

one point on the beam so that each measurement can be done in 1	s. Then, the power-on time 

was controlled by activating and disactivating the output of the modulation source generator. 

The modulation amplifier was always on to prevent power-on sonic boom. The excitation 

source was also always on to reduce the influence of the astable state. The precise output phase 

setting is available on our modulation generator, so the phase shift was realized by applying 

different initial phases on the outputs of different channels. Further, to inverse the direction of 

propagation, it is sufficient to inverse the phase shift of the two output channels. The frequency 



of AC, i.e. the modulation frequency 𝛺, is 20	Hz. The phase shift between the two ACs is 90° 

or −90°. At each frequency, we performed 5 measurements in each propagation direction. 

 

 
FIG. 3. (a) Results of the transmission measurements from 121Hz to 130Hz with error bars, 

normalized by the results of the bare beam (without resonators). The positive direction means 

the initial phase of current of the coil close to the piezoelectric excitation is 90°, while that 

close to the laser measurement point is 0°. The negative direction means the former is −90°, 

while the latter is 0°. (b) Analytical transmission coefficient 𝐴$) in the frequency domain. 

 

Fig. 3(a) shows the results of the measured transmission with error bars, which is normalized 

by the result of the bare beam (without the resonators). The curve is obtained by an 

interpolation function over the points of measurement. Fig. 3(b) shows the corresponding 

theoretical results, where the effective resonance frequency of the structure is a bit lowered to 

113	Hz due to heating effect (The spring stiffness is respectively reduced to about 1500	N/m) 

(see Supplementary information for the detailed parameters we adopted for the theoretical 

model). We can clearly evidence the nonreciprocal wave transmission for flexural waves with 

an acceptable agreement observed between theory and experiment. The bandwidth of the 

measurement result is however relatively different from that of the theory because of the 

approximations made in modeling the resonators. The error bars indicate the stability and 

reproducibility of the measured nonreciprocal transmission in our system.  

To better understand the mechanism of nonreciprocity in our structure, we have analyzed the 

mechanical energy of the transmitted and reflected waves, as well as in the resonators using 

numerical approaches for the case with time modulated effective stiffness. To conduct the 
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transmission simulation using finite element simulation, the reflections of flexural waves at the 

boundaries of the beam are suppressed using the damping layer method26. An example 

evaluation of the reflection and transmission coefficients for an incident harmonic wave at 

126	Hz is shown in Fig. S3 in the Supplementary information. Frequency conversion is 

depicted with the appearance of high order waves at frequencies 126	Hz + 𝑛𝛺 where 𝑛 = ±2,

±1. 

 

The mechanical energy in the flexural wave on the plate can be calculated27, 

𝐸= = 𝜔𝐸𝐼𝑘8|𝑋y|7	, (9) 

where |𝑋y| is the amplitude of the flexural wave. The mechanical energy in the resonator can 

also be calculated using the formula, 

𝐸0 =
1
2𝑚

(𝜔|𝑤%|)7 (10) 

𝐸& = z
1
2
[𝑘$ + 𝑘% cos(𝛺𝑡)]|𝑤%|7𝑑𝑡

;$

$

(11) 

where 𝐸0 is the kinetic energy of the mass, 𝐸& is the potential energy of the spring, and 𝑇> =

2𝜋 𝛺⁄  is the cycle of the temporal modulation. Fig. 4 exhibits the stacked area charts of the 

mechanical energy of the system in both propagation directions for incident harmonic waves 

with frequencies between 117 and 135 Hz. The chart represents the calculated energy for the 

transmission (green) and reflection (pink) waves in the plate, the energy stored in the resonators 

(yellow), and the sum of the energies carried by the high order waves at frequencies 𝜔 + 𝑛𝛺 

where 𝑛 = ±2,±1 for the transmitted (orange) and reflected waves (blue), as well as in the 

resonators (purple), all normalized by incident wave energy. Considerable frequency 

conversions appear in this time-modulated system, which is the principal incentive for the 

nonreciprocity in our structure. We observe that the low transmitted energy (green) of the 

fundamental mode (0th order) in the negative direction is attributed to frequency conversion in 

the transmitted (orange) and reflected waves (blue). Another observation is that the total energy 

in our structure surpasses the input energy from incident wave due to the input energy from 

active time modulation.  

 



  
FIG. 4. Stacked area chart of global mechanical energy distribution for positive (a) and 

negative (b) directions calculated using FE simulation at various incident frequencies. FC: 

frequency conversion. Here we represent the mechanical energy for the transmitted (green) and 

reflected (pink) fundamental modes (0th order) in the plate, the energy stored in the resonators 

(yellow), and the sum of the energies carried by the high order waves at frequencies 𝜔 + 𝑛𝛺 

where 𝑛 = ±2;	±1 for the transmitted (orange) and reflected waves (blue), as well as in the 

resonators (purple), all normalized by incident wave energy. 

In conclusion, we have introduced in this work a compact time-modulated mechanical bi-

resonators system to achieve nonreciprocal flexural wave transmission at low frequency. The 

resonators were designed with a vibrating cantilever with magnetically coupled coils and 

magnets. The temporal modulation of the effective stiffness of each resonator was realized by 

an AC applied to the coil which couples to the fixed magnets via the varying magnetic field. 

The dimension of this device is less than 1/3 wavelength. A physical realization of such a 

system based on coil-cantilever-magnet resonators has been experimentally conducted. The 

obtained measurements have evidenced high nonreciprocal flexural waves propagation with 

results that agree well with our simplified analytical predictions. Our concept provides a 

promising perspective on the design of compact nonreciprocal metamaterials that can integrate 

flexural waveguiding systems for smart wave control in phononic communication devices. 

 

Supplementary material 

See supplementary material for all the details regarding the manuscript. 
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