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Abstract 

Elastic metamaterial, an engineered artificial material, has received much attention in 

physics and engineering communities due to its functional properties unavailable in 

natural materials. However, most elastic metamaterials, especially for their two-

dimensional structures, belong to the Hermitian category, making them difficult to 

adapt to real lossy structures and explore their loss modulation. In the present study, 

non-Hermitian loss-modulation beam and plate models based on complex wavenumber 

plane, structural dynamics, and mode-coupling scattering theory are established to 

design lossy elastic metamaterials (LEMs) for any solid material. Based on a unified 

closed-form solution for absorption, the subwavelength loss-modulation LEM can cope 

with the conventional challenge of achieving broadband and near-omnidirectional 

elastic wave perfect absorption. We reveal here the high-performance absorption of the 

LEM from greatly enhanced wave-energy dissipation by a combination of dissipation-

radiation-balance and multiple reflections in the non-Hermitian elastic wave system. 

We numerically and experimentally verify the effectiveness of the theoretical model 

and demonstrate broadband and perfect absorption in a plate-like structure. Our work 
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not only opens a new route to achieve broadband low-frequency vibration suppression 

in macro devices and microelectromechanical systems, more essentially, but it also 

provides an effective paradigm to wave engineering in non-Hermitian elastic wave 

systems. 

 

1. Introduction 

Ongoing development of elastic metamaterials (Assouar et al., 2018; Chen et al., 2021; 

Dong et al., 2022; Zhu et al., 2014) and metasurfaces (Cao et al., 2020; Lee et al., 2018; 

Liu et al., 2017; Rong et al., 2020) has opened up new possibilities to control elastic 

waves scattering (solid object dynamic deform), which provides functional properties 

unavailable in natural materials. However, in most elastic metamaterial (Dong et al., 

2021; Muhammad et al., 2020; Zeng et al., 2021; Zhao et al., 2021) or metasurface (Cao 

et al., 2021d; Jin et al., 2021; Li et al., 2020a; Liu et al., 2021; Ruan and Liang, 2021; 

Shen et al., 2021; Yuan et al., 2020; Zhang et al., 2020), especially for their two-

dimensional structures, the modulation of inherent loss is ignored because of the tiny 

damping of pure metal media. The corresponding systems are consequently treated as 

Hermitian, which are widely used to describe a closed physical system with respect to 

energy conservation. In a practical system, most solid structures are metal alloys and 

composites or introduce additional damping layers, which naturally have inevitable 

dissipation. Lately, considering loss modulation, the non-Hermitian description (Gu et 

al., 2021; Hu et al., 2021b; Liu et al., 2019; Wang et al., 2021a) has attracted growing 

attention in exploring new physics in the non-conservation system of optical waves 
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(Kawabata et al., 2019; Wang et al., 2021a) and acoustic waves (Merkel et al., 2015; 

Romero-García et al., 2016; Zhou et al., 2021), for example, unidirectional invisibility 

(Li et al., 2020b; Lin et al., 2011), enhanced sensing (Chen et al., 2017; Nair et al., 

2021), topological characteristics (Hu et al., 2021a; Wang et al., 2021b) and asymmetric 

transmission (Li et al., 2017). 

Mechanical vibration absorption of beam/plate-type structures is a conventional 

research topic. It has been widely investigated since the early 1950s, because of 

considerable significance in many engineering applications, for example, preventing 

vibration-induced fatigue damage, eliminating vibration interference to high-precision 

instruments, and fundamentally reducing noise sources. However, with the 

development of elastic-wave-based information technology in microelectromechanical 

devices and chip sensors in recent years, it is difficult for the conventional vibration 

absorption methods to meet the needs of lightweight and miniaturization. The 

conventional vibration absorption methods are represented by attaching many damping 

layers (Kerwin, 1959; Sun et al., 1995) and heavy dynamic vibration absorbers (Hunt 

and Nissen, 1982; Shen et al., 2019). As a newly generated method of vibration 

absorption, the acoustic black hole (Deng and Zheng, 2022; Gao et al., 2021; 

McCormick and Shepherd, 2019; Pelat et al., 2020; Tang et al., 2016) is not useful for 

the low-frequency range (long wavelength) because its large structure dimension 

seriously hampers practical applications. Afterward, a sub-wavelength resonator (Leng 

et al., 2019) with an attached damping layer in one-dimensional elastic beams was 

proposed to achieve perfect absorption of flexural waves in one specific frequency. A 
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broadband active meta-layer (Li et al., 2021b) composed of piezoelectric sensors and 

actuators with complex feedback control loops in an elastic beam was also proposed 

for flexural wave absorption in a high-frequency range. However, narrowband or no 

ability to apply low frequencies is their weakness. To date, it is still a great challenge 

to realize subwavelength lightweight structures for broadband vibration absorption in 

the low-frequency regime. The loss modulation in non-Hermitian systems is a possible 

way to break through the challenge. 

In the present research, we establish a unified non-Hermitian model for engineered 

elastic beam/plate-type structures and design subwavelength lightweight lossy elastic 

metamaterial (LEM) to break through the challenge of broadband vibration absorption 

in low frequency. Based on the theoretical model, we discuss the loss-modulation-

induced perfect absorption physics and analytically derive the perfect absorption 

condition. Combined with weak coupling between multi-resonators, the absorption 

bandwidth of LEM is enlarged in a beam-type structure. Further, we achieve broadband 

and near-omnidirectional perfect absorption in a plate-type structure by the LEM with 

the coaction of dissipation-radiation-balance FP resonance and multiple reflections of 

the 0th diffraction mode. Based on the theoretical model, we also show asymmetrical 

perfect absorption at the exceptional point. The theoretical models are validated by the 

corresponding experimental and simulation results. 

 

2. The model of the non-Hermitian elastic wave system 
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Fig. 1(a) illustrates a typical lightweight absorber composed of a waveguide resonator 

with the length L on the edge of the background elastic beam. The background elastic 

beam with thickness d and width b occupies the volume ,  and 

 in the Cartesian coordinate system . Within the classical 

Bernoulli–Euler beam assumptions, the elastic wave (flexural wave) is specified by the 

displacement vector , where w(x, t) is a 1D (one-dimensional) function on 

the central axis , y=0, z=0. The function w(x, t) obeys the governing 

equations: 

  (1) 

where  is the propagation constant, .  is the bending rigidity. 

 is flexural wavenumber and  is the angular frequency. Along with the 

Bernoulli–Euler beam, Eq. (1) with  is valid for a Kirchhoff plate 

of thickness d [25]. The  in Eq. (1) differs only by the factor  in the elastic 

beam and plate, where  is Poisson's ratio. Therefore, theoretical models of the elastic 

beam are also applicable to the elastic plate for the vertically incident wave. We should 

point out that the fourth-order partial derivative equation Eq. (1), unlike the two-order 

one in optics/acoustics, has four solutions of wavenumber, i.e., two real ones and two 

extra pure imaginary ones. The imaginary ones are intrinsic non-propagation modes, 

i.e., flexural evanescent waves (Graff, 1975), which hybridize scattering fields at all 

boundaries and interfaces of the elastic beam (plate) model. This makes the theoretical 

elastic wave model more complex and challenging than optic and acoustic ones. 
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Fig. 1. Theoretical model. (a) A background elastic beam model (thickness d1 and width b) with a 

waveguide resonator (length L and thickness d2) absorbing flexural wave. (b) The interface  

between the background beam (region 1) and waveguide resonator (region 2) scatters incoming 
propagation waves with amplitudes , , incoming evanescent ones with amplitudes , , 
outgoing propagation ones with amplitudes , , and outgoing evanescent ones with amplitudes 

, , respectively. (c) Reflection of flexural waves in the waveguide resonator. (d) and (e) The 
contour plots illustrating the distribution of  in the lossless and lossy scattering system, 

respectively [Here, ]. (f) The reflection energy ratio  and absorption spectrum 

α. (g) Q varying with . 

First, for an elastic wave system without loss, according to the continuities of 

displacement, slope, bending moment, shear force at the interface  between the 

background beam and the waveguide resonator, we get the scattering equation of the 

interface 

 , (2) 

where  and .  is the scattering matrix. 

The symbols t and r denote the transmission and reflection coefficients, respectively. 

The subscripts 1 and 2 represent the background beam and the absorber, as shown in 
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Fig. 1(b). The superscript  represents the evanescent mode. The scattering 

coefficients are functions of wavenumber ratio  and flexural stiffness ratio 

, which are determined by the material parameters , , , and 

geometric parameters  of the model.  is flexural wavenumber and 

 is the angular frequency. Analytical expressions of all scattering coefficients in  

can be found in Appendix A. 

In the one-port elastic wave system, the incident wave is divided into two sub-

waves at the interface  in Fig. 1(c), one reflected in the direction  and the other 

transmitted into the resonator in the direction . The latter is reflected on the right 

boundary  and is then divided into two sub-waves at the interface  again, one 

transmitted in the direction , the other reflected into the resonator in the direction 

; and the process of the wave division remaining inside the resonator continues, 

as indicated in Fig. 1(c). The total reflection field is formed by multiple reflections from 

the interfaces  and . Based on Eq. (2), the reflection coefficient R equals the sum of 

reflection coefficients of   sub-waves from the interfaces  [65] 

 , (3) 

where  is the phase of the wave propagating a round-trip between the 

interfaces  and . We should point out that Eq. (3) does not consider the near-field 

evanescent wave interference due to L being more than the half wavelength. Yet, it 

includes the contribution of the evanescent wave hybridization in all boundaries and 

interfaces. For example,  in the above expression of  is the phase shift of the 

~

1 2к k k=

1 2Ð D D= 1(2)E 1(2)r 1(2)u

1(2)d ( ) ( )1 2 1 2k b w=

w IM

1l! 1 1O A

1 1OB

2l! 1l!

2 2O A

2 2O B

1l! 2l!

N ( )N®¥ 1l!

( ) 1 12 21
11 12 21 22 11

1 221

iNi i
i

N

t t eR r t t e r e r
r e

f
f f

f

-¥ -- -
-

=

= + × = +
-å

22 3 /2k Lf p= -

1l! 2l!

3 /2p f



8 
 

flexural wave at the boundary , which is from the evanescent wave hybridization (see 

detailed derivation in Appendix G). However, optic/acoustic waves at a similar 

boundary have no phase shift. 

The eigenvalue of the one-port elastic wave system equals the magnitude of the 

complex reflection coefficient, i.e., . After substituting a dimensionless 

complex wavenumber  into Eq. (3),  becomes a 

function of both real wavenumber  and imaginary wavenumber . A contour 

plot illustrating the distribution of  is shown in Fig. 1(d). In the complex 

wavenumber plane, Zero corresponds to the eigenvalue .  satisfies 

, in which  represents the conjugate. Pole corresponds to the 

eigenvalue . Therefore, a pair of Zero and Pole are symmetrically 

distributed about the real wavenumber axis, as shown in Fig. 1(d). The corresponding 

wavenumbers of Pole and Zero can be expressed as (see detailed derivation in Appendix 

B) 

 , (4) 

 , (5) 

where 

 . (6) 

n=1 represents the first pair of Zero and Pole in the complex wavenumber plane. The 

nth pair will shift  along the real wavenumber axis. 
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The imaginary part of the Pole represents the radiative decay constant 

 from the resonator to the background structure. The corresponding 

frequency of the Pole can be expressed as . It indicates 

that the radiative wave in the resonator will decay in the function of  at the 

frequency of . Therefore, the quality factor of the resonance due to 

radiation can be expressed as 

 , (7) 

where  is finite lifetime, .  is radiative decay rate, 

which determines the resonance linewidth at its half-maximum (Sauvan et al., 2013). 

We should point out that for the resonator described by the first pair of Zero and Pole 

in Fig. 1(d), its  is about 8.4 according to Eq. (7). Its reflection coefficient  is a 

fixed value of one for all real wavenumbers due to the lossless. However, its reflection 

phase spectrum has a rapid change at the resonance frequency, which is consistent with 

the positive and negative of  rapidly changes on the real axis  of the 

complex wavenumber plane. 

In the lossy non-Hermitian elastic wave system, for the resonator with the 

dissipative decay constant , the complex reflection coefficient R in Eq. (3) can be 

replaced as 
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where  is the phase constant with loss modulation . When the dissipative 

decay constant satisfies , the distribution of  in Fig. 1(d) will move up . 

It is the dissipation-radiation-balance, like the so-called critical coupling (Cai et al., 

2000) in the optic system, however, here it is fulfilled in a different physical system 

with evanescent mode hybridization. Zero is located on the real wavenumber axis, as 

shown in Fig. 1(e). It indicates that  is a real number,  can equal zero, i.e., 

existing a perfect absorption. The corresponding wavenumbers of Pole and Zero with 

loss modulation  can be expressed as 

 , (9) 

 . (10) 

According to loss modulation  of Eq. (10), the perfect absorption condition (PAC) in 

the non-Hermitian elastic wave system can be expressed as (see detailed derivation in 

Appendix C) 

 , (11) 

where  is the loss constant , and  is the loss factor. Once the material 

parameters , geometric parameters , and loss factor  meet PAC, 

the energy of the incident flexural wave will be perfectly absorbed. We point out that 
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material with internal loss or additional damping. To intuitively display the absorption, 

based on the resonator parameter described in Fig. 1(e), we plot the reflection energy 
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ratio  of flexural waves, as shown in Fig. 1(f). The corresponding absorption 

coefficient is also added to Fig. 1(f), which shows a perfect absorption peak. 

Due to  equals , the corresponding quality factor of the loss  equals 

. The total quality factor of the resonator with perfect absorption can be expressed 

as 

 . (12) 

, where . Based on Eqs. (5), (7), and (12), Q varying with , for 

 and , are shown in Fig. 1(g), respectively. Q of the perfect absorber 

decreases with the increase of . 

 
3. Lossy elastic beam 

As a typical example, we investigate the non-Hermitian LEM composed of a 

lightweight waveguide resonator with variable thickness d2, as shown in Fig. 2(a). For 

simplicity, the LEM has the same material of metal alloys with the background elastic 

beam of thickness d1. Increasing the thickness ratio  can improve  and  

of the model to get , according to Eq. (S5). Therefore, when  is large 

enough to weaken the stiffness of the LEM (a large ), the real part of Pole 

 can be rewritten as 

 , (13) 

where . Eq. (13) describes the so-called nth Fabry-Pérot (FP) resonance in 

the elastic wave system. Importantly, sufficiently weak stiffness of resonator (thickness 

ratio) to make the reflected wave  have a  modified phase is the key to the FP 
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resonance existence, which is different from that in optics and acoustics. Note that this 

 modified phase can also be obtained by adjusting the material parameters of the 

resonator. The resonance frequency only depends on the length L. Here, we consider 

practical metal alloys or composite structures with small internal losses, described by 

the loss factor, which is often less than 0.1. The traditional idea is that it is impossible 

to achieve perfect absorption only through weak internal loss. However, based on the 

above-discussed loss-modulation non-Hermitian model, we break through this 

possibility. According to Eq. (11), the thickness ratio  is surprisingly reduced to a 

constant regarding to  

 ,  (14) 

where  is loss constant, , and .  and  are univariate 

functions of  (see detailed derivation in Appendix D). Interestingly, it indicates that 

perfect absorption only depends on modulating the stiffness of the resonator (thickness 

ratio) and loss factor, and does not rely on the length L. The modulating method opens 

a new way of designing elastic wave absorbers and makes the loss factor become an 

essential design degree of freedom. Note that the effective loss factor of the resonator 

can be flexibly modulated by additional external damping (Cao et al., 2020) for a wider 

design degree of freedom. 

Based on Eqs. (13) and (14), once  and  satisfy Eq. (14), the LEMs with 

different lengths can achieve perfect absorptions whose different resonance frequencies 

are decided by Eq. (13), as shown in Fig. 2(a). Fig. 2(b) shows the corresponding 
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reflected phase spectrum. Two absorption spectrums with  approximating the unity 

at 600 Hz and 1000 Hz (labeled P1 and P2 in Fig. 2(a)) are shown in Fig. 2(c). The 

corresponding simulated results are consistent with these analytical ones. According to 

Eq. (13), the LEM has a subwavelength size described by the ratio  of the resonator 

length to the peak absorption wavelength 

 . (15) 

The subwavelength size indicates that the compact and lightweight absorber can be 

applied to a lower frequency than the conventional ones (Deng and Zheng, 2022; Gao 

et al., 2021; Kerwin, 1959; McCormick and Shepherd, 2019; Pelat et al., 2020; Sun et 

al., 1995; Tang et al., 2016). 

 
Fig. 2. Lossy elastic beam. (a) The map of absorption coefficient varying frequency and the length 
L of the resonator. The model in the illustration is an elastic beam of the thickness d1 4.5 mm with 
the waveguide resonator of the thickness d2 0.3 mm. The model composed of Mn-Cu alloy has a 
width b of 13 mm. (b) The map of the reflection phase. (c) Two absorption spectrums with α 
approximating one at 600 Hz and 1000 Hz (labeled P1 and P2 in Fig. (a)). (d) The quality factor Q 
varies with L for the absorber based on 1st and 2nd resonance, i.e., n=1 and 2 in Eq. (7). (e) The 
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resonance linewidth Δf of the absorber is based on the 1st and 2nd resonance. (f) The simulated 
wavefields in the model labeled P1, the model labeled P2, and the reference model (Ref model). 

 

Based on Eqs. (7) and (13), the Q of the LEM based on nth resonance can be 

rewritten as 

 . (16) 

We plot the  varying with L for  and , respectively, as shown in Fig. 2(d). 

These analytical results of Q are consistent with the simulated ones, which are 

independent of L. The reason is that  in Eq. (16) quantifies the radiative decay at 

the interface  without considering the resonator length L. In addition, the linewidth of 

LEM at its half-maximum can be expressed as 

 . (17) 

According to Eq. (17), we plot  for  and , respectively, as shown in Fig. 

2(e). The linewidth decreases with the increase of L. 

To further reveal the absorption mechanism of the LEM, we extract the amplitude 

fields in the models from simulations, as shown in Fig. 2(f). The energy densities of 

wavefields (labeled P1 and P2 in Fig. 2(a)) are greatly strengthened in the LEM due to 

the resonance with loss modulation, which enhances energy absorption. For comparison, 

when the thickness d2 of the LEM is reduced to half to increase dissipative decay 

constant , but the loss-modulation PAC is not considered, the wavefields are 

not strengthened. The incident wave is hardly absorbed. It indicates that one key factor 
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in obtaining the perfect absorption is significantly increasing the energy density of the 

resonator by judiciously harnessing the tailored losses. 

 

4. Broadband absorption of LEM based on weak coupling 

To realize broadband absorption, and inspired by the multi-resonance weak 

coupling theory for optic (Cui et al., 2012) and acoustic (Huang et al., 2019; Yang et 

al., 2017) absorbers, we have established the elastic wave counterpart with unique 

evanescent wave hybridization. As shown in Fig. 3(a), the LEM is composed of parallel 

resonators with different lengths at the background elastic beam boundary. The 

scattering equation of the non-Hermitian elastic beam system is 

 , (18) 

where , , and  are scattering coefficient vectors.  is the coefficient 

vector of the incident wavefield and  is the parameter matrix coupling all lossy 

resonators. Eq. (18) comes from the degradation of Eq. (24) (see detailed derivation in 

Appendix F). 

First, we design every resonator capable of generating perfect absorption for 

different frequencies. These resonators and the background beam form a non-coaxial 

structure with an offset  , as shown in the illustration of Fig. 3(b). We show that the 

absorption map is independent of , taking the center frequency of 1000 Hz as an 

example, as shown in Fig. 3(b). The independent proves that Eq. (14) based on the 

coaxial structure is still valid for these non-coaxial ones. The validity is due to the fact 
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that the low-frequency flexural wave has the same deflection in the thickness direction 

of the thin plate. Based on Eq. (14), the absorption spectrum of each resonator is plotted 

by light grey curves in Fig. 3(c). All absorption peaks reach approximately the unity. 

Further, as shown in Fig. 3(a), for example, the LEM is composed of ten resonators 

with different lengths L, which are 34.0δ, 33.6δ, 33.2δ, 32.8δ, 32.2δ, 31.7δ, 31.2δ, 30.4δ, 

29.7δ, and 29.0δ mm, respectively,  is a constant. We point out that 

extending the elastic beam model infinitely in the y-direction will form a plate. The 

plane strain model of this plate has the same absorption spectrum as this elastic beam 

model (Cao et al., 2021c) if its resonator lengths become 34.0, 33.6, 33.2, 32.8, 32.2, 

31.7, 31.2, 30.4, 29.7 and 29.0 mm, i.e., . 

Based on Eq. (18), we can get the analytical reflection coefficient of the LEM in 

the elastic beam, and the solid black line plots the absorption spectrum in Fig. 3(c). An 

average absorption coefficient higher than 0.8 in the frequency range from 851 Hz to 

1196 Hz is obtained. Ten absorption peaks occur almost at the resonance frequencies 

of the resonators. It indicates that a weak coupling between resonators in the LEM 

induces broadband absorption. The simulated results, marked by circles in Fig. 3(c), are 

consistent with the analytical ones. We point out that all the results are not optimized, 

and the absorption effect of the LEM can be further improved by parameter 

optimization. On the other hand, increasing the number of resonators will increase the 

bandwidth. However, additional resonators will make the fabrication process of the 

specimen more difficult, which will limit the absorption bandwidth of the actual 
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1

2 41d u= -
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specimen. The non-local properties of the resonators (Díaz-Rubio et al., 2019; Zhou et 

al., 2021) may be an effective way to break this limit. 

To gain insights concerning the ten absorption peaks, the corresponding amplitude, 

and energy flux fields (marked by the arrows in Figs. 3(d)-3(f)) in the model are 

obtained by simulations. Each amplitude field is highly concentrated to only one 

resonator when the excitation frequency approximates its resonance frequency. For 

example, the amplitude fields corresponding to three specific frequencies (labeled P3, 

P4, and P5 in Fig. 3(c)) are shown in Figs. 3(d)-3(f). These highly concentrated fields 

are a clear sign of the weak coupling between the resonators, leading to broadband 

absorption of the LEM. 

 
Fig. 3. Broadband absorption in an elastic beam. (a) Ten waveguide resonators with different lengths 
are connected in parallel to the background beam in the theoretical model. The host beam and 
resonators have the same thickness as the model in Fig. 2(a). These resonators are numbered in their 
cross-section of the xy plane. (b) The resonator and the background beam form a non-coaxial 
structure in the illustration. The simulated absorption spectrum varies with frequency and  for 
the resonator with the center frequency of 1000 Hz. (c) The light grey curve plots the absorption 
spectra of every single resonator. The analytical and simulated absorption spectra of the LEM are 
plotted. (d)-(f) The simulated amplitude and energy flux fields for three specific frequencies (labeled 
P3, P4, and P5 in Fig. 3(c)). 
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5. Broadband and near-omnidirectional perfect absorption of the LEM in an 

elastic plate 

Fig. 4(a) shows the theoretical model, M different units consisting of gradient-length 

waveguides and lossy multi-resonators composed of N resonators ( ,  in 

Fig. 4(a)). The multi-resonators are the same as the one presented in the theoretical 

model of section 2.3. These M units are combined into a supercell with a width of  

at the boundary of the background plate, as shown in Fig. 4(a). Then, the supercell is 

periodically arrayed along the y-axis to form a gradient lossy elastic metasurface, which 

is uniformly defined as the LEM in the plate-type structure. Previous research [9] 

investigated multiple reflections of diffraction modes from the gradient elastic 

metasurface composed of a simple waveguide. Here, we introduce the loss modulation 

system to the classical metasurface to design the LEM, improving performance and 

expanding the degrees of design freedom. The multiple reflections enhance the energy 

dissipation from loss modulation to achieve broadband and near-omnidirectional 

perfect absorption of flexural waves in a plate-type structure. We establish a unified 

analytical model through modified mode coupling methods by the transfer matrix 

method. 

In Fig. 4(a), the background plate, the gradient-length waveguides, and lossy 

multi-resonators are divided into region (I), region (II), and region (III) by the dotted 

lines  and . In region (I), the governing equation for the flexural waves in the two-

dimension form is , where . The 

displacement field, including all diffraction modes in region (I), can be expressed as 
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g
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 , (19) 

where  is the Kronecker delta,  and  are the reflection amplitudes of jth order 

propagating and jth order evanescent diffraction modes, respectively. The number of 

propagation diffraction modes in the background structure can be decided by (Cao et 

al., 2020) 

 , (20) 

where  is the reciprocal lattice vector along the metasurface.  

and  are x-component wave vectors of the propagation and 

evanescent flexural wave diffraction modes, respectively. The coefficient vector of the 

reflection diffraction field can be defined as , where 

. 

 
Fig. 4. Broadband and near-omnidirectional absorption in an elastic plate. (a) Schematic diagram of 
the theoretical LEM model in the plate-type structure. The thicknesses of gradient-length 
waveguides are the same as that of the background plate, i.e., 4.5 mm. The widths of the supercell 
g and subunit b are 40.6 mm and 13 mm, respectively. (b) The absorption spectrum of the model 
without gradient waveguides (  and ). (c) The absorption spectrum of the single 
resonator (  and ) with the resonance frequency of 1000 Hz in the left subgraph. The 
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absorption coefficient of the theoretical model with  varying with frequency and unit number 
M. (d) The absorption spectrum of the theoretical model with   and . (e) The map of 
the absorption coefficient of the theoretical model with  and  varying with the 
frequency and the incident angle. (f) The corresponding simulated and analytical absorption 
coefficients for three frequencies of 900, 1000, and 1100 Hz. 

 

In region (II) of one supercell, since the width of the subunit is much smaller than 

the operating wavelength, only the fundamental mode needs to be considered. The 

displacement of flexural waves in the mth waveguide can be expressed as 

 , (21) 

where , , , and  are the amplitude coefficients of the fundamental mode at 

the left interface of the region (II). The coefficient vector can be defined as 

, where . In the region (III), 

considering the right free boundary of the multi-resonator, the displacement in the nth 

resonator on the edges of the mth waveguide can be expressed as 

 , (22) 

where  and  are the amplitude coefficients at the left interface of the resonator. 

Ln is the length of the resonator. The coefficient vector can be defined as 

 , (23) 

According to the continuous boundary and orthogonality conditions, based on modified 

mode coupling methods, the scattering equation in the non-Hermitian elastic plate 

system can be derived as (see detailed derivation in Appendix E) 
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 , (24) 

where  is a square matrix of size , and  is 

a column vector of size . Eq. (24) can accurately calculate the 

response of all diffraction modes in the background structure. 

When the reciprocal lattice vector  of the metasurface is greater than 2k1, there 

is only 0th propagation diffraction mode in the background plate, according to Eq. (20). 

The mode has the maximum number E of multiple reflections due to phase shift 

matching at the interface. The maximum number E equals subunit number M in one 

supercell (Cao et al., 2020). The absorption coefficient of the LEM can be defined as 

, where  is the amplitudes of 0th propagation diffraction mode in the 

background structure. When there is no gradient for the LEM, i.e.,  and  

in the model, the absorption spectrum of LEM in the plate model is almost consistent 

with that in the multi-resonators beam model, as shown in Fig. 4(b). 

To quantitatively analyze the enhancement effect of multiple reflections on 

absorption, we replace the multi-resonator in Fig. 4(a) with a single resonator, i.e., 

. The absorption spectrum of the single resonator ( , ) with the 

resonance frequency of 1000 Hz is shown in the left subgraph of Fig. 4(c). The 

corresponding absorption coefficient  varying with frequency and M can be obtained 

by Eq. (24). The absorption spectrum is shown in the right subgraph of Fig. 4(c). When 

M increases, the frequency band with an absorption coefficient of approximately one 

(width of the magenta area in the y-direction) is gradually enlarged. For example, for 
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the frequency marked by the red dotted line, the absorption coefficient of the single 

resonator is about 0.6 (marked by circle 1). The absorption coefficient of the LEM 

increases with M and reaches almost 0.95 when  (marked by circle 2).  

Therefore, we choose  to design the LEM, which can have a high absorption 

performance and increase the absorption coefficient of the single resonator from 0.6 to 

close to 1. As shown in Fig. 4(a), the lengths of three gradient-length waveguides can 

be calculated by .  is the additional length 

constant.  is the wavelength of flexural waves in the host plate in the frequency of 

. The absorption spectrum of LEM has broad absorption, as shown in Fig. 

4(d). All absorption peaks in Fig. 4(b) are increased and reach almost one, i.e., 

broadband perfect absorption. The simulated results present an excellent agreement 

with the analytical ones. Further, based on Eqs. (24), we analytically solve the 

absorption coefficient varying with incident angle and frequency. The high absorption 

coefficient (exceeds 0.8) occurs in the frequency range from 836 to 1194 Hz, and for 

the angle ranging from −81°  to 81°, as shown in Fig. 4(e). We define the high-

performance absorption for the angle ranging from −90° to 90° as omnidirectional 

absorption. Therefore, the proposed LEM has high performance and achieves almost 

omnidirectional absorption, i.e., near-omnidirectional absorption. 

We have compared the corresponding simulation results with the analytical ones 

for three different frequencies, 900, 1000, and 1100 Hz (labeled P6, P7, and P8 in Fig. 

4(e)). An excellent agreement is obtained, as shown in Fig. 4(f). The near-

omnidirectional perfect absorption stems from interface impedance matching in a wide 
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range of incident angles due to two points. The first is the high phase resolution of the 

LEM with a deep subwavelength unit width. The second is that flexural evanescent 

waves (Liu et al., 2017) compensate for the impedance mismatch of the interface . 

 

6. Asymmetrical perfect absorption at the exceptional point 

To investigate the exceptional point (EP), we have designed the non-Hermitian elastic 

metamaterial described in section 5 as a two-port system, as shown in Fig. 5. The 

scattering waves in the left and right ports have complex displacement amplitudes , 

, and , , respectively. The subscripts 1 and 2 indicate the left and right ports, 

and the subscripts + and – represent incidence and reflection in the two ports, 

respectively. The scattering equation of the two-port system can be expressed as 

 , (25) 

where  and  are scattering vectors. The scattering 

matrix  connects the incidences and reflections in the two ports. We should point out 

that the idea of this model comes from acoustics (Wang et al., 2019), but it is 

implemented in challenging elastic waves with different loss systems. This section 

shows that our model has generalizability to the study of non-Hermitian elastic wave 

systems. 
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Fig. 5 Asymmetrical perfect absorption. (a) a two-port system in the non-Hermitian elastic 

metamaterial. (b) The trajectories of the eigenvalues of the scattering matrix vary with the loss . 

(c) and (d) The reflected wavefield at the EP for the left and right incidences, respectively. 

 

Without loss of generality, we set the incidence angles as +30o and -30o for left 

and right incidences, respectively. Based on Eq. (20), the reciprocal lattice vector 

 can satisfy only two propagation diffraction modes existing while others 

are evanescent for both incidences. Recalling the diffraction theorem 

 , (26) 

where  and  mean y-component wave vectors of the incident 

waves and jth order diffraction, respectively. According to Eq. (26), for the left 

incidence  of , only the 0th and -1st order diffraction modes can propagate, 

corresponding to the specular reflection of  and retroreflection of , 

respectively. For the right incidence  of , only the 0th and 1st order 

diffraction modes are propagation ones, representing the specular reflection of
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 and retroreflection of , respectively. Therefore, the scattering 

matrix  can be obtained as 

 , (27) 

where r is the reflection coefficient of the corresponding diffraction mode. The 

subscripts of r indicate the diffraction order j, and the superscripts L and R indicate the 

left and right incidences, respectively. Based on the established analytical model 

described by Eq. (24), we can accurately obtain the reflection spectra of all diffraction 

modes. Owing to reciprocity, specular reflections from both sides are identical, i.e., 

. However, the extraordinary reflections  and  are different. 

For simplicity, the resonator number in one subunit is set to 1, i.e., N = 1 in Eq. 

(24). All resonators are the same. We modulate the losses of the resonators 

simultaneously, which are characterized by an equivalent loss factor . The 

background plate and the gradient-length waveguides are considered small structural 

losses . Based on Eq. (24), we choose unit number M=20 to maximize the 

retroreflection efficiency by optimization. The operating frequency is 2340 Hz. The 

additional length constant , the resonator length, and the resonator thickness are 

modified to 31.14, 12.46, and 0.47 mm, respectively. Other geometric and material 

parameters remain the same as section 5. The eigenvalues  of the 

scattering matrix are calculated by Eq. (24). Their trajectories vary with the loss , 

as shown in Fig. 5(b). At the EP where , the two eigenvalues  coalesce 

together with the same eigenvectors . The same eigenvectors show that the 
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initially orthogonal eigenvectors become parallel, which directly demonstrates the EP 

from the non-Hermiticity of the elastic wave system (Wang et al., 2019). 

We theoretically calculate the reflected wavefield  at the EP by Eqs. 

(19) and (24). Figs. 5(c) and 5(d) illustrate the reflected wavefields for the left and right 

incidences, respectively. In the eight subgraphs from top to bottom, the first, second, 

third, and fourth rows of subgraphs show the analytical specular reflection fields from 

0th diffractions, the analytical retroreflection fields from 1st or -1st diffractions, the 

analytical total fields from all diffraction modes, and the simulated total fields, 

respectively. Due to reciprocity, specular reflections show a symmetrical pattern while 

strongly suppressed to enhance the overall asymmetric, as shown in the first row of 

subgraphs. The second row of subgraphs demonstrates the asymmetrical perfect 

absorption where no retroreflection  occurs for the left incidence and a strong 

retroreflection  is present for the right incidence. The third row of subgraphs 

manifests the EP of the system. Compared to the right incidence with strong reflection, 

the waves are almost perfectly absorbed for the left incidence. To validate the theory, 

we have carried out the corresponding numerical simulations, and show the results in 

the fourth row of subgraphs. Good agreement between the simulated and analytical 

results confirms the correctness of the theoretical model. 

 

7. Experimental verification of theoretical models 

Our proposed design method is universal and applicable to almost all solid 

beam/plate-type structures composed of any material (see absorption spectrums of 
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LEMs in elastic beams with different materials of concrete, cross-grain wood, 

plexiglass (PMMA), and Aluminum alloy, in Appendix J). We should point out that the 

proposed theoretical approach is valid for both the low and high-frequency ranges, 

verified by the corresponding numerical simulations. The size of the designed 

specimens for the high-frequency range is relatively small, which can facilitate 

specimen printing by the 3D printer and attaching the blue-tack layer in the boundary 

to design a non-reflection boundary (Cao et al., 2021c). Therefore, we have verified the 

proposed theory through experiments in the high-frequency range. 

To verify the universality and facilitate specimen processing, we have chosen a 

3D printer to fabricate three types of specimens with PLA material, which verify the 

design model in section 3, section 4, and section 5, as shown in the illustration of Figs. 

6(e), 6(g), and 6(i), respectively. They are named as the single resonator specimen (an 

elastic beam with one resonator), the multi-resonators specimen (an elastic beam with 

multi-resonators), and the designed plate specimen, respectively. Fig. 6(a) shows the 

experiment setup. The absorption spectrum can be measured using the measurement 

mode "FFT" of Polytec Scanning Vibrometer 500 (PSV-500). 
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Fig. 6 Experimental verification of theoretical models. (a) The experiment setup. (b) For the single 
resonator specimen, the map of the analytical absorption coefficient varying with the frequency and 
the L. Six points corresponding to these measured absorption coefficients are added. (c) The map of 
Q and Δf of the absorption spectrum varying with L, calculated by Eqs. (16) and (17), respectively. 
The corresponding results obtained from these measured absorption spectrums are added. (d) The 
experimental absorption spectrum and the analytical one for the 2nd single resonator specimen. (e) 
The printed single resonator specimen with PLA material. (f) For the multi-resonators specimen, 
the analytical and measured absorption spectrums are shown. (g) The printed multi-resonators 
specimen with PLA material. (h) The experimental absorption spectrum and the analytical one of 
the designed plate specimen. (i) The printed plate specimen with PLA material. 

 

First, we calculate the absorption coefficient of the single resonator specimen 

varying with frequency and the L by the theoretical model. The map of absorption 

coefficients is shown in Fig. 6(b). The Q and  of the absorption spectrum varying 

with L are also calculated by Eqs. (16) and (17), respectively. The results are shown by 

the solid line and dotted line in Fig. 6(c), respectively, which have a good agreement 

with the simulated results. We have printed six single resonator specimens with 
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different L and measured their absorption spectrums, respectively (see detailed 

experimental measurements in Appendix H). Specific geometric parameters of 

resonators in the six single resonator specimens can be found in Appendix I. Six points 

regarding the length of these specimens and the frequency of the corresponding 

absorption peak are added to Fig. 6(b). The corresponding absorption coefficients are 

marked on the right of these points. These coefficients reach approximately one, which 

means the flexural waves are almost completely absorbed. In addition, the Q and  

obtained from these measured absorption spectrums are added to Fig. 6(c). The 

experimental results are in good agreement with the theoretical model results, although 

some minor deviations due to the manufacturing error of the specimen are observed. 

Fig. 6(d) also shows the agreement between the experimental absorption spectrum 

and the analytical and simulated ones for the 2nd single resonator specimen. The 

measured absorption peak is 0.989, as shown in Fig. 6(b). To illustrate the absorption 

intuitively, we have realized the dynamic full wavefield in the single resonator 

specimen at the resonance frequency of 7.84 kHz by the "time" measurement mode (see 

Videos S1, Supplementary materials). The incident wave is not reflected when it enters 

the LEM, which means that it, indeed, perfectly absorbs flexural waves. In addition, the 

displacement deformations inside the LEM are greatly enhanced, which confirms that 

the loss modulation significantly increases energy density. For comparison, we have 

also measured the dynamic full wavefield at 9 kHz, away from the central frequency. 

The measured result is presented in Videos S2, Supplementary materials, which shows 
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that the wavefield is a standing wave, and the displacement deformation inside the 

resonator is not enhanced. 

To verify the broadband absorption of LEM based on weak coupling, we print the 

multi-resonators specimen, i.e., an elastic beam with multi-resonators, as shown in Fig. 

6(g). The LEM in the multi-resonators specimen consists of six resonators with 

different L. For experimental consistency, the six resonators are the same as those in 

six single resonator specimens in Fig. 6(b). The analytical absorption spectrum of the 

multi-resonators specimen, which is calculated by the theoretical model described by 

Eq. (18), is shown by the solid line in Fig. 6(f). The measured absorption spectrum is 

added by solid dots to Fig. 6(f). We can see some relatively large deviations, which is 

due to the amplification of the manufacturing error by the coupling between resonators. 

However, we can still find that the number of absorption peaks is consistent. More 

importantly, the frequencies of these peaks are consistent with the resonance 

frequencies of the six single resonators, described by six points in Fig. 6(b). To 

intuitively show their connection, we connect these peaks in Fig. 6(b) to the points in 

Fig. 6(f) by red dotted lines. They are one-to-one correspondence. The correspondence 

confirms that the broadband absorption of the LEM is from the coupling between the 

six resonators. 

To verify the broadband absorption of the LEM in the plate-type structure, we 

print the designed plate specimen with PLA material, as shown in Fig. 6(i). The 

designed plate specimen is consistent with the model in Fig. 4(a), but it has fewer 

resonators to verify universality and simplify specimen processing, i.e.,  and 3M =



31 
 

. Specific geometric parameters of the plate specimen can be found in Appendix 

I. For experimental consistency, the dimensions of the six resonators in the designed 

plate specimen are the same as the ones in the multi-resonators specimen in Fig. 6(g). 

Solid dots show the measured absorption spectrum of the designed plate specimen in 

Fig. 6(h). It shows a high-efficiency average absorption ( ) in frequencies 

ranging from 6.72kHz to 8.42 kHz. The measured results are in good agreement with 

the theoretical ones based on Eq. (24). Some small observed deviations come mainly 

from the manufacturing error of the specimen and the imperfect excitation signal. 

Compared with the absorption spectrum in Fig. 6(f), all absorption peaks reach one, 

and the curve is approximately a flat band. This confirms the broadband perfect 

absorption of the LEM in the plate-type structure. 

 

8. Discussion and conclusion 

We have established a theoretical model to design the subwavelength lightweight lossy 

elastic metamaterials in a non-Hermitian elastic beam or plate system, which can 

provide a general way of breaking through the challenges of broadband vibration 

absorption in low frequency. We have numerically and experimentally verified the 

effectiveness of the theoretical method in elastic beam/plate-type structures.  

In acoustics, significant progress has been made in the low-frequency perfect 

absorption of sound waves (Ma et al., 2014; Mei et al., 2012). However, it is no longer 

adequate for low-frequency noise over 120 dB caused by mechanical vibrations (Li et 

al., 2021a). Our approach has the potential to solve this challenge by absorbing 
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vibrational energy to suppress the sound emission. In addition, the lossy elastic 

metamaterial can contain no additional damping material. It could open real 

possibilities in the families of the elastic metamaterial to realize absorption in extreme 

and harsh environments of high (or low) temperature and corrosion (Cao et al., 2021b). 

More than that, this work, in essence, paves the way for investigating loss-engineered 

wave scattering manipulation in elastic beam/plate-type structures, not limited to the 

dissipation-radiation-balance required by perfect absorption. 
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Supplementary materials 

Video S1: The dynamic full wavefield in the 2nd single resonator specimen at 

the central frequency of 7.84 kHz measured by PSV-500. 

Video S2: The dynamic full wavefield in the 2nd single resonator specimen at 

9 kHz (away from the central frequency) measured by PSV-500.  
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Appendix A. Analytical expression of the scattering matrix at the interface  

As shown in Fig. 1(b), the background elastic beam and the waveguide resonator 

are divided into region 1 and region 2 by the interface . The general solution of 

displacement for the fourth-order partial derivative governing equation of flexural 

waves is  

 , (A1) 

where  represent region 1 and region 2, respectively. A, B, C, and D are complex 

coefficients.  and  correspond to the positive-going and negative-going 

propagating flexural waves, whereas  and  correspond to the positive-

going and negative-going evanescent flexural waves. The flexural wavenumber is 

,  where  is the propagation constant, , and  is 

the flexural rigidity. E is the Young modulus, ρ is density. 

We make an incident positive-going flexural wave of  at the left side of the 

interface , so the wave fields at the left and the right sides of the interface  can be 

expressed as follows:  

 , (A2) 

where the symbols t and r denote the transmission and reflection complex coefficients, 

respectively. The subscript ~ represents an evanescent flexural wave. 1 and 2 represent 

region 1 and region 2, respectively. The subscripts 11 and  represent the propagating 

reflection wave and evanescent one from the interface to region 1, respectively. The 

subscripts 12 and  represent the propagating transmission wave and evanescent one 
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from the interface to region 2, respectively. Therefore, the vectors  and  for both 

sides of the interface can be written as: 

 . (A3) 

At the interfaces, the boundary conditions of displacement, slope, bending 

moment, and shear force must be satisfied (Cao et al., 2021a). According to these 

boundary conditions, we obtain the propagation equation 

 , (A4) 

where N1 is the transfer matrix. From Eq. (A4), we can obtain 

 , (A5) 

 , (A6) 

where  and . D and k are flexural stiffness and wavenumber of flexural 

waves. 

In the same way, we make an incident negative-going flexural wave of  at 

the right side of the interface , the vectors  and  for both sides of the interface 

can be rewritten as 

 . (A7) 

According to boundary conditions, we obtain the propagation equation 
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According to Eq. (A8), we can obtain 

  (A9) 

 . (A10) 

In the same way, we make an incident evanescent flexural wave of  at the left and 

right sides of the interface , and obtain the coefficients of , , , , , , 

, and , respectively. 

The interface  scatters incoming propagation waves with amplitudes , , 

incoming evanescent ones with amplitudes , , outgoing propagation ones with 

amplitudes ,  , and outgoing evanescent ones with amplitudes , . 

respectively. Therefore, we can obtain the scattering equation at the interface : 

 , (A11) 

where  and .  is the scattering matrix 

of the interface. Eqs. (A1)-( are valid for a Kirchhoff plate when the propagation 

constant  changes from  to . 

 

Appendix B. The wavenumbers of Zero and Pole 
 

The eigenvalue of the one-port elastic wave system equals the magnitude of the 

complex reflection coefficient, i.e., . Substituting a dimensionless complex 

wavenumber  into Eq. (3), 
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 . (B1) 

Simplifying Eq. (B1), we get 

 , (B2) 

where . According to Eq. (B2), we can get 

 , (B3) 

where , , . 

When the eigenvalue  equals 0, we get 

 . (B4) 

The equation set (B4) has non-zero solutions, we can get 

 . (B5) 

According to Eq. (B5), we can get 

 , (B6) 

where . Solving this equation set (B4), we get 

 . (B7) 

From Eq. (B6) and (B7), we obtain the complex wavenumber , which 

corresponds to the Zero in the complex wavenumber plane, i.e., 

 . (B8) 

 

Appendix C. PAC in the lossy elastic wave system 

The wavenumber in the waveguide resonator with the loss fact  is 
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 . (C1) 

According to , we can get  

 . (C2) 

According to Eq. (C2), Eq. (9), and Eq. (12), we get 

 . (C3) 

According to Eq. (C1) and Eq. (C3), we can get 

 , (C4) 

where . 

 

Appendix D. The thickness ratio  is a constant regarding  

The most practical metal alloys or composite structures have small internal losses, 

as described by the loss factor of less than 0.1. We can get 

 . (D1) 

Substituting Eq. (D1) into Eq. (C4), we obtain 

 . (D2) 

Eq. (A5) is simplified to 

 , (D3 

where . According to Eqs. (D2) and (, we obtain 
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thickness ratio  

 , (D5) 

where 

 . (D6) 

 . (D7) 

 

Appendix E. The scattering matrix of the elastic plate system 

In the x-axis direction shown in Fig. 4(a), the slope , bending moment M, and 

shear force V, in the two-dimension plate model are rewritten as 

 , (E1) 

 , (E2) 

 , (E3) 

de

2
2 2

1 22
4 8d

J J y J y
e

J

æ ö- - + + +
ç ÷=
ç ÷+è ø

( )2

3 3
1 2

1

3
2 1

2

3
2
3

e

z z

z

jhJ

y

y y

-=

-
=

= - +

( ) ( )

2 2
1

2 2
2

4 2 23 3 3 3
3 1 2 1 2

4
0
2 6
0

2 8
0

34
0

3 3( 4 ) / 2

3 3( 4 ) / 2

9 3 ( ) ( ) 3

3 9
3 9

9

3 32 2 2

A B B A C

A B B A C

A

A

B

C

z z z z z z

z z z z z z

z z z z z z

z z
z z
z z

z

J

J

J J

J

J J

J

J J J

= - - -

= - + + -

= - - + - -

= - +

= -

= -

= - × + -

j

( )
( )

I
I

x
w
x

j ¶
=

¶

( )

( ) ( )

( )

I

I I2 2

2 2                       2

0                                     + 2 2

m
x

m

w wD y y p
x yM

y y p l p

u
ì æ ö¶ ¶

+ - £ï ç ÷ç ÷¶ ¶= í è ø
ï - £ -î

( )

( )

( )
( )

( )

I

I I3 3

3 22                          2

0                                      + 2 2

m
x

m

w wD y y p
x x yV

y y p l p

u
ì é ù¶ ¶
- + - - £ï ê ú¶ ¶ ¶= í ë û
ï - £ -î



39 
 

where . 

By applying the continuous boundary conditions of the x-component of 

displacement at the interface  of x=0, and integrating it into the y-direction in the 

region , we can get 

, (E4) 

where , ,

. Similarly, for the continuous boundary conditions of 

x-components of the slop at the interface  of x=0, we can get 

, (E5) 

where , , 

. 

By applying the continuous boundary conditions of x-components of bending 

moment at the interface  of x=0, and using the orthogonal relationship of the 

waveshapes and integrating to the y-direction at the region , we can get 

, (E6) 
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where , ,

, . Similarly, for the continuous 

boundary conditions of x-components of shear force at the interface  of x=0, we can 

get 

, (E7) 

where , ,

. 

In the region (II) of one supercell, the transfer equation for waves propagating 

from the left to the right interface of the mth waveguide can be expressed as 

 , (E8) 

where . 

By applying the continuous boundary conditions of the x-component of 

displacement at the interface , and integrating to the z-direction in the region 

, we can get 
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,  (E9) 

where , , 

. 

By applying the continuous boundary conditions of the x-component of slop at the 

interface , and integrating it to the z-direction in the region , we can get 

, (E10) 

where , ,

. 

By applying the continuous boundary conditions of the x-component of bending 

moment at the interface , and integrating to the z-direction in the region , 

we can get 
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 , (E11) 

where , , 

 

By applying the continuous boundary conditions of the x-component of shear force 

at the interface , and integrating to the z-direction in the region , we can get 

, (E12) 

where , , 

. 

Eqs. (E4)-(E7) and Eqs. (E9)-(E12), in turn, can be rewritten as 
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 , (E14) 

where 

, 

. 

where  are square matrices of size , and  

is a column vector of size . The corresponding amplitudes of 

diffraction modes can be calculated by solving Eq. (E14). 

 

Appendix F. The scattering matrix of the elastic beam system 

When the unit number in the metasurface and the diffraction mode number are set to 

M=1 and J=1, respectively, the propagation constant  changes from 

 to , Eq. (E14) can be reduced to the scattering 

equation of the background beam 

 , (F1) 

where  are square matrices of size , and  is a 

column vector of size . The reflection coefficient equals . The 

absorption coefficient of the LEM is . 
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Appendix G. Phase shift of at the free hard boundary 

We set an incident flexural wave of  at the left side of the hard boundary 

, so the scattering wave field with evanescent wave hybridization can be expressed 

as follows:  

 , (G1) 

where the subscript ~ represents an evanescent wave. Setting up a local coordinate 

system x=0 at the boundary , according to bending moment  and shear 

forces  are zero at the free boundary , we obtain 

 , (G2) 

From Eq. (G2), we get , i.e., the propagation reflection wave has the 

phase of . The incident flexural wave of has the phase of 0. Therefore, the 

propagation reflection wave has a phase shift of  at the free hard boundary, due 

to the evanescent wave hybridization. 

 

Appendix H. Experimental measurements 

As shown in Fig. 4h, the PZT patches are driven by a signal generator (Tektronix 

AFG3022C). The blue-tack layer is bonded to the bottom of the plate specimen to 

absorb the downward propagating flexural wave excited by the PZT patch and the 

reflected flexural wave from the designed structure at the top. The length of blue-tack 

in the direction of propagation waves is 50 mm, which can be equivalent to a non-

reflection boundary of flexural waves within the frequency range of the experiment. 

The specimen surface is held perpendicular to the laser beam from PSV-500 scanning 
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laser Doppler vibrometer through a C-clamp supporting the plate applied to the lower 

edge, as shown in Fig. 4h. The PSV-500 scanning head records the out-of-plane 

complex velocities of two measurement points in the far-field of the incident direction 

using the measurement mode "FFT". An ensemble average with 20 samples is used at 

every measurement point to ensure signal quality. The measured complex velocities in 

the two points are  and , respectively. We can calculate the reflection coefficient 

as , where  and  are the distance 

between the two points, .  is the measured wavenumber of the flexural 

wave in the host structure. The absorption coefficient of flexural waves can be 

calculated by . 

 

Appendix I. The geometry of specimens in the experiments 

For six single resonator specimens with different lengths, we name them as "1st single 

resonator specimen", "2nd single resonator specimen", "3rd single resonator specimen", 

"4th single resonator specimen", "5th single resonator specimen", and "6th single 

resonator specimen". Their resonator thicknesses are d2, and their resonator lengths are 

L1, L2, L3, L4, L5, and L6, respectively. Specific geometric parameters of the resonators 

are shown in Table S1. 

 

Table S1 The geometric parameters of specimens in the experiments. All parameters 
are in units of mm. 
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Appendix J. Absorption spectrums of LEMs in elastic beams with different 

materials 

Our proposed design method is universal and applicable to almost all solid beams or 

plates composed of any material. Based on Eq. (6), we design LEMs in four elastic 

beams with different materials of concrete, cross-grain wood, plexiglass (PMMA), and 

Aluminum alloy. These LEMs are defined as the cases from C1 to C4. We show the 

absorption spectrums in Figure S1. The related material and geometric parameters of 

the cases from C1 to C4 are shown in Table S2.  

 

Figure S1. The absorption spectrums of LEMs in four elastic beams made of various 
materials. The cases from C1 to C4 correspond to (a), (b), (c), and (d), respectively. 
 

Table S2 The material and geometric parameters of the cases from C1 to C4. All 
geometric parameters are in units of mm. 

 Material E(GPa) ρ(Kg/m3)   d1 d2 L 
C1 Concrete 40 2500 0.30 0.05 3 0.32 54.7 
C2 Cross-grain wood 0.6 540 0.49 0.04 3 0.30 27.2 

u h
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C3 PMMA 3.16 1190 0.32 0.03 3 0.25 29.6 
C4 Aluminum alloy 70 2700 0.33 0.01 3 0.13 37.8 

 
 
Appendix K. Material parameters and numerical simulations 

The theoretical models in Figs. 1 - 4 are made of Mn-Cu alloy (Yin et al., 2003), 

with Young's modulus , Poisson's ratio , density 

, and the loss factor . The specimens in the experiments are 

made of 3D print material of PLA, with Young's modulus , Poisson's 

ratio , density , and the loss factor  (Cao et 

al., 2021c). 

All simulations are performed by using the COMSOL Multiphysics 5.6 software 

(Solid Mechanics Module). All outer boundaries have any reflection by PMLs. We 

obtain the simulated absorption spectrum by post-processing in the same calculation 

method as the experiment. 
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