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Abstract: 

The advent of the acoustic metasurfaces offered an unprecedented expansion of our ability to 

manipulate and structure sound waves for many exotic functionalities. However, the 

metasurface designs require deep expertise in acoustics and highly intensive iterative 

computations using Finite Element Method. In this work, we use a two-dimensional 

convolutional neural network to model complex metasurface absorber structures under oblique 

wave incidences. The proposed network architecture is capable of computing the absorption 

spectra with a large number of design degrees of freedom. Further, we implement a conditional 

generative adversarial network to solve the inverse design problem. When fed with an input set 

of predefined absorption spectra, the constructed generative network produces candidate 

designs of metasurface absorbers that match on-demand the spectra with high fidelity. We 

demonstrate the capability of the implemented network architecture by designing a metasurface 

absorber operating at 82Hz for oblique wave incidences with a thickness of 𝜆/64. To implement 

the deep learning methods for acoustic designs, the main challenge is to generate large and 

high-quality training data set using numerical simulations. To mitigate this issue, we implement 

data augmentation. The presented approaches open new avenues to automate the design process 

of metasurfaces and enable a much more generalized and broader scope of optimal designs that 

go beyond acoustics applications. 
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1. Introduction 

Acoustic metasurfaces have enabled precise acoustic wave manipulation with strong potential 

that provides a new route to obtain unprecedented functionalities with compact geometric 

structure [1-4]. Such advantages in precision and functionalities come at the cost of tremendous 

difficulty in finding individual metasurface structures based on specific criteria, which makes 

design and optimization of metasurface a key challenge in the acoustic field. Current design 

strategies include theoretical methods [5-9], numerical simulations [8-13], optimization 

algorithms for the inverse designs [14-20], and deep neural networks [21-38]. Exploring designs 

beyond the ones that can be theoretically modeled without difficulties requires a cumbersome 

empirical trial and error method using simulation algorithms, usually based on the Finite 

Element Method (FEM). Starting from certain initial and boundary conditions, and by 

discretizing linearized Naiver-Stokes equations, such acoustic simulations solve the design 

problem. The accurate acoustic response can be calculated by setting up sufficient meshes and 

iterations. It is frequently needed to fine-tune the structure and perform simulations iteratively 

to gradually approach the desired responses. This process depends on the experience of the 

design models and it also takes a long time, especially for low-frequency three-dimensional 

(3D) calculations. This is due to the narrow bandwidth at low frequencies, which necessitates 

a high enough resolution to sweep the frequencies for accurate calculations. In addition, large 

computational times arise in thermoviscous acoustics due to the necessity to fine mesh the 

boundary layers where momentum and heat transfers occur. With the long simulation time and 

thus limited exploration of the design space, the optimal solution is often overlooked.  

Inverse design problems are even more difficult because they require direct retrieval of the 

proper structure for the desired acoustic performance, which necessitates a much larger number 

of Degrees Of Freedom (DOFs) in the design space. Such designs are usually based on 

optimization methods, most commonly either gradient-based or evolutionary-based [14-20]. 

These approaches enable researchers to discover non-intuitive and freeform acoustic structures 

which outperform empirically designed structures. These algorithms, on the other hand, are 

driven by rules that have iterative searching steps in a case-by-case manner and frequently rely 

on numerical simulations to generate intermediate results that aid in the modification of the 

searching strategy. The converging speed using such an approach depends on the solver which 

is connected to the optimizer. As a result, modeling and characterization tools play an important 

role in all current design processes. In this context, precise and time-efficient design methods 
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must be thoroughly investigated to design of next-generation acoustic metasurface devices, 

which are frequently characterized by large numbers of design DOFs and multifunctionalities.   

Very recently, deep neural networks (DNNs) have been adopted as a radically new design tool 

to address forward and inverse acoustic problems. The great advantage of such learning-based 

models lies in their ability to model physical systems that fall outside of the training dataset. 

Due to such generalization capability, DNN can be used as a forward design optimization 

engine. In the field of acoustics, the DNNs have been implemented using fully connected layers 

(FCLs) and convolution layers [21-29]. Once properly trained with adequate data such deep 

learning models are very accurate and capable of generating desired acoustic responses on the 

millisecond timescale. In addition, various deep learning-based models are proposed to solve 

inverse acoustic problems [30-40]. Despite such development in this field, there are still 

challenges with the existing networks specially built using FCLs. Such kind of networks 

primarily deal with simple acoustic structures with a limited number of parameters, severely 

limiting the accessible acoustic design DOFs and because of this, current deep learning models 

are insufficient as a general design scheme. Also, deep learning approaches require a large 

amount of training data to understand the latent patterns. For designing the complex acoustics 

devices, the generation of the training dataset is usually dependent on the numerical simulations 

which leads to a substantial computational burden. It is extremely challenging to generate high-

quality annotated data on a large scale using numerical simulations. The tradeoff between the 

size of the training dataset and the model accuracy is a critical factor to be considered. To solve 

this issue, we have implemented a data augmentation technique that not only increases the 

training dataset size but, also increases the diversity in the dataset which makes the network 

more robust [41,42]. Furthermore, we have implemented the dimensionality reduction 

technique principal component analysis (PCA). It is a statistical method that allows to 

significantly lower the dimensionality of data without a significant loss of information in the 

process which helps to accelerate the learning process [43].  

The ultrathin design of acoustic metasurface absorbers for very low frequency remains a major 

topic in research. The prototypical designs are mostly based on educable guesses which may 

not always be sufficient to achieve full absorption at extremely low frequency [44-49]. In 

addition, such designs are explored for the normal wave incidence, whereas very little attention 

has been paid to the oblique incidence conditions [50-53]. In this work, we present forward and 

inverse deep learning models for modeling and designing metasurface absorbers, which address 

the issues and limitations mentioned earlier. To expand the design space, our approach 
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considers a large number of design DOFs and accounts for the two-dimensional (2D) 

geometrical pattern with complex freeform propagation channels, as well as properties like the 

thickness of the structure, and angle of incidence. Once fully trained with a sufficient amount 

of data, the proposed forward prediction network can generate accurate absorption coefficients 

of complex metasurface absorber structures for the given frequency. Practical applications of 

the metasurface absorber demand acoustic absorption effect at a particular frequency, which 

needs to realize design parameters that produce the customer-defined spectral response defined 

at the input. The goal of inverse design is to generate a working structure directly from the 

desired acoustic responses, eliminating the lengthy parameter scans or trial-and-error methods. 

Due to the extensive amount of design DOFs in non-intuitive metasurface patterns, the design 

scheme using CNN, such as backpropagation in trained simulator networks, is ineffective in the 

inverse design of metasurface. Furthermore, the trained CNN will always produce a fixed result 

for a given input. Meanwhile, multiple solutions may exist for the same target spectra fed to the 

simulator. To overcome these challenges, we implement a Conditional Generative Adversarial 

Network (CGAN). It is a conditional version of the generative adversarial network (GAN) 

whose generator and discriminator are conditioned during the training by using some additional 

information to direct the data generation process [54].  

 

Using the proposed DNN methods, we demonstrate a metasurface absorber at 82Hz with nearly 

omnidirectional performance with a thickness of λ/64. The performance of the resulting 

metasurface absorber prototypes confirms that the implemented CNN and CGAN architectures 

achieves two important goals in the field of acoustic designs: (1) fast and accurate performance 

evaluation of complex structures for the oblique wave incidence at very low frequencies; and 

(2) finding non-intuitive designs based on predetermined acoustic response requirements. It is 

envisioned that the proposed approach also validates the feasibility of object-driven 3D acoustic 

device design which can be easily extended and generalized to many other acoustic device 

designs. 

 

2. Structure Design of Acoustic Metasurface Absorber 

The metasurface under evaluation is composed of a resonant cavity consist of freeform of 

propagation channel and cylindrical aperture covered by a plate of thickness t=1 mm as shown 

in Figure 1(a). The embedded aperture is appended to the opening of the propagation channel. 

Such aperture and the propagation channel provide a feasible approach to tune the acoustic 
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impedance powerfully, thereby exhibiting superior capability and tunability for achieving 

desired absorption performances. The cell size is fixed at a=58 mm and the thickness of the 

outer wall of the cavity is 2mm and thus, the lateral dimension of the square cavity is 56mm. 

The whole area of the square cavity is then decomposed into the square lattice sites of 

2mm×2mm to construct the propagation channel made of PLA (density, ρ = 2700 kg m−3) with 

a thickness of 2mm.   

 
Figure 1-(a) Schematic of metasurface absorber (cross-area=a×a and whole thickness h+t) for 

the oblique angle incidence. The full system includes a resonant cavity consisting of a freeform 

propagation channel (thickness h) and cylindrical aperture (diameter d). The cavity is covered 

by a plate with a centered hole (diameter d, thickness t). (b) Top view of the system generated 

from the simulation software which is used as an input to the deep learning network. 

 

The absorption responses of these structures were then calculated with the preset thermoviscous 

module of COMSOL Multiphysics v5.6. Hard boundary conditions are imposed on the air-

structure interface due to a huge impedance mismatch. Over 9000 metasurface structures with 

different propagation channel shapes, diameter of hole, incidence angle, and thickness were 

generated within the following ranges (all dimensions are in mm and angles are in degree): 

thickness, hϵ[65,75], incidence angle 𝜃ϵ[0,60], diameter of hole, dϵ[10,12] since this range 

includes ample samples generating absorption resonance for the given frequency range. The 

height of the circular aperture is selected as (h-2) mm to take full advantage of the resonance to 
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achieve a lower frequency absorption. The spectra of interest are chosen as 80-100Hz for the 

purpose of demonstration. The whole spectrum is down sampled into 201 frequency points with 

a frequency step of 0.1Hz as the bandwidth of resonance is very narrow at a very low frequency. 

Here, the spectral response for the normal incidence is not influenced by the rotation of the 

structure. Hence, data augmentation is used by rotating 2D images by the random rotation and 

keeping their spectral response constant to generate more training data. It reduces the 

probability of the network overfitting the input data and also, increase the quantity and diversity 

in the training data. Before feeding to the network, the image data, associated properties, and 

corresponding acoustic response are cleaned and preprocessed (more details are included in the 

Supplementary Information, Section I).  

 

3. Forward network architecture and results 

We first construct a predicting neural network (PNN) based on a 2D CNN architecture for the 

forward design. The PNN aims to reveal the hidden relationship between the metasurface 

absorbers and their spectral response and thus accurately predict absorption responses for the 

given metasurface design. The proposed approach is not limited to particular shapes of the 

propogation channel and normal incidence only. We parameterized each metasurface 

structure’s top view (2D pattern that includes the propagation channel and hole diameter), 

thickness, and angle of incidence. Later, they are concatenated as an input to the PNN. For 

feeding, the input data to the PNN, a batch generator is used that considerably lowers the RAM 

requirements. For any data, it randomly picks n rows (n is the batch size) and preprocesses them 

following which the batch input is fed to the network. As compared to total variables for our 

case, the training dataset size is small, and hence to help neural networks learn the patterns more 

easily, PCA is implemented using the ‘scikit-learn’ library. For our data, we use the first 20 

components which explained 96.5% variance thus enabling us to reduce the dimensionality of 

the target absorption spectra from 201 to 20, i.e. 90% reduction. 

 



7 

 

 
Figure 2-  Illustration of the predicting network architecture (PNN) for the metasurface absorber 

design for oblique wave incidence. The input structure is divided into 1D properties and 64×64 

pixels 2D images. 1D properties are added to the 2D images as additional channels and both 

are processed through the same network. The output of the last max-pool layer, M3 is followed 

by a batch normalization layer before flattening. After being processed with two dense layers 

(D1 and output), the absorption spectra are ready for evaluation. 

 

In prior work [55], good results were obtained by processing both 2D images and 1D properties 

(dimensions of the structure) using the separate networks and later concatenating and 

processing through the rest of the network. However, in our case, we find that the network 

shows overfitting when processing both properties separately. Therefore, we proposed a PNN 

that processes both in the same network by adding 1D properties (thickness and angle of 
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incidence) into 2D binary image composed of 64×64 pixels as additional channels. The 

combined input is then fed to the PNN as illustrated in Figure 2. The input is passed sequentially 

through three combinations of convolution and max pooling layers (C1-M1-C2-M2-C3-M3), each 

convolution layer having a kernel size of 3 and max pooling having the pool size of 2. The total 

number of filters used in the convolution layers are 16, 32, and 64 respectively. The output of 

layer M3 is passed through the batch normalization layer. Here, the aim of batch normalization 

is to accelerate the training process by reducing the internal covariate shift. Output of the batch 

normalization is passed through the flattening layer, F1 to flatten the output into single long 

feature vector. Before, feeding to the dense layers, a dropout is implemented to reduce the 

network overfitting issue. The output is than passed through a dense layer, D1 having 512 

neurons followed by the output layer 20 neurons corresponding to components post PCA. At 

the output, we applied Rectified nonlinear activation function (ReLU) to introduce the 

nonlinearity in the network.  

 

For the training process, the 9000 generated metasurface structures are split into training, 

validation, and test datasets, with 88% are used during the training process, 10% for the 

validation, and remaining 2% are used to evaluate the trained network. Figure 3(a) shows the 

learning curves (for the training and validation data), as a function of epochs. During the 

training phase, both the training and validation errors decreased and converged after 500 

epochs. The network performance is quantified in term of mean squared error (MSE) which is 

given by, 

 𝑀𝑆𝐸 = 1
!
(𝛼" − 𝛼#)2                                                   (1) 

where, 𝛼" and 𝛼# are the predicted and simulated absorption coefficients, respectively. When 

the training was finished, the average MSE was 0.00904 for the predicted absorption 

coefficients in the validation data. During the training process, the weights are continuously 

optimized to minimize the validation loss (the hyperparameters are included in the 

Supplementary Information, Section II). We then calculate the predicted spectra and compare 

the results to numerical simulations to extract the prediction error. To justify the usage of the 

batch normalization layer, and flatten layer in the PNN, we also carry out an ablation analysis 

(Supplementary Information, Section III). Results from this study indicates that including these 

layers improves the speed of convergence and accuracy. 

 



9 

 

To check the prediction accuracy of the trained model, we have evaluated it on the test dataset. 

Figure 3 (b)-(g) displays the example of some best fits in order to show the capability of the 

network. The results are shown for two different metasurface structures with different shapes 

of the propagation channel (inset in the plot (b) and (e)) with three different angles of incidence. 

For each case, the mean square error is listed in the inset. As indicated by the MSE, the 

absorption spectra predicted by the PNN (red dashed curves) agreed well with the FEM 

simulations (blue curves) for the variety of different propagation channels and different 

incidence angles. From the figures 3(b) to 3(d), it can be observed that the absorption peak is 

obtained at a very low frequency of 82Hz for the metasurface structure shown in the inset of 

the plot (b). The total thickness of the whole structure is as small as 1/64 of the working 

wavelength, which is much smaller than the previously reported acoustic absorbing metasurface 

designs for the oblique wave incidences [51,52]. The absorption for both structures is about 

86% at θ=60° which shows overall good performance at large angles incidence.  
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Figure 3 - (a) Learning curves as a function of epochs. (b)-(g) Comparison of PNN predicted 

absorption spectra (red dashed curves) with the simulated one (blue curves) for two different 

example metasurface structures with different shapes of the propagation channel (inset in the 

plot (b) and (e)). For each example, the comparison is shown for 0°, 30°, and 60°. MSE of each 

case is included as insets.  

 

4. Inverse Network Architecture and Results 

Practical applications of the metasurface absorber demand the perfect absorption at a particular 

frequency or frequency range which needs to generate specific design parameters to produce 

the desired absorption response using the inverse design. Once properly trained, the inverse 
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network should be able to excavate the best possible metasurface absorber design that yields 

absorption spectra with minimum deviation from the input absorption spectra. The development 

of such inverse design using the deep neural networks significantly reduces the computational 

time for design optimization.  

 

To realize the inverse design, we have constructed the network architecture based on CGAN as 

shown in Figure 4(a). The aim of this network is to predict the metasurface structure for the 

prescribed absorption spectra and the thickness for the given incidence angle, θ. The network 

is divided into two parts: a generator (G) and a discriminator (D). Both are convolutional neural 

networks with small differences in their detailed architecture. The generator is conditioned to 

produce images of new structures as a function of angle of incidence, thickness, and desired 

absorption spectra. The inputs to the generator are the incidence angle θ, thickness h, desired 

absorption spectra A, and latent input space, z which comprises the number (latent size 

corresponding to the 2D pattern) of randomly chosen values between -1 to 1. Before feeding to 

the generator, the inputs are concatenated and passed through the dense layer for reshaping. The 

detailed architecture of the generator is shown in Figure 4(b). The reshaped input is passed 

through four transpose convolution layers CT1, CT2, CT3, CT4 with varying number of filters 

128,32,16,1 and strides of 2,2,1,1 respectively. Such layers can be understood as the opposite 

of a pooling layer i.e. it increases the dimensions of the input and performs convolution after 

that to learn appropriate weights. Nonlinear activation function ReLU is applied after each the 

output of layers CT1, CT2, CT3, and sigmoid activation function is applied at the output of the 

layer CT4. A sigmoid activation is appropriate at the output of the layer as we want the 

discriminator's output to be 1 or 0.  
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Figure 4- Illustration of the conditional generative adversarial network for the inverse 

metasurface absorber design for oblique wave incidence. (a) Schematic of the implemented 

network. (b) Detailed structure of the Generator (G). (c) Detailed structure of the Discriminator 

(D). 
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The discriminator, which is a classification network, learns to distinguish between image 

samples that come from the training dataset, and those from the generator. It accepts equally 

both the 2D images from the training dataset and the images generated from the generator. Our 

discriminator model is a convolutional neural network consisting of four convolution layers 

CD1, CD2, CD3, and CD4 with the kernel size of 3 as shown in Figure 4(c). Each convolution 

layer uses 8, 16, 32, and 64 filters respectively with the stride of 1. Here, each convolution layer 

is followed by a max-pool layer (M1, M2, M3, M4) with the pooling size 2. We apply 

LeakyRELU activation functions in the layers of the discriminator network except for the final 

layer which is activated by a sigmoid function. The output of the last max-pool layer, M4 is 

flattened and fed to a fully connected layer having 1 neuron to generate the output i.e. 0 - image 

is fake, 1 - image is real. To prevent the networks from overfitting, a dropout layer is used in 

both the architectures.  

 

The training process of the whole network for the one epoch can be explained as follows. To 

begin the training process, a batch is created which is a small group of the training dataset. It 

includes the latent space, the absorption spectra, and other properties from the training set. The 

generator creates the corresponding images based on the information in the batch. Here, as the 

inputs come from the randomized latent space, z, generation of the early images can be extreme 

noisy. Also, we have randomly initialized the parameters of the generator, G. In the next step, 

the same number of 2D images and corresponding absorption spectra are chosen from the 

training dataset. They are then mixed with the generator's predictions. Using this mixed subset, 

the discriminator learns to distinguish that the images are coming from the generator or training 

dataset. When the discriminator's output predicts either "fake" for a generator input (fake=0) or 

"real" for a training dataset input (real =1), it is considered true. The discriminator's parameters 

are updated and frozen after this step. Both the generator and discriminator are trained using 

the binary cross entropy loss function. Once the training of the CGAN is finished, the trained 

generator network is removed from it. Based on the desired input characteristics, appropriate 

metasurface absorber structure can be then tailored by the generator network. 

 

As a demonstration of the proposed CGAN framework's overall competence, we use the 

absorption spectra, A, and other properties; thickness h, and angle of incidence θ, randomly 

selected from the test data as input and ask the network to look for proper metasurface patterns 

based on these spectra. We denote this test set as s, the absorption spectra of each s as A. Once 

these spectra and other properties passed through the network, a 2D pattern is retrieved which 
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is denoted by s′. To verify the result, we simulate the generated set s′ in COMSOL Multiphysics 

and denote the output spectra as A′. In Figure 5(a), the first row shows the sample from the test 

data, s and the second row show the corresponding samples s′ generated by the CGAN. Each 

pair in two rows matches very well. Figure 5(b)-(e) show some best fits in order to demonstrates 

the capability of the network. Target designs of various metasurface absorbers and the 

corresponding suggested designs show good agreement. 

 
Figure 5: (a) 2D patterns s from the test dataset are shown in the top row and the corresponding 

generated patterns by CGAN are shown in the second row. (b) Comparison of the absorption 

spectra, A from the test set (black curve) and FEM simulated absorption spectra, A′ of the 

retrieved pattern s′ shown in the second row.  

 

Conclusion 

In this research, a deep neural network based metasurface absorber designing approach for the 

oblique wave incidence is proposed and demonstrated. In particular, we have implemented 

CNN and CGAN for accurate forward and inverse design, respectively. Compared to the 

existing works, our approach can handle a large set of input parameters, including 2D patterns 

that contain freeform propagation channel and hole diameter, and other properties like thickness 
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and angle of incidence for the complex metasurface absorber structure. Using the presented 

CNN approach, we have conceived a metasurface absorber having nearly omnidirectional 

absorption at 82Hz with a thickness of 𝜆/64. We have further implemented CGAN which can 

be adapted for designing metasurfaces with prescribed absorption spectra. The proposed deep 

learning approaches can be generically used for fast and accurate modeling and design process 

of the complex physical systems with minimum human intervention. We envision widespread 

and increasing use of deep learning methods in the field of physics, allowing scientists and 

engineers to focus more on truly creative ideas to solve the complex design problems that have 

yet to be explored by the machine, rather than on tedious trial and error processes. 

 

Data availability 
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