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Polynotopes for hybrid nonlinear reachability and filtering
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aUniv. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France

Abstract

Verification and synthesis of Cyber-Physical Systems (CPS) are challenging and still raise numerous issues so far. In this paper,
based on a new concept of mixed sets defined as function images of symbol type domains, a compositional approach combining
eager and lazy evaluations is proposed. Syntax and semantics are explicitly distinguished. Both continuous (interval) and
discrete (signed, boolean) symbol types are used to model dependencies through linear and polynomial functions, so leading to
mixed zonotopic and polynotopic sets. Polynotopes extend sparse polynomial zonotopes with typed symbols. Polynotopes can
both propagate a mixed encoding of intervals and describe the behavior of logic gates. A functional completeness result is given,
as well as an inclusion method for elementary nonlinear and switching functions. A Polynotopic Kalman Filter (PKF) is then
proposed as a hybrid nonlinear extension of Zonotopic Kalman Filters (ZKF). Bridges with a stochastic uncertainty paradigm
are briefly outlined. Finally, several discrete, continuous and hybrid numerical examples including comparisons illustrate the
effectiveness of the theoretical results.

Key words: Functional sets; Polynomial dependencies; Mixed encoding; Logic; Hybrid dynamic systems; Reachability;
Robust state estimation; Kalman filters; Zonotopes; Polynotopes;

1 Introduction

Uncertainty management undoubtedly remains a great
challenge when designing, observing, controlling and
verifying systems with stringent safety, reliability and
accuracy requirements. Common industrial practice
still makes intensive use of Monte-Carlo simulations and
design of experiments to check for robustness, perform
sensitivity analysis and optimize tuning. Meanwhile,
given some model of the available knowledge, which
is by essence subject to uncertainties, formal methods
provide verification and synthesis tools likely to ensure
a full coverage wrt to the range of specified behaviors,
including off-nominal and worst cases. Dealing with
complex dynamics such as nonlinear and hybrid ones
remains challenging and the achieved trade-off between
computation time and accuracy heavily depends on un-
derlying set representations.
However, a direct use of set-membership techniques (e.g.
intervals, ellipsoids, etc) is often subject to the so-called
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dependency problem and/or the wrapping effect. The
former comes from the loss of variable multi-occurrences
when overloading basic operators. The latter results
from the necessary approximate (usually outer) descrip-
tion of true solution sets. This has motivated the use of
affine arithmetic [11,37] and other set representations
of intermediate complexity between intervals [18,35,10]
or ellipsoids [24] and polytopes [16] or level sets [30],
like zonotopes [23,4,14], a class of convex and centrally
symmetric polytopic sets defined as the affine image of
a unit hypercube. Zonotopes have been used to address
the reachability of linear [34,13,8], nonlinear [2,3,15]
and hybrid e.g. [26] systems, as well as state bounding
observation [4,1,5,25], possibly with links to a stochas-
tic paradigm [6,7], or in a distributed context [31,9].
With zonotopes, affine function transforms correspond
to implicit set operations and the evaluation of bounds
can be delayed (lazy evaluation [39]), to the benefit of a
better management of dependencies.
Moreover, an analogy can be noticed between such affine
function transforms and the manipulation of symbolic
expressions at a syntactic level (e.g. x − x simplified as
0 before substituting the unit interval [−1,+1] for x in
x − x). In addition, the important distinction between
syntax (e.g. formal transformation rules) and semantics
(e.g. the interpretation/evaluation of some expression)
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is easily lost when directly operating sets. By extending
ideas originating from affine arithmetic [11] and further
developed, e.g., for the static analysis of programs by ab-
stract interpretation [14], symbolic zonotopes and USP
(Unique Symbol Provider) in [9] showed the relevance of
these concepts in a context of distributed state estima-
tion. To summarize, a clear distinction between syntax
and semantics is a key point to struggle against the
dependency problem in set-membership computations.

When addressing core problems like reachability, state
estimation, identification, invariant sets [40] and fault
diagnosis [41,38,33], non-convex and possibly non-
connected sets are often required when dealing with
nonlinear and/or hybrid systems. Taylor models [27]
are an alternative to represent non-convex sets. Dealing
with non convex and/or non-connected sets is also pos-
sible through pavings [18] or level sets [30] but costly
since related algorithms respectively rely on bisections
or grids, both yielding an exponential complexity. Us-
ing properties like monotony/cooperativity [36] often
impose restrictions either on the class of dynamics that
can readily be handled, or on accuracy due to the lack of
richer internal set descriptions. In the hybrid case, the
crossing of guards can generate many pieces of flows.
Bissection/branching may be used, but the benefit of
fast methods is then often lost due to the complexity in-
duced by the propagation of a large number of (possibly
smaller) instances which unduly become fully indepen-
dent after branching/bissection.
Thus, two complementary directions can be considered
and combined : finding more versatile set representa-
tions possibly i) non convex while preserving scalability,
and ii) non connected to propagate unions/bundles of
a possibly large number of (implicit) sets characteriz-
ing distinct/discrete configurations/modes, without full
bissections/branching, that is, while sharing and keep-
ing trace of the common features between all these sets.
The combination of i) and ii) pleads in favor of search-
ing for some kind of unified representation to encode
and operate mixed sets (i.e. hybrid sets).

Though zonotopic sets catch some linear dependencies,
their convex, connected, and centrally symmetric na-
ture still impose restrictions to address the reachability
of nonlinear and hybrid (i.e. mixed continuous/discrete)
dynamic systems. To overcome these restrictions, Tay-
lor models [27], polynomial zonotopes [2] and sparse
polynomial zonotopes (spz) [22] rely on sets defined as
polynomial images rather than affine/linear ones. spz
can thus efficiently store and operate a large class of non
convex continuous sets. However, spz do not natively
handle the case of discrete or mixed sets, which mo-
tivates the distinct features introduced with the poly-
notopes proposed in this paper. Moreover, constraints
can be also introduced in set representations as with
constrained zonotopes [38] and, recently, constrained
polynomial zonotopes [21]. Note that the evaluation
of bounds under constraints, even if delayed, may be

costly and involve iterative algorithms (e.g. linear pro-
gramming with constrained zonotopes). Polynotopes
will thus introduce typed symbols whose management
involves specific polynomial constraints that can be
efficiently handled.

Contributions. This paper introduces a new concept of
jointly mathematical and computational objects called
polynotopes allowing to define and operate functional
sets with typed symbols. By focusing on one continu-
ous (interval) and two discrete (signed, boolean) symbol
types, it is shown how the resulting non convex, non cen-
trally symmetric and non connected mixed sets extend-
ing zonotopes (including polynomial ones) can be used to
implement advanced hybrid nonlinear reachability and
filtering algorithms without relying on costly bissections.
Syntax and semantics are explicitly distinguished while
combining both a strict/eager evaluation of polynotope
objects (mainly addressing the dependency problem)
and a lazy/delayed evaluation of bounding sets (mainly
addressing the wrapping effect). Mixed encoding of in-
tervals and dependency preserving inclusion methods
for elementary nonlinear and switching functions are
proposed. Polynomial representation of logic functions
defined on {−1,+1} (signed logic) or {0, 1} (boolean
logic) is analyzed and a functional completeness result
is given for polynotopes. Based on operator overloading,
the generic implementation of an original Polynotopic
Kalman Filter (PKF) extending Zonotopic Kalman Fil-
ters (ZKF) to hybrid nonlinear systems is obtained. Sev-
eral discrete, continuous and hybrid numerical examples
illustrate the main theoretical results.

Organization. After extending the notion of inclusion
function classically used in interval arithmetic to general
sets in section 2, the motivation and the construction/-
composition of polynotope objects is treated in section 3.
Uniquely identified typed symbols are also introduced in
this section. A possible implementation of the polyno-
tope objects is then gradually introduced in section 4 by
first starting from symbolic/mixed zonotopes and mixed
encoding of intervals, and then extending sparse poly-
nomial zonotopes with specific features making it possi-
ble to handle mixed sets in a unified way. In section 5,
modeling tools for nonlinear hybrid systems are given
with emphasis placed on a compositional approach re-
lying on basic logic gates and basic nonlinear continu-
ous and switching functions. Inclusion methods are also
given. Then, a Polynotopic Kalman Fiter (PKF) extend-
ing ZKF to hybrid nonlinear systems is developed in sec-
tion 6. Through basic operators/functions overloading,
its implementation can benefit from the proposed de-
pendency preserving compositional inclusion methods.
The links between PKF, ZKF and the basic stochastic
Kalman Filter KF [19] are made explicit. In section 7,
numerical examples including comparisons illustrate the
effectiveness of the proposed scheme, before concluding
remarks in section 8.
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Table 1
Examples of possible domains Dx and DX for a variable x

Example Dx DX

Continuous R̄n ĪR̄n

Discrete {0, 1} {{0}, {1}, {0, 1}}
Mixed {0, 1} ∪ [2, 4] {{1}, I[2, 3], {0} ∪ [3, 4],Dx}

2 Inclusion function: beyond intervals

To begin with, a definition of sets from functions (imset)
and a definition of inclusion functions are given and dis-
cussed in a classical (non-symbolic) framework. Given a
variable x, let Dx denote a set (or domain) of possible
values for x, that is: x ∈ Dx. Also, let DX = ⊂Dx de-
note a set of subsets of Dx, including Dx itself, that is:
(∀X ∈ DX, X ⊂ Dx) ∧ (Dx ∈ DX). Since the value of
any X ∈ DX is a set, X is said set-valued. Notice that
x ∈ Dx is not necessarily set-valued. For instance, the
Table 1 reports some continuous, discrete and mixed ex-
amples, where R̄ = R ∪ {−∞,+∞}, and ĪX (resp. IX)
refers to the set (resp. collection) of real intervals [a, b]
included in some set X. Thus, ĪX = {IX}. The contin-
uous example with DX = ĪR̄n is classically used to de-
fine inclusion functions in the particular case of interval
arithmetic with possibly unbounded 1 intervals.

Definition 1 (imset) Given a function f : Dx→ Dy,
x 7→ y = f(x), and a set X ⊂ Dx, the imset of X by f is:

f(X) = {f(x) |x ∈ X}.

Definition 2 (Inclusion function) The function g :
DX → DY , X 7→ Y = g(X) is an inclusion function for
f : Dx→ Dy, x 7→ y = f(x), if Dx ∈ DX and:

∀X ∈ DX, f(X) ⊂ g(X),
where f(X) is the imset of X ⊂ Dx by f , and g(X) is
the image of X ∈ DX by g.

Corollary 3 g must not be monotone wrt inclusion to
be an inclusion function. Even without this requirement,
it can be inferred that:

∀X ∈ DX, f(X) ⊂ g(Dx).

Proof. Firstly, imsetf : DX → DY , X 7→ Y = f(X)
is monotone wrt inclusion: X1 ⊂ X2 ⇒ imsetf (X1) ⊂
imsetf (X2). Moreover, from the definition 2, ∀X ∈
DX, X ⊂ Dx, and the monotony of imsetf wrt inclusion
gives: ∀X ∈ DX, f(X) ⊂ f(Dx). Also, since Dx ∈ DX,
f(Dx) ⊂ g(Dx). Thus, ∀X ∈ DX, f(X) ⊂ g(Dx),
without requiring the additional statement that g must
be monotone wrt inclusion to be an inclusion function.

Remark 4 In general, 2Dx 6⊂ DX. This may lead to
some conservatism when using an inclusion function de-

1 Note here that Rn = ]−∞,+∞[n ∈ DX, Dx = R̄n =
[−∞,+∞]n ∈ DX, and DX = ĪR̄n is a strict subset of the
power set 2Dx of Dx = R̄n (e.g. a sphere is not an interval).

fined over DX to enclose the image of any arbitrary sub-
set X ∈ 2Dx of Dx. This kind of wrapping effect is hardly
avoidable in practice since, in most cases, not all subsets
of Dx can be exactly represented in machine, especially
when dealing with continuous and/or hybrid domains.

Remark 5 Syntax and semantics are not distinguished
in this section 2 where the same notation x may refer to
the (name of a) variable or a taken value.

A basic illustration of interval arithmetic’s dependency
problem is first given and analyzed. Let x denote any real
such that x ∈ [−1,+1] ⊂ R. Let f : R̄→ R̄, x 7→ x− x.
i) Since ∀x, x−x = 0, f is the null function and the im-
set f([−1,+1]) of the interval [−1,+1] by f is obviously
the singleton {0}. ii) Let g be the natural interval exten-
sion of f i.e. g : IR̄ → IR̄, x 7→ x − x, where the minus
operator is “overloaded” to deal with interval operands.
g is an inclusion function for f . Thus: f([−1,+1]) ⊂
g([−1,+1]) = [−1,+1] − [−1,+1] = [−2,+2]. Conclu-
sion: Though inclusion is preserved, [−2,+2] is a poor
outer approximation of f([−1,+1]) = {0}. Whereas
simply overloading basic interval operators would be
the dream of a programmer wishing to implement uncer-
tainty propagation computations, the natural interval
extension is often subject to a significant conservatism.
This is mainly due to the loss of dependencies between
multiple occurrences of variables in the expressions to be
evaluated (e.g. notice that x occurs twice in f and g). In-
deed, important symbolic links are lost when substitut-
ing some interval value (semantics) for a given variable
name/symbol (syntax) occurring in expressions/formula
used to define mathematical functions and/or imsets as
in definition 1. Moreover, iterative evaluations, e.g. to
compute reachable sets of dynamical systems, often em-
phasize the drawbacks of a natural interval extension.
Then, should we definitely abandon the dream of en-
coding guaranteed (inclusion preserving), accurate and
fast uncertainty propagation algorithms simply by over-
loading the operators used to define and program ex-
plicit mathematical functions? Beyond the natural inter-
val arithmetic extension, how to tackle the dependency
problem while dealing with possibly mixed (hybrid: con-
tinuous and discrete), non-convex and non-connected
sets in a unified way?

3 Polynotope objects: Why and how?

3.1 Functional sets

Starting from intervals to represent bounding sets over
continuous domains, explicit descriptions of more gen-
eral sets is a possible direction to struggle against the de-
pendency problem. Though general polytopes may look
attractive to represent/approximate a large class of con-
vex sets, the enumeration of their vertices and/or faces
often remains poorly scalable. Paving and extensive use
of contractions and bissections (branching) is another
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possible direction. However, bissections often restrict the
scalability of accurate set approximations as the space
dimension increases. Implicit rather than explicit set de-
scriptions have also received a significant attention along
the years e.g. ellipsoids described through a symmetric
and positive definite (spd) matrix or as the imset of a
unit hypersphere by a linear function, zonotopes (resp.
polynomial zonotopes) most often viewed/defined as the
imset of a unit hypercube [−1,+1]p ⊂ Rp by an affine
(resp. polynomial) function f : Rp → Rn. For instance,
the zonotope 〈c,R〉 = {c + Rs, s ∈ [−1,+1]p} ⊂ Rn is
nothing else but the imset of [−1,+1]p by the function
fc,R : s 7→ c + Rs. Though the possible shapes of zono-
topes in Rn with n > 2 are significantly more versatile
than that of basic nD intervals, so usually providing very
useful degrees of freedom to struggle against the wrap-
ping effect, it remains worth noticing the consequences of
the intrinsic symbolic (syntactic) difference between the
two expressions fc,R(sa) and fc,R(sb) where, e.g., sa ∈
[−1,+1]p and sb ∈ [−1,+1]p. First, the possible val-
ues (semantics) taken by both expressions belong to the
same zonotope 〈c,R〉. Indeed, the set-based wrap/en-
closure [fc,R(sa)] of fc,R(sa) is [fc,R(sa)] = fc,R([sa]) =
fc,R([−1,+1]p) = 〈c,R〉 and idem with sb since [sb] =
[sa] = [−1,+1]p (and so, even if sa 6= sb). In this context,
what about the composition of set-based enclosures?

[fc,R(sa) + f0,−R(sa)] . . .
a1) . . . ⊂ [c+Rsa −Rsa] ⊂ {c} = 〈c, 0〉
a2) . . . ⊂ [fc,R(sa)] + [f0,−R(sa)] ⊂ 〈c, 2R〉
[fc,R(sb) + f0,−R(sa)] . . .
b1) . . . ⊂ [c+Rsb−Rsa] ⊂ {c}+R[sb]−R[sa] ⊂ 〈c, 2R〉
b2) . . . ⊂ [fc,R(sb)] + [f0,−R(sa)] ⊂ 〈c, 2R〉
In the cases a1 and b1, a transformation/simplification
of the symbolic expressions is first conducted (possibly
based on an eager evaluation of terms interpreted as sym-
bols rather than values) and the evaluation of set-based
enclosures is delayed as much as possible (lazy evalua-
tion). In the cases a2 and b2, an eager evaluation us-
ing set-based enclosures as possible values is performed
without any prior symbolic transformation. In the case
of a2 and compared to a1, this second approach yields a
significant conservatism originating from the loss of de-
pendencies between the two (thus, multiple) occurrences
of sa which distinguish a1, a2 from b1, b2.

At this step, several directions orienting the following
of this work can be drawn:
i) Functions can be used to implicitly define sets as the
image of their definition domain (e.g. unit hypercubes
with affine functions fc,R for classical zonotopes).
ii) Working out a traceability of variable multi-
occurrences within the (possibly incrementally built)
symbolic expressions used to define such functions/sets
can help to struggle against the dependency problem.
iii) While elementary operators overloading is preferred
to encapsulate the code required to easily compose com-

plex functions/sets from simple ones, a global 2 scope
should be maintained for symbolic variables to prevent
from losing global dependencies.
iv) A trade-off between the efficiency of symbolic opera-
tions, their memory footprint, and the ability to quickly
compute guaranteed and accurate set-based enclosures
has to be found, possibly involving reduction schemes.
v) By default, binding/linking/sharing is preferred to
systematic bissection/branching in this work.
vi) Set-based enclosures should be computed only when
needed (call by need), so leading to a lazy/delayed eval-
uation of wrapping sets and/or bounds.
vii) The tight interactions between symbolic expres-
sions and mathematical definitions as well as numer-
ical computations reveals the need for distinguishing
between syntax (symbolic level) and semantics (mathe-
matical interpretations of symbolic expressions possibly
resulting from numerical computations).

3.2 Syntax and semantics

With the ultimate goal of better managing dependencies
that constitute a key for an accurate propagation of un-
certainties, an explicit distinction between syntax and
semantics is considered. Whereas syntax refers to rules
defining symbol combinations that are correct in some
language, semantics refers to the interpretation or mean-
ing of related sentences. In other words, syntax refers
to how writing correct statements, semantics indicates
what they mean.

Let z denote a (symbolic) name that should be under-
stood/interpreted as an object ιz. The interpretation
operator ι assigns a meaning (e.g. mathematical or com-
putational object, set, numerical value, etc) to the sym-
bolic name z (and possibly to other symbols/names). In
this paper, ι is a generic notation used to disambiguate
symbolic names (syntax) from their meaning and/or
taken values (semantics), whenever necessary. ιz can be
viewed as a shortcut for ι(z) or [[z]]ι which is a usual no-
tation for valuation (semantics) in logic and computer
science. However, systematic formal definitions of inter-
pretation/valuation operators are out of scope in this
paper: ι simply reads as “interpretation of” for the sole
purpose of drawing an explicit separation between oper-
ations at syntactic and semantic levels.

For example, Dx denoting a set containing the possible
values (definition domain) of a variable named/symbol-
ized by x. Then, ιx ∈ Dx reads as “the interpretation/-
value assigned to the variable named x belongs to the
definition domain of x”. Notice that usual mathematical
notations do not distinguish between variable names and
values (e.g. when writing x ∈ Dx for the variable x, as
in section 2). Similarly, f may denote the name/symbol

2 not only at a host level but also at a wider scale to also
cover the network nodes of distributed systems like CPS.
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referring to a function explicitly denoted as ιf . Then, ιf
stands for an interpretation of f (e.g. as a mathemati-
cal function, as a subroutine/algorithm, etc). Moreover,
an evaluation ιf(ιx) of the function named f stands for
the image/result obtained by applying ιf to the value
ιx assigned to the input variable named x.

3.3 Typed symbols and unique identifiers

The so-called polynotope objects are interpreted (se-
mantics) as image sets of vector polynomial functions
defined from symbolic expressions (syntax) on domains
related to different types of symbolic variables. For
instance, continuous (unit interval) and/or discrete
(signed, boolean) symbols can be combined to define
and operate possibly mixed/hybrid sets. Following [9],
each of these symbols are uniquely identified in order to
preserve dependencies while simplifying otherwise pos-
sible name binding issues. Considering other basic sym-
bol types than interval (i), signed (s) and boolean (b) is
among possible extensions that are left to future works:

Assumption 6 (Basic types) Let S be a finite set of
typed symbols. Each typed symbol si ∈ S is uniquely iden-
tified by an integer i ∈ N. In this paper, the type τsi of
any si belongs to the set T = {i, s, b} of three basic sym-
bol types respectively referring to interval (i), signed (s)
and boolean (b). As shown in table 2, a definition domain
is related to each of these basic types as � = [−1,+1],
|+−| = {−1,+1}, |10| = {0, 1}, respectively. By default, ba-
sic scalar values are assumed to be interpreted in the real
field R equipped with the usual sum and product opera-
tors. A partition of T into continuous and discrete types
is given by T = Tc ∪ Td with Tc = {i} and Td = {s, b}.

Definition 7 (Mixed, continuous, discrete) Let
I ⊂ N and TI = ∪i∈I{τsi}. The symbolic vector sI
is mixed (resp. continuous, discrete) if (TI ∩ Tc 6=
∅) ∧ (TI ∩ Td 6= ∅) (resp. TI ⊂ Tc, TI ⊂ Td). By exten-
sion, any formula F (sI) and/or related interpretation
as (s-)function, (s-)zonotope, (s-)polynotope, etc can be
qualified as mixed, continuous 3 or discrete accordingly.

Corollary 8 In an entirely continuous case, following
the assumption 6, all the symbols in sI are of type (unit)
interval: ∀i ∈ I, τsi = i, that is, ∀i ∈ I, ιτsi = � =
[−1; +1]. As a result, for any vector I of n unique iden-
tifiers only referring to continuous symbols, any single-
valued interpretation 4 ιsI of the symbolic vector sI be-
longs to the unit interval �n, that is, ιsI ∈ [−1; +1]n.

Assumption 9 (USP) A Unique Symbol Provider
(USP) is assumed to be implemented as a global func-
tion (or service in a distributed context) called as !(n, t)

3 Regarding functions, continuous refers here to a property
of the input domain and not to continuity as in analysis.
4 as long as it is consistent with the type (unit) interval.

Table 2
Notations for three basic symbol types in T = {i, s, b} re-
spectively referring to “interval”, “signed”, “boolean”.

syntax semantics

typed symbol si = x:i ιsi ∈ Dsi interval:

symbol type τsi = i ιτsi = Dsi = � = [−1,+1]

typed symbol sj = z:s ιsj ∈ Dsj signed:

symbol type τsj = s ιτsj = Dsj = |+−| = {−1,+1}

typed symbol sk = y:b ιsk ∈ Dsk boolean:

symbol type τsk = b ιτsk = Dsk = |10| = {0, 1}
x, y, z : particular examples of (untyped) symbol names.
The unique identifier of any typed symbol si ∈ S is i ∈ N.

with (n, t) ∈ N×T and then returning an n-dimensional
vector I ∈ Nn of n new unique identifiers referring to n
new typed symbols of type t i.e. ∀i ∈ I, τsi = t.

Remark 10 A simple implementation of !(n, t) is “l =
l+n, return(h(t)1n + 2nh [l−n+ 1, ..., l])” where 1n de-
notes a vector of n ones, l is a persistent counter initial-
ized to 0 at startup, and h : T → N assigns to each type
t ∈ T a unique integer tag encoded with at most nh bits.
Under the assumption 6, reserving nh = 2 bits and taking
h({i, s, b}) = {1, 2, 3} is a possible choice to efficiently
manage type tags within the unique integer identifiers of
typed symbols. Extensions include an overflow checking
or an implementation (possibly distributed) as a service
in a CPS (Cyber-Physical System): see [9] for details.

3.4 Construction/composition of polynotope objects

Based on uniquely identified typed symbols as in 3.3, the
remainder of this section 3 aims at describing how the di-
rections listed at the end of 3.1 can be achieved through
polynotope objects, while introducing useful definitions
to build well-grounded (e.g. inclusion preserving) math-
ematical interpretations. Consistently with the encap-
sulation principle [32], internal data structures are left
open in this section whereas some choice for them will
be made explicit in section 4.
Polynotopes interprets as functional sets based on vec-
tor polynomial functions with typed symbols i.e. any
polynotopic set can be viewed as the imset of the defi-
nition domain of a vector polynomial function depend-
ing on variables/symbols of different types such as, e.g.,
the basic types in assumption 6. Meanwhile, a mecha-
nism compatible with operator overloading is needed to
achieve the direction iii) in 3.1, that is, providing a sim-
ple interface for the user to naturally encode non triv-
ial compositions of elementary polynotopes, while main-
taining a) a global scope for typed symbols to struggle
against the so-called dependency problem and b) the
rigor of inclusion preserving set-based interpretations.
For this purpose, a formal grammar describing the syn-
tax of a prototype language is given in Table 3. It sup-
ports a basic polynotope composition scheme (mainly

5



Table 3
Context-free grammar in Backus-Naur Form (BNF) describ-
ing the syntax of a prototype language supporting the basic
construction (through typed symbols) and composition of
Polynotope objects.

(a) Consistently with assumption 6. Polynotopes may support other types.
(b) Efficient numeric computations of constant/center vectors and coeffi-
cient/generator matrices of polynotope objects motivate this choice.
(c) At a syntactic level, canonical polynotopes (obtained after resolving
<sfunref> references allowing to compose polynotopes) are polynomial
vectors with only typed symbols as variables. Notice that vector lin-
ear functions (obtained from <monomial> ::= <variable> while removing
<exponent>, <multerm>) give symbolic zonotopes and that nothing a priori
hinders the definition of other <sfunction> as functions of typed symbols.

Table 4
Left: Sample code accepted by the grammar in Table 3.
Right: Evaluation of bounds resulting from a natural interval
extension (int.) or some† polynotope computations (pol.).
† here, e.g., interval hull of an outer zonotope.

sample code

1 u=symb:i,

2 x=0.5+0.5*u,

3 f1=[x*x; x],

4 f2=f1(2)-f1(1),

5 f3=[x^2; x],

6 f4=f1-f3,

7 r=remainder:i,

8 f5=[x+-0.125+0.125*r; x],

9 f6=f5(2)-f5(1)

int.

[-1,+1]

[0,1]

[0,1]^2

[-1,1]

[0,1]^2

[-1,+1]^2

[-1,+1]

(*)

[-1,5/4]

pol.

[-1,+1]

[0,1]

(*)

[0,1/4]

(*)

{0}^2
[-1,+1]

(*)

[0,1/4]

(*) = [[-1/4,1];[0,1]]

based on the <sfunref> lexical tokens 5 ), as exempli-
fied with the sample code in Table 4. Also, polynomi-
als being closed under a finite 6 number of composi-
tions, it describes/accepts a set of well-formed formu-
las (wff) that can be operated at a symbolic level 7 .

5 A (lexical) token is a string (i.e. a sequence of characters)
with an assigned and thus identified meaning.
6 In this paper, a sufficiently large finite context is assumed.
Concretely, this can be achieved through inclusion preserving
reduction schemes, as in definition 17 for instance.
7 e.g. by using efficient data structures to encode and ma-
nipulate the abstract syntax trees of vector polynomials with
typed symbols: see (8) and symbolic polynotopes in 4.3.

Such operations preserve the ability to delay as much
as needed set-based evaluations of typed symbols (lazy
evaluation), while providing the formal ground for inclu-
sion preserving mathematical interpretations 8 . More-
over, the eager evaluation of an <sfunprog> source code
(like the sample in table 4) using polynotope objects
allows to transform polynotopic symbolic function (s-
function) declarations <sfundecl> (see also note (c) in
Table 3) into s-function definitions <sfundef>, that is,
a canonical kind of <sfunction> such that all the ref-
erences <sfunref> to other s-functions have been re-
solved 9 . Concretely, polynotope objects store (the ab-
stract syntax tree of) vector polynomial functions of
typed symbols as sole variables, without any reference
<sfunref> to other polynotope objects. <sfunref> ref-
erences however remain a key enabler to compose non
trivial polynotopes (by using intuitive operator over-
loading) from basic ones, which are typically constructed
from <typedsymbol>s as shown at lines 1 and 7 in Ta-
ble 4. Though an eager evaluation is firstly used to solve
<sfunref> tokens only, <typedsymbol> tokens are not
immediately evaluated. This makes it possible to delay
their evaluation while keeping trace of global dependen-
cies between polynotope objects since each typed sym-
bol is encoded through a unique identifier. By tagging
the symbol identifiers with their type, not only the sym-
bols evaluation can be delayed (lazy evaluation) but also
adapted to their type (polymorphism). As a result, poly-
notopes permit some kind of polymorphic delayed evalu-
ation of uncertain symbols/variables. Moreover, a global
scope is preserved for the latter, which is the basic key
to address the dependency problem arising from a direct
use of interval arithmetic. The interplay between math-
ematical definitions and the semantics attached to the
intermediate (polynotope objects) and finally computed
values (e.g. zonotopes, intervals) also requires a special
attention to ensure inclusion is preserved, not only on
continuous domains, but also on discrete and mixed ones,
as is made possible with polynotopes.

3.5 s-functions

In order to transform and evaluate expressions based
on typed symbols, the notion of (polynotopic) symbolic
function or, shortly, s-function, is precised. s-function
definitions (sfd), some of their interpretations (sffi) and
related evaluations (sffe) are then considered. Whereas
sfd refers to syntax, sffi and sffe refer to semantics.

Let F denote the set of finite length well-formed formulas
(wff) corresponding to canonical polynotopic symbolic
functions as described by <sfundef> in paragraph 3.4
and, more specifically, in footnote 9. Let f ∈ F be such

8 e.g. see (9), e-polynotopes and definition 30 in 4.3.
9 <sfundef> thus stands for an <sfunction> as in Table 3
except that <sfunref> is removed from line/rule 10 which
then becomes <variable>::=<typedsymbol>.
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a wff. Firstly, f describes a possibly scalar polynomial
vector (see lines 20 and 22 in table 3) of finite dimension
nf ∈ N. Also, f contains a finite number pf ∈ N of typed
symbols (<typedsymbol> tokens). Let I = If ⊂ N be
the set 10 of their unique identifiers. Then, to emphasize
its dependence on the typed symbols in sI , the wff f can
be equivalently 11 denoted as F (sI) with f = F (sI).

Definition 11 (s-function: sfd/sffi/sffe) :
• s-function definition (sfd) : f = F (sI) ∈ F. F (sI) is a

wff involving the (typed) symbolic variables in sI which
become bound in the formula: indeed, F (sI) depends on
sI , at least from a syntactical viewpoint.
• s-function functional interpretation (sffi) : denoted as
ιf(.) to emphasize its functional nature, an sffi of f is an
interpretation ιf of f that has the ability to define and/or
return output values from input values corresponding to
an interpretation/valuation of the (typed) symbols in sI .
• s-function functional evaluation (sffe) : Let ιsI be an
interpretation/valuation of the symbolic vector sI and let
ιf(.) be an sffi of f = F (sI). Then, the sffe ιf(ιsI) is the
result obtained by applying ιsI to the sffi ιf(.).

Remark 12 (sffi vs sffe) An s-function interpretation
ιf , as long as it is also an sffi ιf(.), should be understood
as a mathematical function or subroutine or algorithm or
any transformation process related to f but not as some
returned output value obtained from such a function or
process. By contrast, an sffe ιf(ιsI) should be understood
as some returned value obtained from an sffi ιf(.) fed by
some interpretation/valuation ιsI of the typed symbols
sI referring to its (possibly uncertain) inputs. Though
out of scope in this work, note that there is no incom-
patibility with taking functions as possible values, like in
functional paradigms. Moreover, random variables being
nothing else but functions from a set of outcomes to a
set of possible values, the proposed approach is open to
extensions involving stochastic descriptions.

An s-function definition (sfd) usually results from the
eager evaluation of some program containing s-functions
declarations like, e.g.,<sfunprog> in Table 3. For poly-
notopes, this evaluation is based on a systematic expan-
sion leading to a polynomial vector with variables cor-
responding to typed symbols only, and no more refer-
ence to any other s-functions which are all resolved. In
other words, the systematic polynomial expansion gives
a fully unfolded abstract syntax tree, up to typed sym-
bols i.e. s-function uncertain inputs. For example, based
on the sample code in lines 1-4 of Table 4, the following
s-function definitions (sfd) are obtained:
f1 = [0.25+0.5*symb:i+0.25*symb:i 2; 0.5+0.5*symb:i],
f2 = 0.25-0.25*symb:i 2.

10 or a vector. Here, the ordering of scalar elements is free.
11 Note that, alternately, F (sI) (resp. F (.)) may refer to the
abstract syntax tree resulting from parsing the wff f up to
typed symbol leafs included (resp. not included).

Note that the elimination of 0.5*symb:i in the sfd of f2

is made possible at the symbolic level. This greatly helps
to improve the evaluation of some bounds in Table 4.

Several interpretations of an s-function f = F (sI) may
coexist but a basic one is as a mathematical function like

ιf : ιτsI → Rnf , ιsI 7→ ιf(ιsI), (1)

which is an sffi. It is important to note in (1) that the
definition domain ιτsI of ιf depends on the types τsI of
the typed symbols sI involved in the wff F (sI) defining
the s-function f ∈ F. See also Table 2. Continuing the
example, symb:i being of type i (interval), it comes:
ιf1 : [−1,+1]→ R2, σ 7→ [0.25 + 0.5σ + 0.25σ2; 0.5 + 0.5σ],
ιf2 : [−1,+1]→ R, σ 7→ 0.25− 0.25σ2.

An hybrid example mixing continuous and discrete types
is also given with a s-function f ∈ F defined as the wff
F (sI) = 1+x:i+4*y:b*z:s. Then, nf = 1 (scalar out-
put), and the pf = 3 involved typed symbols sI1 = x:i,
sI2 = y:b, sI3 = z:s are respectively of type i (inter-
val), b (boolean), s (signed). In this example, the symbol
names in F (sI) coincide with those in Table 2. Follow-
ing (1), an sffi of f as a mathematical function is:

ιf : �× |10| × |+−| → R, [x; y; z] 7→ 1 + x+ 4yz,
and the imset of ιτsI by ιf is [−4,−2] ∪ [0, 2] ∪ [4, 6]
which is a non-convex and non-connected set. This can
be generalized with image-sets.

3.6 Image-sets

Set-based rather than functional (sffi) interpretations of
s-functions are considered with the image-sets defined
in this paragraph. They provide set-based wraps ensur-
ing the consistency between some intended mathemat-
ical meaning and the actually computed sets through
an inclusion preserving approach. This is obtained by
first extending the imsets and inclusion functions in sec-
tion 2 to a symbolic context with typed symbols through
image-sets and inclusion s-functions, respectively. Then,
a notion of inclusion preserving symbolic reduction op-
erator is introduced. This gives control to maintain finite
representations of prescribed complexity for the under-
lying approximate polynomial expansions while preserv-
ing a set inclusion property ensuring consistency of the
computed polynotopic image-sets.

Definition 13 (Image-set) The image-set 〈f〉ι of the
s-function f = F (sI) ∈ F is the imset of the domain ιτsI
by a functional interpretation ιf of f :

〈f〉ι = {ιf(σ) | σ ∈ ιτsI} = ιf(ιτsI).

Remark 14 The domain ιτsI is a set related to the types
of the symbols in sI (see assumption 6 and table 2) and
ιf(σ) stands for an sffe as in definition 11.
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Definition 15 (Inclusion s-function) The s-function
g = G(sJ) is an inclusion s-function for f = F (sI) un-
der functional interpretations ιf of f and ιg of g if ιg is
an inclusion function for ιf defined on the domain ιτsI .

Corollary 16 From the definition 2 and its corollary 3,
⊂ιτsI being a set of subsets of ιτsI including ιτsI itself,
ιf(Σ) being the imset of Σ by ιf , and ιg(Σ) being the
image of Σ by ιg, it comes:

∀Σ ∈ ⊂ιτsI , {ιf(σ) | σ ∈ Σ} = ιf(Σ) ⊂ ιg(Σ), (2)

∀Σ ∈ ⊂ιτsI , ιf(Σ) ⊂ ιg(ιτsI). (3)

Definition 17 (Reduction) A reduction is an oper-
ator ↓q transforming an s-function f = F (sI) into an
s-function f̄ = ↓qf = F̄ (sĪ) such that f̄ is an inclusion
s-function for f depending on at most q generator sym-
bols: card(Ī) ≤ q ∈ N and card(.) gives the cardinal.

Remark 18 (Reduction) Ī ∩ I 6= ∅ is not mandatory
but often useful to limit the inclusion conservatism while
controlling the complexity of f̄ through its input dimen-
sion. In other words, a reduction operator should preserve
the more important symbols/dependencies i.e. the ones
which significantly contribute to shaping the graph of the
mathematical function symbolized by the s-function f .

Example 19 (Inclusion s-function) In the sample
code of Table 4, the step 8 declares the s-function f5

which is an inclusion s-function for the s-function f1

(resp. f3) declared at step 3 (resp. step 5). Subsequently,
f6 (step 9) is also an inclusion s-function for f2 (step 4).

The example 19 illustrates how (vector) polynomial s-
functions like f1 or f3 can be rewritten as (vector) lin-
ear ones like f5 while preserving the inclusion property
of related set-based interpretations as image-sets. This
can even be done automatically by following a general
scheme similar to automatic differentiation which makes
systematic use of basic operator overloading. Pushing
further this idea, the graph of non-polynomial functions,
possibly including switching ones, can be enclosed within
polynotopes, as it will be further addressed in section 5.
This approach contributes to significantly enlarge the
class of dynamical systems for which reachability and
filtering algorithms (like PKF in section 6) can be read-
ily implemented right from the model equations, just by
composing polynotope objects i) through intuitive op-
erator/function overloading and ii) while preserving the
efficiency of uncertainty propagation computations pos-
sibly involving continuous, discrete or mixed image-sets.

4 From symbolic zonotopes and mixed encoding
to polynotopes

The description of specific data structures and algo-
rithms actually implementing methods related to poly-

notope objects was left opened to a large extent in sec-
tion 3, consistently with the encapsulation principle.
Such descriptions are the main subject of this section 4.
They are gradually introduced by first dealing with sym-
bolic zonotopes, then mixed encoding, before addressing
the more general case of polynotopes.

4.1 Affine s-functions and zonotopes

Definition 20 (Affine/linear wff) The wff F (sI) is
affine in sI if it can be written as c + RsI where the
vector c and the matrix R do not depend on the symbolic
variables in sI . In particular, it is linear when c is null
or can be omitted i.e. F (sI) = RsI . Shortly,

Affine wff: F (sI) = c+RsI .

Definition 21 (s-zonotope) A symbolic zonotope (s-
zonotope) 〈f〉s,τ is an s-function f = F (sI) such that the

wff F (sI) is affine in the symbolic variables in sI .

Definition 22 (e-zonotope) The e-zonotope related
to the s-zonotope 〈f〉s,τ is the image-set 〈f〉s,τ,ι of

f = 〈f〉s,τ under an affine interpretation ιf of f . An

e-zonotope is thus a set-valued evaluation (semantics)
related to a given s-zonotope (syntax).

One possible data structure to store a symbolic zono-
tope is (c,R, I). The related s-function defined by a wff
denoted 〈c,R, I〉s,τ is f = c + RsI , and the related e-

zonotope is in (5):

〈c,R, I〉s,τ = c+RsI (syntax) (4)

〈c,R, I〉s,τ,ι = {c+Rσ |σ ∈ ιτsI} (semantics) (5)

The main differences with classical zonotopes defined as
〈c,R〉 = {c+Rs | s ∈ [−1,+1]n} are twofold:

Firstly, the interplay between syntax and semantics is
not caught by the classical definition, whereas it plays a
key role in the management of the so-called dependency
problem. For example, assuming an entirely continuous
case i.e. all the symbols si are of type (unit) interval, let
us consider the sum S (resp. Minkowski sum Sι) of the s-
zonotopes 〈0, 1, 1〉s,τ and 〈0,−1, 1〉s,τ (resp. 〈0, 1, 1〉s,τ,ι
and 〈0,−1, 1〉s,τ,ι). Then, S = 0 + s1 − s1 = 0 (resp.

Sι = � + � = 2� = [−2,+2]), and the set-valued in-
terpretation ιS = {0} of S is much less conservative
than Sι = [−2,+2] while preserving the inclusion prop-
erty under the considered semantics. Indeed, some un-
certainty cancellation has been made possible by for-
mal/symbolic transformations respecting operators syn-
tactic rules, whereas this is no more possible through
the Minkowski sum following a set-valued evaluation.
One strategy to improve accuracy thus consists in de-
laying such set-valued evaluations. Moreover, whereas
∀i ∈ N, 〈0, 1, i〉s,τ,ι = 〈0, 1〉 = [−1; +1], 〈0, 1, i〉s,τ = si
is distinct from 〈0, 1, j〉s,τ = sj as long as i 6= j.
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From a computational perspective, Matrices with La-
belled Columns (MLC) featuring a column-wise sparsity
as first introduced in [9] lead to efficient implementations
of s-zonotope operators such as sum, linear image, inter-
val/box hull, etc. The reader is referred to [9] for a de-
tailed description, especially in the sections 4 “Matrices
with Labeled Columns (MLC)” and 6 “Symbolic zono-
topes”. Notice that the definition of symbolic zonotopes
in [9] only considers one type of symbols interpreted
as random variables with support in the unit interval
[−1,+1]. This outlines how the approach described in
section 3 can also be used in a stochastic paradigm: In-
deed, it suffices to consider other types of symbols inter-
preted as random variables (which are themselves func-
tions, so emphasizing the relevance of cross-connections
with functional paradigms). In order to give a flavor
about MLC, an informal definition and a sum example
are provided. An MLC M |I is a pair (M, IT ) where M
is an n× p matrix and I ∈ Np is a vector such that each
scalar Ij for j = 1, . . . , p, uniquely identifies the jth col-

umn M:,j of M . Shortly, the column of M |I labeled as
Ij refers to M:,j . An example illustrating the sum of two

MLC, M |I +N |J = P |K is:


2 1 5

1 0 1

0 1 1

 +


3 5 2 8

2 0 4 6

0 3 5 7

 =


1 2 5 3 8

0 5 1 2 6

1 5 4 0 7

 . (6)

0 5 1 2 6

1 5 4 0 7




s1

s2

s5

s3

s8


=

1 0 1

0 1 1



s2

s1

s5

+

2 0 4 6

0 3 5 7



s3

s5

s2

s8

 (7)

As shown in (6), an equal number of columns/gener-
ators of the operands is not mandatory, and the la-
bels are reported on the first lines (e.g. IT = [2, 1, 5]).
(7) illustrates the column-wise (not row-wise) sparsity
granted by MLC operators, and that the sum of two
MLC gives the exact sum of two centered s-zonotopes
since 〈0, P,K〉s,τ = 〈0,M, I〉s,τ + 〈0, N, J〉s,τ . Indeed,

M |I +N |J = P |K ⇒MsI +NsJ = PsK . K ⊂ I ∪J re-
sults from merging the unique identifiers in I and J while
removing those possibly related to null generators. The
vertical concatenation [M |I ;N |J ] = [M |I ; 0] + [0;N |J ]
also illustrates close links between sum and concatena-
tion of MLC.

Secondly, another main difference with classical zono-
topes is the introduction of symbol typing. This makes
it possible to combine several kinds of interpretations.
Following the assumption 6, this paper mainly focuses
on mixed, continuous and discrete values in a set-
membership paradigm, though the approach described
in section 3 is more general. For example, let us con-
sider five symbols si, i = 1, . . . , 5, such that s1, s2, s3

are of type s (signed) i.e. s1, s2, s3 take their values

Fig. 1. Example of mixed e-zonotope 〈0, R, I〉s,τ,ι.

in the discrete set {−1,+1}, and s4, s5 are of type i
(interval) i.e. s4, s5 take their values in the unit in-
terval [−1,+1] ⊂ R. Let I1 = [1, 2, 3] and I2 = [4, 5]
be vectors of unique identifiers gathering symbols ac-
cording to their type: Following the definition 7, sI1 is
discrete, sI2 is continuous, and sI with I = [I1; I2] is
mixed. Let R1 = [3, 3,−3; 6,−5, 9], R2 = [4, 2; 2,−4]
and R = [R1, R2]. Then, the (discrete) e-zonotope
〈0, R1, I1〉s,τ,ι is a set of eight 12 points which are the
linear images by R1 of the vertices of a 3D unit hy-
percube since ιsI1 ∈ ιτsI1 = {−1,+1}3. The (continu-
ous) e-zonotope 〈0, R2, I2〉s,τ,ι is the classical zonotope

〈0, R2〉 i.e. the linear image by R2 of a 2D unit hyper-
cube since ιsI2 ∈ ιτsI2 = [−1,+1]2. More interestingly,
the (mixed) e-zonotope 〈0, R, I〉s,τ,ι is the linear im-

age by R = [R1, R2] of ιτsI = [{−1,+1}3; [−1; +1]2].
It is also the Minkowski sum of the (discrete) e-
zonotope 〈0, R1, I1〉s,τ,ι and the (continuous) e-zonotope

〈0, R2, I2〉s,τ,ι. The resulting set is neither convex nor
connected, as shown in Fig. 1, where the dashed line is
the border of the classical (continuous) zonotope 〈0, R〉.
This example illustrates that mixed zonotopes can pro-
vide a very compact representation (Fig.1: R ∈ R2×5

and 5 bits encoding the symbol types) for the union
of a same 13 (continuous) zonotopic shape centered on
each point of a discrete set possibly containing a high
number of configurations (Fig. 1: 23 = 8 = cardinal of
{−1,+1}3).

4.2 Mixed encoding

The notion of mixed encoding is introduced in the same
spirit as the example illustrated in Fig. 1. It also pro-
vides an approach for a hierarchical modeling of depen-
dencies making it possible to tune the granularity level
of the description. Notation: Let �i (resp. |+−|i, |10|i) de-
note the symbol si provided it is of type interval (resp.
signed, boolean) i.e. τsi = i (resp. s, b). Under the as-
sumption 6, a compact notation for typed symbols is so
obtained, each being uniquely identified by i. Also, let
ρ(0) = 1, ρ(n + 1) = 1

2 [1, ρ(n)] for n ∈ N. Then, ∀n,

12 It could be less if some image points are identical.
13 Relaxing this constraint is among the motivations to the
polynomial extension in §4.3.
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ρ(n) = [( 1
2 )1, . . . , ( 1

2 )n, ( 1
2 )n] ∈ R1×(n+1). By induction,

the row sum of ρ(n) is 1.

Definition 23 (Mixed encoding of basic intervals)
The s-zonotope Zns (I) is an n-level signed-interval mixed
encoding of the unit interval [−1,+1] if
Zns (I) = 〈0, ρ(n), I〉s,τ = (

∑n
j=1( 1

2 )j |+−|Ij )+( 1
2 )n�In+1 .

The s-zonotope Znb (I) is an n-level boolean-interval
mixed encoding of the interval [0, 1] if
Znb (I) = 〈0, ρ(n), I〉s,τ = (

∑n
j=1( 1

2 )j |10|Ij )+( 1
2 )n�In+1 .

Corollary 24 (Mixed encoding of intervals) Let
Zns (I) be a mixed encoding of [−1,+1]. Then, c+rZns (I)
is a mixed encoding of c± r = [c− r, c+ r].
Let Znb (I) be a mixed encoding of [0, 1]. Then, a + (b −
a)Znb (I) is a mixed encoding of [a, b].

Corollary 25 (Related e-zonotopes) Following the
definition 23, the e-zonotope related to the s-zonotope
Zns (I) (resp. Znb (I)) is [−1,+1] (resp. [0, 1]). Conversely,
there is no unique mixed encoding for a given interval.
The e-zonotope (c + rZns (I))ι related to the s-zonotope
c + rZns (I) satisfies (c + rZns (I))ι ⊆ (c ± r) (interval
hull). The equality holds in the scalar case or for r = 0.

The surjective nature of mixed encoding gives freedom
degrees to model dependencies in a hierarchical way. The
discrete parts feature close analogies with the usual bi-
nary encoding of integers. Moreover, the coverage of con-
tinuous domains is achieved through remainder terms.
The width of the set-valued interpretation of these terms
is related to the granularity of the mixed-encoding. It
can be refined or reduced by adapting the level value n.
Since affine s-functions and zonotopes essentially pro-
vide operators managing affine dependencies only, and
since this yields some restrictions on the possible uses of
mixed encoding (among others: see, e.g., footnote 13),
an extension to polynomial dependencies is considered.

4.3 Polynomial s-functions and polynotopes

Let (�,�) denote a generic matrix product:M(�,�)N =
�pj=1(Mij �Njk), where p both refers to the number of
columns of M and the number of rows of N . For exam-
ple, MN = M(+, .)N is the classical matrix product.
+, ., ^ respectively denote sum, product, power.

Definition 26 (Monomial matrix notation) The
monomial matrix θE is (θT (., ^)E)T , where θ (resp. E)
is a so-called variable matrix (resp. exponent matrix) of
dimension compatible with the generic matrix product
(., ^). The operator T refers to transposition.

Examples: Taking θ = [s1; s2] and E = [1, 0, 2; 0, 3, 4]
yields θE = [s1; s3

2; s2
1s

4
2]. θI = θ with I = identity.

Definition 27 (Polynomial wff) The wff F (sI) is
polynomial in sI if it can be written as c + RsEI where
the vector c and the matrices R and E do not depend on
the symbolic variables in sI . Shortly,

Polynomial wff: F (sI) = c+RsEI .

Then, c, R, sI , E, sEI are respectively the so-called con-
stant vector, coefficient/generator matrix, symbol(ic
variable) vector, exponent matrix, monomial vector.

Definition 28 (s-polynotope) A symbolic polynotope
(s-polynotope) 〈f〉s,τ is an s-function f = F (sI) such

that the wff F (sI) is polynomial in the symbolic variables
in sI .

Definition 29 (e-polynotope) The e-polynotope re-
lated to the s-polynotope 〈f〉s,τ is the image-set 〈f〉s,τ,ι of

f = 〈f〉s,τ under a polynomial interpretation ιf of f . An

e-polynotope is thus a set-valued evaluation (semantics)
related to a given s-polynotope (syntax).

The name polynotope introduced in this work originates
from a contraction of polynomial and zonotope. Follow-
ing [20], it is also willingly close to polytope. So, polyno-
tope gathers, at least partially, the Greek roots of poly-
nomial (from polus:numerous and nomos:division) and
polytope (from polus and topos:location).
Under the assumption 6, polynotopes are to sparse poly-
nomial zonotopes what mixed zonotopes are to zono-
topes. They can also be viewed as constrained polyno-
mial zonotopes with polynomial constraints managed
through a possibly extensible set of symbol types.

One possible data structure to store a symbolic polyno-
tope is (c,R, I, E). The related s-function defined by a
wff denoted 〈c,R, I, E〉s,τ is f = (I, c + RsEI ), and the

related e-polynotope is in (9):

〈c,R, I, E〉s,τ = c+RsEI (syntax) (8)

〈c,R, I, E〉s,τ,ι = {c+RσE |σ ∈ ιτsI} (semantics) (9)

Polynotopes as in (8)−(9) generalize zonotopes as in
(4)−(5). Indeed, zonotopes are obtained forE = I (iden-
tity matrix) which is highly sparse and can thus be stored
very efficiently. Using a sparse E with integer entries in
N leads to a data structure similar to sparse polynomial
zonotopes (spz) in [22], where no typing of symbols is
considered (continuous case only). The sparsity of E ex-
tends the column-wise sparsity of MLC to polynomial
(rather than affine) dependencies with a compact de-
scription of monomials featuring (almost) no restriction
on the highest degree. The example (10)−(11) shows
how the s-polynotope related to (11) can be compactly
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Fig. 2. Example of continuous e-polynotope 〈c,R, I, E〉s,τ,ι.

encoded using (c,R, I, E) as in (10). See also Fig. 2.

 I E
c R

 =


1 1 0 1

8 0 3 1

2 5 3 −1

1 2 0 4

 , (10)

[
s1

s8

]
7→

[
2 + 5s1 + 3s3

8 − s1s8

1 + 2s1 + 4s1s8

]
. (11)

The implementation of continuous polynotopes opera-
tions used in this work is close to the one described in
[22] for spz. In particular, each time monomial redun-
dancies might occur, they are removed by summing the
related generators: all the columns of E remain distinct.
The main differences are:
1) The case of independent generators is not treated
separately i.e. all the generators are possibly dependent
(provided they share some common symbol),
2) The implementation of a symbolic addition is consid-
ered and optimized by taking into account the fact that
monomials/generators involving at least one own vari-
able from an operand can be simply copied in the result
since no similar monomial exists in the other operand,
3) A vertical concatenation extends the one of MLC,
4) An element-wise product is used as a special case of
quadratic map and the reduction extends the one in [9].

Our implementation of polynotopes also supports dis-
crete and mixed operations through symbol typing as
described in section 3 and assumption 6. Compared to
a strictly continuous case as in [22], the main difference
is the introduction of rewriting rules taking the specific
nature of signed and boolean symbols into account. Re-
lated substitutions (→) are implemented very efficiently
using the (c,R, I, E) attributes with sparse E, e.g.

(|+−|i)n → (|+−|i)mod(n,2), (12)

(|10|i)n → (|10|i)max(n,1). (13)

Definition 30 (Rewriting rules and inclusion) A
rewriting rule is inclusion preserving if:

(〈f〉s,τ → 〈g〉s,τ )⇒ (〈f〉s,τ,ι ⊆ 〈g〉s,τ,ι).
It is inclusion neutral if:

(〈f〉s,τ → 〈g〉s,τ )⇒ (〈f〉s,τ,ι = 〈g〉s,τ,ι).

Proposition 31 The rewriting rules in (12) and (13)
are inclusion neutral under the assumption 6.

Notice the syntactical (resp. semantic) nature of the
premises (resp. conclusions) of the implications (⇒) in
the definition 30. To give insight into the proposition 31,
let x be a possible value of any signed symbol: x ∈
{−1,+1} ⊂ R. Thus, (x + 1)(x − 1) = 0 i.e. x2 = 1 as
polynomial constraint. By induction, xn = x for odd n,
xn = 1 for even n, that is xn = xmod(n,2) which shows
the inclusion neutrality of (12). Similarly, let x be a pos-
sible value of any boolean symbol: x ∈ {0, 1} ⊂ R. Thus,
(x − 0)(x − 1) = 0 i.e. x2 = x. By induction, xn = x if
n > 1, xn = 1 if n = 0, that is xn = xmax(n,1) which
shows the inclusion neutrality of (13).
The rewriting rules (12)−(13) apply for operations mod-
ifying the monomial degrees like product; the number
of distinct monomials induced by discrete operations is
drastically reduced compared to continuous ones, since
the exponent in the right term of (12)−(13) is either 0
or 1 instead of any n ∈ N. Thanks to inclusion neutral-
ity, such simplifications of formal expressions induce no
conservatism in the related set-valued interpretations.
Other rewriting rules are only inclusion preserving:

Proposition 32 The rewriting rules in (14), (15) and
(16) are inclusion preserving under the assumption 6.

(|10|i)→ 1/2 + (|+−|j)/2, (14)

(|+−|i)→ (�j), (15)

(�i)
2 → 1/2 + (�j)/2, (�i)(�j)→ (�k). (16)

(14)−(16) apply before computing the zonotope/inter-
val enclosure of a (possibly mixed) polynotope. Notice
that (14) is inclusion neutral if applied globally i.e. with-
out generating new symbol multi-occurrences. (15) is the
formal/syntactical counterpart of {−1,+1} ⊂ [−1,+1]
which can be viewed as a prototype of the most basic
inclusion of two discrete modes/configurations (−1 and
+1) into a single continuous domain (the unit interval).
By using appropriate reductions of formal expressions
based on inclusion preserving rewriting rules, mixed
polynotopes provide a highly versatile, scalable and
computationally efficient approach to combine and
enclose possibly non convex and non connected sets
under dependency constraints. Hence, they look ap-
pealing to deal with verification and synthesis of Cyber-
Physical Systems (CPS) whose modeling often relies on
mixed/hybrid dynamics. They also exemplify the gener-
ality of the approach of image sets with typed symbols
described in section 3.
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5 Modeling tools for nonlinear hybrid systems

5.1 Discrete: Signed and Boolean logic functions

This paragraph shows how signed (resp. boolean) sym-
bolic variables can be used in a polynomial framework,
like the one of polynotopes under the assumption 6, to
express any propositional logic formula where symbolic
variables are interpreted on a bi-valued real domain:
|+−| = {−1,+1} ⊂ R (resp. |10| = {0, 1} ⊂ R). This gives a
natural interface between continuous variables (defined
on a (real) domain with infinite cardinal) and discrete
ones (defined on a (real) domain with finite cardinal).

Proposition 33 (Multi-affine decomposition) Let
f : Rp → Rn be any function between finite dimensional
real domains. Let x ∈ R and z ∈ Rp−1 so that (x, z) ∈ Rp
refers to any input vector of f where a scalar input x is
distinguished from the others. Let introduce four partial
functions of f defined as:

fAx (z) = f(+1,z)+f(−1,z)
2 : Average of f wrt x,

fHx (z) = f(+1,z)−f(−1,z)
2 : Half-gap of f wrt x,

fGx (z) = f(0, z) : Ground of f wrt x,

fUx (z) = f(1, z)− f(0, z) : Unit-gap of f wrt x,

Then, an affine decomposition of f wrt x under a signed
(resp. boolean) x is respectively given by (17) and (18).
Moreover, if all the scalar entries of z are signed (resp.
boolean), a recursive application of (17) (resp. (18)) re-
sults in a (polynomial) multi-affine decomposition of f .

x ∈ {−1,+1} ⇒ f(x, z) = fAx (z) + xfHx (z), (17)

x ∈ {−0,+1} ⇒ f(x, z) = fGx (z) + xfUx (z). (18)

Proof. (17) comes from f(+1, z) = fAx (z) + fHx (z) and
f(−1, z) = fAx (z) − fHx (z). Similarly, (18) comes from
f(0, z) = fGx (z) and f(1, z) = fGx (z) + fUx (z). �
The multi-affine decomposition of basic propositional
logic operators is reported in Table 5 both in the signed
and boolean cases. At least three noticeable facts emerge
from Table 5:
a) The equivalence eqv in the signed case features the
same multi-affine decomposition as the logical and in
the boolean case, and both reduce to a simple product.
b) The multi-affine decompositions with signed operands
look more “balanced” in terms of involved monomials,
compared to the boolean case. This is visible right from
the basic affine decompositions in (17) and (18). Indeed,
the average of both alternatives (resp. the 0 alternative)
serve as reference to express the impact of a switching
controlled by x in the signed (resp. boolean) case.
c) Interpreting in R the polynomial expression of a
multi-affine decomposition yields some interpolation
between discrete configurations initially expressed in a
(bi-valued) propositional logic framework.

Table 5
Signed and Boolean logic functions related to basic operators
expressed in the ring of multivariate polynomials R[sI ] with
coefficients in the real field (R,+, .).

(a, b) ∈ {−1,+1}2 ∈ {0, 1}2

Op. Symb. Signed Boolean

not ¬ −a 1− a
and ∧ −1+a+b+ab

2
ab

or ∨ +1+a+b−ab
2

a+ b− ab
nand ↑, Z +1−a−b−ab

2
1− ab

nor ↓, Y −1−a−b+ab
2

1− a− b+ ab

imp ⇒, ≤ +1−a+b+ab
2

1− a+ ab

eqv ⇔, = +ab 1− a− b+ 2ab

xor <, 6= −ab 0 + a+ b− 2ab

pow an, n ∈ N amod(n,2) amax(n,1)

true > +1 1

false ⊥ −1 0

Proposition 34 (Logical ordering) Let (a, b) be a
pair of signed (resp. boolean) symbolic variables. Defin-
ing the operator > such that (a > b) = ¬(a ≤ b) holds
true with operators as in table 5, then (a < b) = (b > a)
and (a ≤ b) = ((a < b) ∨ (a = b)) also hold true. More
generally, the operators ≤ (i.e. implication 14 ), ≥, >, <
follow similar rules as classical order relation operators
over reals when signed (resp. boolean) symbols are inter-
preted with values in {−1,+1} ⊂ R (resp. {0, 1} ⊂ R).

Theorem 35 (Functional completeness) Under the
assumption 6, let I ⊂ N be a finite set of unique symbol
identifiers with at least p elements of type signed (resp.
boolean). s-polynotopes based on wff interpreted as mul-
tivariate polynomials R[sI ] with coefficients in the real
field (R,+, .) can describe any function f : |+−|p → |+−|
(resp. f : |10|p → |10|), where |+−| = {−1,+1} ⊂ R (resp.
|10| = {0, 1} ⊂ R).

Proof. Theorem 35 follows from the functional com-
pleteness of the nand (or nor) logical operator and the
fact that the composition of polynomials in R[sI ] re-
sult in polynomials in R[sI ]. Indeed, the nand operator
is defined as a polynomial function with signed (resp.
boolean) operands and codomain in Table 5. Thus, the
composition of any number of such nand operations on
signed (resp. boolean) symbolic variables evaluated in
|+−| (resp. |10|) result in a polynomial s-function i.e. a s-
polynotope according to the definition 28.

Corollary 36 Given any pair (a, b) ∈ R2 satisfying a <
b, all the finite dimensional Boolean functions and oper-
ations can be plunged in {a, b}p ⊂ Rp for some p ∈ N
after suitable re-scaling compared to the usual Boolean

14 Notice that contraposition writes as (a ≤ b) = (¬b ≤ ¬a).
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case i.e. (a, b) = (0, 1). This is exemplified with the
so-called signed case i.e. (a, b) = (−1,+1) in table 5,
where the direct and inverse affine re-scaling functions
are r : |+−| → |10|, x 7→ 1+x

2 and r−1 : |10| → |+−|, x 7→ 2x−1.

5.2 Continuous: Nonlinear functions

Whereas the imset (see definition 1) of a polynotope
(resp. zonotope) by a polynomial (resp. affine) func-
tion is still a polynotope (resp. zonotope), the imset by
non-polynomial (resp. non-linear) functions is not. This
paragraph proposes a method to obtain guaranteed in-
clusions of non-polynomial (resp. non-linear) functions
while maintaining dependency links between inputs and
outputs. Indeed, breaking such links (e.g. by a naive
use of interval arithmetic) is often the source of over-
approximations and/or wrapping effect.

For the sake of simplified notations, the distinction be-
tween s-functions (syntax) and their usual interpreta-
tion as a mathematical function (semantic) is not sys-
tematic in the following. Example: Let f(x) = ex. Then,
f refers either to the s-function built from the wff ex, or
to ιmf : x 7→ ex.
The notations used for intervals are as follows: x ∈ [x] =
[x, x] = x̂ ± x̊ = [x̂ − x̊, x̂ + x̊] where x, x, x̂, x̊ respec-
tively denote the lower bound, upper bound, center (or
middle), radius of the interval [x] containing x. Then,

x̂ =
x+x

2 and x̊ =
x−x

2 . Recall: � = [−1,+1].

Lemma 37 (Unit range mapping) Let [x] = [x, x] =
x̂± x̊ ⊂ R. Let µ : [x]→ �, x 7→ δ = x−x̂

x̊ if x̊ 6= 0, δ = 0

otherwise. µ−1(δ) = x̂ + x̊δ. Unless x̊ = 0 (degenerate
point case), the unit range mapping µ (or µ[x]) of [x] is
linear and bijective: It maps the interval range [x] of x
to the unit interval � containing any δ = µ(x), x ∈ [x].

Given an interval [x] ⊂ R, let f : [x]→ R, x 7→ y = f(x)
be a function that does not satisfy a property π (i.e.
¬π(f) is true) required for a given class of image-sets
to be closed under the (element-wise) application of f
to the underlying s-functions. For example: π being the
property of being linear (resp. polynomial), the class of
e-zonotopes (resp. e-polytopes) are closed under the ap-
plication of linear (resp. polynomial) functions to the
underlying s-zonotopes (resp. s-polytopes). ¬π(f) then
means that f is non-linear (resp. non-polynomial) for
zonotopes (resp. polynotopes). The considered struc-
tural property π is assumed to be preserved through
function composition.

Lemma 38 (Generic inclusion method) Given an
interval [x] ⊂ R and f : [x] → R, x 7→ y = f(x) with
¬π(f). Let g : �2 → R, (δ, ε) 7→ g(δ, ε) be a function
satisfying ∀x ∈ [x], ∃ε ∈ �, f(x) = g(µ(x), ε), where µ is

the unit range mapping of [x]. Then, f̃(.) = g(µ(.),�) is

an inclusion function for f(.). Also, π(g)∧π(µ)⇒ π(f̃).

Fig. 3. Inclusion method of theorem 39 applied to f(x) = ex

on [x] = −1± 0.5 (magenta) and [x] = +1± 0.5 (cyan): plot
of e-zonotopes as in corollary 40. x̂+ x̊δ∗ = log(ẙ/x̊).

According to Lemma 38, enclosing a non-linear (resp.
non-polynomial) function f in a linear (resp. polyno-
mial) framework can be achieved by finding an adequate
linear (resp. polynomial) function g. In order to exem-
plify the generic inclusion method, a more focused ap-
proach is proposed for increasing/decreasing and con-
vex/concave functions f on some interval [x]. Notation:

[∂xf ](.) = ∂f(x)
∂x

∣∣∣
x=.

.

Theorem 39 (An inclusion method) Let f : [x] →
R, x 7→ y = f(x) be a class C1 convex or concave function
on a given interval [x] = x̂± x̊ = [x, x] ⊂ R with x̊ > 0.
Let y = f(x), y = f(x), ŷ = (y + y)/2, ẙ = (y − y)/2.
Let δ = µ(x) where µ is the unit range mapping of [x]
(so, x ∈ [x]⇔ δ ∈ �). Let r(δ) = f(x̂+ x̊δ)− (ŷ + ẙδ).
Let δ∗ be the solution of [∂xf ](x̂ + x̊δ) = ẙ/x̊. Then,
g(δ, ε) = g0+g1δ+g2ε with g0 = ŷ+ 1

2r(δ
∗), g1 = ẙ, g2 =

1
2 |r(δ

∗)| satisfies ∀x ∈ [x], ∃ε ∈ �, f(x) = g(µ(x), ε).

f̃(.) = g(µ(.),�) is an inclusion function for f(.) on [x].

Proof. The regularity of f on [x] ensures that
[∂δr](δ

∗) = 0 i.e. [∂xf ](x̂ + x̊δ∗) = ẙ/x̊ has a unique
solution. Since r(−1) = r(+1) = 0, if f is convex
(resp. concave) on [x], then r(δ) ∈ [r(δ∗), 0] (resp.
r(δ) ∈ [0, r(δ∗)]) for δ ∈ �. The two cases are gath-
ered as: r(δ) ∈ 1

2r(δ
∗) ± 1

2 |r(δ
∗)| Thus, ∃ε ∈ �,

r(δ) = f(x)−(ŷ+ẙδ) = 1
2r(δ

∗)+ 1
2 |r(δ

∗)|ε, as x = x̂+x̊δ
by definition of µ as in Lemma 37. Then, g(δ, ε) and the
proof follow from the last equality.

Corollary 40 The s-function [µ−1(δ); g(δ, ε)] where δ
and ε refer to symbols of type (unit) interval is a con-
tinuous s-zonotope since µ−1 and g are affine. ∀x ∈ [x],
[x; f(x)] ∈ 〈[µ−1(δ); g(δ, ε)]〉s,τ,ι, an e-zonotope usually
not reduced to an aligned box due to the dependency
of both dimensions on common symbol(s) referred as δ.
Moreover, if x is a polynotope, so is 〈[µ−1(δ); g(δ, ε)]〉s,τ .

An illustrative example with f(x) = ex is reported in
Fig. 3 and further remarks are reported hereafter:
a) The inclusion proposed in theorem 39 is entirely pa-
rameterized by the input domain [x] while not being sub-
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Table 6
Switching functions expressed from the absolute value oper-
ator: abs(x) = |x| (or from ReLU∗).

Function Notation Expression with |.| (or pos)

Maximum max(x, y) = x+y
2

+ |x−y|
2

(= y + pos(x− y))

Minimum min(x, y) = x+y
2
− |x−y|

2
(= x− pos(x− y))

Saturation sat(x, x, x) = 1
2
(x+ x+ |x− x| − |x− x|)

Deadzone dz(x, x, x) = x− sat(x, x, x)

ReLU∗ pos(x) = max(0, x) = x+|x|
2

∗Rectifier Linear Unit (remark: |x| = 2pos(x)− x).

ject to the arbitrary choice of a point used as reference
for linearizing or computing a Taylor expansion.
b) δ∗ often has an explicit form, e.g., x̂+ x̊δ∗ = log(ẙ/x̊),
x̊/ẙ, 1

4 (̊x/ẙ)2 for f(x) = ex, log(x),
√
x, respectively.

c) If x̊ = 0, then the input is a point value and f(x) =
f(x̂). This is consistent with the limit x̊ → 0 since the
continuity of f gives ẙ → 0, g0 → ŷ, g1 → 0 and g2 → 0.
d) If f is decreasing, then y < y and ẙ < 0 in theorem 39.
e) r(δ) is the remainder term wrt to a (linear) approx-
imation of f(x) which itself (linearly) depends on x:
ŷ + ẙµ(x). The purpose of a dependency-preserving in-
clusion (dpi) is thus achieved, at least for a structural
property π referring to being linear. Note that polyno-
mial dependencies possibly modeling x (then, x(.) and
δ(.) = µ(x(.)) are polynomials) are readily propagated

by a linear enclosing approximation f̃(.) of f(.). Indeed,
the composition of affine and polynomial functions is
still polynomial. Thus, the result in theorem 39 is read-
ily applicable with polynotopes. Moreover, the generic
inclusion method in Lemma 38 encompasses polynomial
enclosing approximations of non-polynomial functions.

5.3 Hybrid: Switching functions

In the last paragraph (§5.2), an inclusion method for
functions f satisfying the regularity conditions of be-
ing C1 has been proposed in Theorem 39. Following the
generic inclusion method stated in Lemma 38, the case
of a prototypical C0 but not C1 function is considered in
this paragraph: the absolute value. The motivation for
this is summarized in Table 6 which shows that several
useful switching functions can be built by composing ba-
sic operators (like +, −, taking the half) with the abso-
lute value operator abs(x) = |x|. Thus, a dependency-
preserving inclusion of a prototypical switching function
like abs is highly desirable to model and efficiently prop-
agate uncertainties within hybrid dynamical systems,
without necessarily requiring costly bisections and/or a
specific management of guard conditions.

Theorem 41 (An inclusion of abs) Let abs : [x] →
R, x 7→ y = |x| be the restriction of the absolute value
on a given interval [x] = x̂± x̊ = [x, x] ⊂ R.
Case 1: If x ≤ 0, then abs(.) = −(.),
Case 2: If x ≥ 0, then abs(.) = +(.),

Case 3: If |x̂| < x̊, then ãbs(.) is an inclusion function
for abs(.) on [x] with:

ãbs(.) =

(
x̂

x̊

)
(.) +

(
x̊2 − x̂2

2x̊

)
(1 +�). (19)

Proof. If 0 6∈ [x] (case 1 or 2), abs(.) is linear and no
dedicated inclusion is then required. If 0 ∈ [x] (case
3), the inclusion method of theorem 39 is applied step-
by-step: Let µ be the unit range mapping of [x] and
δ = µ(x). Since abs(.) is only C0 and convex on [x],
but not C1, the range of the remainder r(δ) ≤ 0 (still
such that r(−1) = r(+1) = 0) is computed by notic-
ing that its minimum is obtained for x = x̂ + x̊δ∗ = 0.
Then, δ∗ = −x̂/x̊ gives r(δ∗) = (x̂2− x̊2)/x̊ and satisfies
∀δ ∈ �, r(δ) ∈ [r(δ∗), 0]. It comes g(δ, ε) = g0 +g1δ+g2ε

with g0 = x̊2+x̂2

2x̊ , g1 = x̂, g2 = x̊2−x̂2

2x̊ (|x̂| < x̊ in case 3).

Finally, g(µ(x), ε) = ( x̂x̊ )x+ ( x̊
2−x̂2

2x̊ )(1 + ε).

Corollary 40 still applies to f = abs, as a corollary
of theorem 41 rather than theorem 39. A dependency-
preserving inclusion of abs(.) has been obtained. By ex-
tension, dependency-preserving inclusions (dpi) for the
switching functions reported in table 6, among others
possibly resulting from functional compositions are also
obtained. Moreover, the vertical concatenation opera-
tor implemented for zonotopes and polynotopes allows
to build n-dimensional dpi from scalar ones through
basic compositions. These can be implemented by us-
ing the overloading capability of some object oriented
languages, to the benefit of code readability. This fea-
ture holds not only for switching functions, but also
for non-linear/non-polynomial ones. This makes polyno-
topes a relevant tool to compute and analyze mixed un-
certainty propagation within non-linear hybrid dynami-
cal systems. Indeed, their polynomial nature, efficiently
encoded by combining full and sparse data structures,
looks appropriate to model a wide spectrum of non-
trivial dependencies, as shown by the functional com-
pleteness result given in theorem 35.

6 Polynotopic Kalman Filter (PKF)

An extension of Kalman Filtering to discrete-time non-
linear hybrid dynamical systems is proposed in this sec-
tion. It is based on polynotopes and interpretations re-
lated to a set-membership uncertainty paradigm.

Let x(s) be a s-polynotope (8): x(s) = 〈c,R, I, E〉s,τ =

c + RsEI (syntax). By analogy with zonotopes, its co-
variation [6] is defined as: cov(x(s)) = RRT . In order to
possibly take symbol types and/or the monomial struc-
ture into account 15 , a covariation weighted by Φ (pos-

15 e.g. to weight the relative influence of continuous and dis-
crete symbols/uncertainties on the accuracy criterion fur-
ther chosen to optimize the mixed-set based state estimates
obtained from PKF.
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sibly Φ(I, E) or any Φ(.) depending on known values) is
introduced as:

Definition 42 (Weighted covariation) Given a
symmetric matrix Φ (Φ = ΦT ), the weighted covariation
of x = 〈c,R, . . .〉s,τ(,ι) (polynotope or zonotope) is:

covΦ(x) = RΦRT .

x(s) formalizes a vector polynomial (s-)function of the
symbolic variables in sI . The execution of polynotope
operations like sum, linear image, concatenation, reduc-
tion, zonotopic hull Zx(s), interval/box hull Bx(s), etc
mainly work at a syntactic level by manipulating polyno-
mial expressions (e.g. encoded as (c,R, I, E) with sparse
E) while preserving semantic properties. In particular,
inclusion is viewed as a semantic property related to a
set-membership interpretation of polynomial functions
depending on typed 16 symbolic variables. From (9), it
comes: ∀σ ∈ ιτsI , ιx(σ) ∈ Px(s) = 〈c,R, I, E〉s,τ,ι (se-

mantics), where ιx(.) stands for the interpretation of
x(.) as a vector of polynomial mathematical functions
(Rdim(I) → Rnx) with real coefficients (under assump-
tion 6). Since probability theory is the most commonly
used framework for nonlinear filtering, some analogies
and exploratory links are briefly outlined as a remark:

Remark 43 A first idea to introduce probability theory
in the proposed scheme simply consists in extending the
basic symbol types in assumption 6 to other types like
(some class of) random variables defined on a given prob-
ability space. This can work in the linear case with sym-
bolic zonotopes and/or independent Gaussian random
variables (e.g. see §2.2 and definition 6.1 in [9]). Pushing
further in such a direction could be an option. Another
one may rely on interpreting σ (as in definition 13, (5)
and (9)) as an “outcome”, the function ιx(.) as a “ran-
dom variable”, [ιx]−1(S) as an “event” related to any
set S of output values taken by ιx(.). A measure π(.) of
events on the domain ιτsI induced by an interpretation
of symbol types would then become some kind of condi-
tional probability wrt ιτsI . The typed symbols sI would
then contribute to define the probability space itself.

In the following, no probability measure is consid-
ered. Notations: x = x(s) denotes a s-polynotope.
x = ιx(σ) ∈ Rnx denotes a point evaluation of x ob-
tained for some so-called outcome σ ∈ ιτsI . Then,
x ∈ Px, the e-polynotope related to x. Also, x ∈ Zx
(resp. x ∈ Bx) means that x belongs to a zonotopic
(resp. interval/box) hull of x.

The state observation (or filtering) problem addressed
in this section deals with discrete-time non-linear hybrid

16 Notice that the set-membership interpretation is also re-
lated to the types considered under the assumption 6.

dynamical systems modeled as:

x+ = f(x, u, v), x0 ∈ Px0, v ∈ Pv, (20)

0 = g(x, u, v, y), (21)

where the functions f(.) and g(.) result from the compo-
sition of elementary functions and operators for which
inclusion preserving polynotope versions are available.
In practice, this is not much restrictive since sum, lin-
ear image, reduction, concatenation, product are avail-
able (see §4.3) and the modeling tools for nonlinear hy-
brid systems developed in section 5 can be used to that
purpose. Then, by overloading 17 these elementary func-
tions and operators with their inclusion preserving poly-
notopic version, and by applying the same composition,
inclusion functions with polynotopic inputs and outputs
f̃(.) and g̃(.) can be obtained for f(.) and g(.), respec-
tively. In (20), the index + refers to the next time step
k + 1 and the current time step k is omitted to sim-
plify the notations, except for the initial state x0 at time
k = 0. x0 ∈ Rnx is assumed unknown but bounded by
the e-polynotope Px0 related to a known s-polynotope
x0. x ∈ Rnx , u ∈ Rnu , y ∈ Rny , v ∈ Rnv respectively
stand for the states, the known (control) inputs, the
known measurements, the unknown but bounded un-
certainties (state and measurement noises, disturbances,
modeling errors, etc) at time k. v is assumed bounded
by a known polynotope Pv. Notice that u ∈ Pu = {u}
(singleton) for u = 〈u, ∅, ∅, ∅〉s,τ . Similarly, y ∈ Py with

y = 〈y, ∅, ∅, ∅〉s,τ . The problem addressed is that of de-

signing a one step-ahead prediction filter (or state ob-
server) minimizing the trace tr(.) of the (weighted) co-
variation of a polynotope enclosing the predicted state.

Filtering is mainly a data fusion process. So, how to
merge (vector) sources? Weighting is a usual solution:

z1 ∈ Pz1 ∧ z2 ∈ Pz2 ⇒ z = G1z1 +G2z2 ∈ Pz

with z = G1z1 +G2z2. (22)

Two noticeable ways to particularize (22) are:
a) Taking z1 = z2 under G1 + G2 = I gives (23) which
parameterizes enclosures of a polynotope intersection
that could be used to design a state bounding observer:

z ∈ (Pz1 ∩ Pz2) ⇒ z ∈ P(G1z1 +G2z2). (23)

z ∈ Pz1 ∧ 0 ∈ Pz2 ⇒ z ∈ P(z1 −Gz2). (24)

b) Taking z2 = 0 and G1 = I under G2 = −G gives (24)
which parameterizes an update (or correction) of an ini-
tial knowledge Pz1 about z with some other depending
knowledge, Pz2, such as the one obtained through some
measurements. (24) thus looks as a prototypical weight-
ing underlying the structure of Kalman Filters. More-
over, in our approach, the symbols possibly shared be-

17 To the benefit of code readability and maintainability.
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Table 7
PKF iteration: x+ = PKF(x,u,v,y, f̃ , g̃, Φ, q):

x̄ = ↓qx, reduction (25)

p = f̃(x̄,u,v), prediction (26)

e = g̃(x̄,u,v,y), innovation (27)〈
c̆,

Rp
Re

 , Ĭ, Ĕ〉
s,τ

=

 p

e

 , alignment (28)

G = (RpΦR
T
e )(ReΦR

T
e )−1, optimal gain (29)

x+ = p−Ge. update (30)

tween z1 and z2 play a key role in the modeling of depen-
dencies. This makes it possible to tune/optimize G so as
to maximize uncertainty cancellation 18 when comput-
ing z1 − Gz2. The general idea of Kalman Filters is in-
deed to optimize the precision of a prediction p = z1 by
using a dependent yet complementary source, the inno-
vation e = z2, to update the prediction as p−Ge (30).
Then, the algorithm (25)−(30) implementing an itera-
tion of the proposed Polynotopic Kalman Filter (PKF)
follows as in Table 7 and theorem 44.

Theorem 44 (PKF: inclusion and optimal gain)
Given a system modeled as in (20)−(21), the PKF iter-
ation in (25)−(30) (Table 7) satisfies a) and b):
a) x ∈ Px ∧ v ∈ Pv ⇒ x+ ∈ Px+,
b) Let G∗ = arg minG tr(covΦ(x+)). G∗ is the optimal
gain computed as in (29): G∗ = (RpΦR

T
e )(ReΦR

T
e )−1.

Proof. a) : By construction, f̃(.) and g̃(.) are inclusion
functions for f(.) and g(.). Since the reduction step (25)
is inclusion preserving, the inclusion property a) is a di-
rect consequence of (24) with z1 = p and z2 = e.
b) : ∂Xh(X) denoting ∂h(X)/∂X, if h(.) returns scalar
values and X = [Xij ] is a matrix, then ∂Xh(X) =
[∂Xji

h(X)]. X, A, B, C being matrices of correct size,

∂Xtr(AXTB) = ATBT , (31)

∂Xtr(AXBXTC) = BXTCA+BTXTATCT . (32)

Let J(G) = tr(covΦ(x+)). In (28), c̆ = [cp; ce] and [p; e]

is such that 19 p = cp + Rps
Ĕ
Ĭ

and e = ce + Res
Ĕ
Ĭ

.

From (30), x+ = 〈cp −Gce, Rp −GRe, Ĭ, Ĕ〉s,τ and

J(G) = tr((Rp −GRe)Φ(Rp −GRe)T ) = tr(RpΦR
T
p )−

2tr(RpΦR
T
e G

T ) + tr(GReΦR
T
e G

T ). Using (31) and

18 which is impossible with usual interval arithmetic, subject
to the so-called dependency problem.
19 The polynotope concatenation [p; e] gives expressions of
p and e such that the generators related to their common
monomials (i.e. dependencies) become “aligned” in the same
columns of the matrices Rp and Re. This is the reason why
(28) is called the alignment step.

(32), ∂GJ(G) = −2(ReΦR
T
p ) + 2(ReΦR

T
e )GT . G∗ be-

ing the value of G such that ∂GJ(G) = 0, it comes
G∗ReΦR

T
e = RpΦR

T
e and G∗ = (RpΦR

T
e )(ReΦR

T
e )−1.

Theorem 45 (PKF vs. ZKF) Let consider the par-
ticular case of linear functions f(.) and g(.) defined as:

f(x, u, v) = Ax+Bu+ Evp,
g(x, u, v, y) = Cx+Du+ Fve − y,

where v = [vp; ve] (state noise and measurement
noise), and A,B,C,D,E, F are (possibly time-varying)
matrices with appropriate dimensions. Only symbols
of type (unit) interval are considered and Φ = I.

Also, let f̃(.) = f(.), g̃(.) = g(.), x0 ∈ Px0 with
x0 = 〈c0, R0, I0, I〉s,τ (then, Px0 = Zx0 is a zonotope),

v ∈ Pv with v = 〈0, I, Iv, I〉s,τ (then, Pv = Zv = Bv is

a unit hypercube). It is also assumed that I0 and all Iv’s
have no common scalar elements/identifiers which are
all unique (then, no symbol being shared between x0 and
all the v’s, this is in fact an independence assumption).
Then, PKF computes the same centers c (state point
estimates) and generator/shape matrices R as ZKF in
[6] would do, up to column permutations; all the com-
puted polynotopes are also zonotopes, and the optimal
gain G = AK corresponds to the usual Kalman gain
K = P̄CT (CP̄CT + FFT )−1 with P̄ = R̄R̄T .

Proof. Polynotopes (and zonotopes) being closed under

linear transforms, taking f̃(.) = f(.) and g̃(.) = g(.) suf-
fices to preserve inclusion when (20)−(21) is a discrete-
time LTV (or LTI) model. Moreover, all the polyno-
tope exponent matrices equaling I, (s-)polynotope oper-
ations naturally reduce to (s-)zonotope operations, and
the generator matrix computed by the considered re-
duction operator does not depend on the symbolic de-
scription. The focus of the proof is first placed on the
observer structure and, then, on the optimal gain. Ob-
server structure:
(25): x̄ = 〈c̄, R̄, Ī, I〉s,τ = ↓qx where c̄ = c,

(26): p = Ax̄ +Bu + Evp, with vp = [I, 0]v,
(27): e = Cx̄ +Du + Fve − y, with ve = [0, I]v,
(30): x+ = p−Ge gives:
x+ = (Ax̄ +Bu + Evp) +G(y − (Cx̄ +Du + Fve)),
which corresponds to ((14)) i.e. the equation (14) in [6]
where (v, w) stands for (vp, ve). Also, just for insight:
x+ = (A−GC)x̄ + (B −GD)u + [E,−GF ]v +Gy.
Keeping in mind that the sum of two generators with
the same monomial term (here: with the same symbol) is
a classical vector sum, and an horizontal concatenation
otherwise (see MLC in §4.1), the centers c∗ and gener-
ator matrices R∗ of the s-polynotopes (also s-zonotopes
since E∗ = I) computed in (26), (27) and (30) are 20 :
(26): cp = Ac̄+Bu,
(26): Rp = [AR̄,E] since Ī ∩ Ivp = ∅,
(27): ce = Cc̄+Du− y,

20 Up to column permutations with no impact on the inter-
pretation.

16



Table 8
Algorithm of functions building Half (H), Full 1 bit (F), and
Full n bits (N) adder with nand gates (¬x↔ x Z x).

H : (a, b) 7→ (s, c) : Half-adder with 5 nand gates

t1 ← a Z b, t2 ← a Z t1, t3 ← t1 Z b, s← t2 Z t3, c← t1 Z t1.

F : (a, b, cin) 7→ (s, cout) : Full 1 bit adder with carry

(r, c1)← H(a, b), (s, c2)← H(r, cin), cout ← ¬c1 Z ¬c2.

N : (A,B, c) 7→ (S, c) : Full n bits adder with carry

for i← 1 . . . n(A), (S(i), c)← F (A(i), B(i), c).

(27): Re = [CR̄, F ] since Ī ∩ Ive = ∅,
(30): c+ = cp −Gce = (A−GC)c̄+ (B −GD)u+Gy,
(30): R+ = Rp −GRe = [(A−GC)R̄, E,−GF ],
since Ivp ∩ Ive = ∅, but note that PKF can take depen-
dent state and measurement noises into account with v.
Finally, it can be checked that c+ and R+ exactly coin-
cide with ((15)) and ((16)), respectively, so proving that
PKF reduces to the same observer structure as ZKF un-
der the specific assumptions of theorem 45.
Optimal gain: Let P̄ = R̄R̄T (= covΦ(x̄), Φ = I). Re-
spectively substituting [AR̄,E, 0] and [CR̄, 0, F ] for Rp
and Re in (29) gives G = AK with K = P̄CT (CP̄CT +
FFT )−1. Then, it can be checked that the optimal ob-
server gain is the same as in ((21))− ((22)).

Remark 46 (PKF vs. KF) Theorem 45 (PKF vs.
ZKF) can be combined with Theorem 7 (ZKF vs. KF) in
[6] to make a further bridge between set-membership and
stochastic paradigms. In particular, this gives the condi-
tions under which PKF covariations and KF covariances
coincide, as well as the state point estimates.

Based on modeling tools for nonlinear hybrid systems
developed in the proposed approach, a compositional im-
plementation of advanced reachability and filtering al-
gorithms preserving inclusion is made possible by using
operator overloading. This is exemplified with the Poly-
notopic Kalman Filter (PKF) proposed in this section.

7 Numerical Examples

7.1 Discrete: Adder

The first example illustrates some connection with basic
digital circuit design. The s-polynotopes (i.e. polynomial
s-functions) resulting from the multi-affine decomposi-
tion of n bits binary adders only made of nand gates are
compared depending on the type of symbol(ic variable)s
used: signed or boolean as explained in §5.1.

The binary adders architecture is described in Table 8
where S(i) refers to the projection of the s-polynotope
S along the ith dimension, i = 1, . . . , n(S). For an n
bits adder, A = s1:n and B = s(n+1):2n each refer to
a vector of n (either signed or boolean) symbolic vari-

Table 9
Number of distinct generators/monomials of s-polynotopes
representing the multi-affine decomposition of an n-bits
adder (as in table 8) with either signed or boolean symbol(ic
variable)s. The computation time is given in seconds (s).

n 1 2 3 4 5 6 7 8

Signed 5 11 23 47 95 191 383 767

(s) 0.01 0.02 0.03 0.06 0.15 0.36 1.9 8.3

Boolean 8 23 65 188 554 1649 - -

(s) 0.01 0.01 0.03 0.2 2.3 29 - -

ables representing the (unknown) bits encoding two in-
teger operands. The e-zonotope (or e-polynotope) re-
lated to A is the set of the 2n possible input values i.e.
{−1,+1}n (resp. {0, 1}n) in the signed (resp. boolean)
case. Idem for B. These sets are never computed ex-
plicitly: they only describe the set-valued interpretation
of semi-symbolic calculi based on the (c,R, I, E) data
structure used to represent s-polynotope objects. Then,
building the architecture of an n bits adder by comput-
ing (S, c) = N(A,B) as in table 8 with s-polynotope
overloaded operators results in the s-polynotopes S (sum
result) and c (output carry) of dimension n and 1, re-
spectively. S(i) is a polynomial with scalar coefficients
giving the expression of the ith bit of S as a function of
the input bits/symbols in A, B and an input carry. A
full n-bits adder has 2n + 1 (binary) inputs and n + 1

(binary) outputs. The s-polynotope S̃ = [S; c] gather-
ing the sum result and the output carry is thus given
by S̃ = 〈c̃, R̃, Ĩ, Ẽ〉s,τ with c̃ ∈ Rn+1, R̃ ∈ R(n+1)×m(n),

Ĩ ∈ N2n+1, Ẽ ∈ N(2n+1)×m(n). The number of (distinct)

generators/monomials in S̃, including the center/con-
stant term, is 1 +m(n). This number is reported in Ta-
ble 9 depending on the number n of bits of the adder
and the symbol types: either signed or boolean. An un-
expected yet interesting result is obtained: The number
of distinct monomials required to describe the full ar-
chitecture of an n-bits adder is much smaller and more
scalable using signed rather than boolean symbols.

This example of a full n-bits adder shows the ability of s-
polynotopes to describe and manipulate purely discrete
expressions yielding non trivial relations and dependen-
cies between inputs and outputs. Though requiring fur-
ther studies, the automatic reduction if such relations
could help to struggle against combinatorial explosion
by gathering into continuous domains the influence of
many bits/signs having a small influence on a given cri-
terion, while keeping trace of how the most significant
ones influence that criterion. Moreover, the polynomial
representation benefits from useful simplifications made
possible by dealing with typed symbols.

7.2 Continuous: Van-Der-Pol oscillator

In order to illustrate reachability on continuous domains
and compare the results with [22], a Van-Der-Pol oscil-
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Fig. 4. Reachability result obtained on the Van-Der-Pol os-
cillator with continuous polynotopes (the plot results from
zonotopic enclosures Zx at each time step).

lator taken from [17] is considered:

ẋ1 = x2,

ẋ2 = (1− x2
1)x2 − x1.

The initial state set isPx0 = P[x1,0; x2,0] = [[1.23, 1.57];
[2.34, 2.46]] as shown by the red box in Fig. 4. 1360
iterations based on an Euler sampling with step size
h = 0.005 are computed in 9.8 s with continuous polyno-
topes under Matlab running on a 1.8 GHz Core i5 pro-
cessor with 8 Go RAM. The zonotopic enclosure Zx1360

of the final polynotope (at t = 6.8 s) is the green set in
Fig. 4. At each iteration, the (polynotopic version of the)
reduction operator ↓q from [9] with q = 50 is used to: a)
reduce the square x2

1, b) reduce the product (x2
1)x2, c)

reduce x. As expected, the reachability result shown in
Fig. 4 is close to the one obtained with sparse polynomial
zonotopes (spz) in the Figure 6 of [22], where a compar-
ison with other methods is conducted. Thus, continuous
polynotopes also outperform zonotopes and quadratic
zonotopes on this example, which illustrates the interest
in dealing with polynomial dependencies to propagate
continuous domains within nonlinear dynamics.

7.3 Hybrid: Traffic network

In order to illustrate reachability for dynamics defined
with switching functions like min (see §5.3 and table 6)
and compare the results with those reported for the
TIRA toolbox in [28], the model of a 3-link traffic net-
work representing a diverge junction is considered:

ẋ1 = −k(x)/T + p,

ẋ2 = k(x)/2−min(c, vx2),

ẋ3 = k(x)/2−min(c, vx3),

where k(x) = min(c, vx1, 2w(x̄− x2), 2w(x̄− x3)).

min(., ., ., .) is implemented as min(min(., .), min(., .)).
The state x ∈ R3 is the vehicle density on each link.
p ∈ [4/3, 2] is the constant but uncertain vehicle in-
flow to link 1. Notice that the constant nature of this

Fig. 5. Reachability result obtained with polynotopes (cyan)
for the model of a 3-link traffic network representing a diverge
junction. Comparison with the results reported in Figure 2 in
[28]: methods C/GB (blue), SDMM-IA (magenta), MM and
SDMM-S/F (red); Monte-Carlo simulations (black dots).

uncertainty is naturally handled by the proposed sym-
bolic approach (no new symbol at each time for p).
As in [28], the known parameters of the network are
[T, c, v, x̄, w] = [30, 40, 0.5, 320, 1/6]. The initial state set
isPx0 = [[150, 200]; [180, 300]; [100, 220]]. An Euler sam-
pling with step size h = 1 and final time tf = 30 is con-
sidered. The reduction x = ↓qx is applied at each itera-
tion with q = 20. Then, 0.26 s were required to compute
the polynotope Pxtf reported in cyan in Fig. 5. For the
sake of a first comparison, the results in the Figure 2 in
[28] are also reported in Fig. 5 : C/GB (Contraction/-
Growth Bound), MM (Mixed Monotonicity), SDMM-
IA (Sampled Data MM-Interval arithmetic), SDMM-
S/F(Sampled Data MM-Sampling/Falsification). Pxtf
looks competitive wrt to the results obtained with TIRA
(red box in Fig. 5). Moreover, the computed polynotope
captures the orientation of the “black cloud of sample
successors” obtained from 5000 Monte-Carlo simulations
and also reported in Fig. 5. This illustrates the ability
of the proposed scheme to maintain dependency links
while propagating uncertainties through hybrid dynam-
ics modeled with switching functions.

7.4 Reachability and Filtering: Lotka-Volterra

A non-linear non-autonomous prey-predator model re-
sulting from the discretization of a modified continuous-
time Lotka-Volterra model illustrates a) the computa-
tion of reachable sets based on a mixed-encoding (§4.2)
of the initial state set, and b) Polynotopic Kalman Fil-
tering (PKF) as developed in section §6. The modified
continuous-time Lotka-Volterra model is ẋ = f(x, u)
with x ∈ R2, u ∈ R, (a, b, c, d) = (2, 0.4, 1, 0.1), and
f(x, u) = [ax1 − bx1x2; −cx2 + dx1x2 + u].

7.4.1 Reachability with a mixed-encoding of state sets

A mixed-encoding of the initial state set is first con-
sidered and further propagated using mixed polynotope
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computations within the non-linear dynamics of the dis-
cretized Lotka-Volterra model.
More precisely, following the definition 23 and the corol-
lary 24, a 3-level signed-interval mixed encoding of the
interval 15 ± 1 is taken as polynotopic initial state set
for both x1,0 and x2,0 (i.e. x1 and x2 at t = kh = 0):

x1,0 = 15 + 1.Z3
s ([!(3, s); !(1, i)]), (33)

x2,0 = 15 + 1.Z3
s ([!(3, s); !(1, i)]), (34)

Px0 = P[x1,0; x2,0] = [[14, 16]; [14, 16]]. (35)

Each occurrence of !(3, s) (resp. !(1, i)) calls USP (see
§3.3) which returns 3 (resp. 1) unique identifiers of sym-
bols of type signed (resp. unit interval). Thus, x1,0 and
x2,0 are independent since they share no common sym-
bol. Note that the symbol types are compatible with the
definition 23 of Zgs . g refers to the granularity level of
the mixed-encoding. g = 3 means that 3 signed symbols
are used to hierarchically decompose the range 15 ± 1
into 23 = 8 sub-intervals. The coverage of the contin-
uous domain 15 ± 1 is then ensured by the remain-
der term modeled by the symbol of type unit inter-
val uniquely identified by !(1, i). For instance, let I =
[!(3, s); !(1, i)] and x1,0 = 15 + 1.Z3

s (I) as in (33). Then,
x1,0 = 〈15, [ 1

2 ,
1
4 ,

1
8 ,

1
8 ], I, 1〉

s,τ
= 1

2sI1 + 1
4sI2 + 1

8sI3 +
1
8sI4 , where the 3 symbols sI1:3 are of type signed i.e.

ιsI1:3 ∈ {−1,+1}3 and the symbol sI4 is of type (unit)
interval i.e. ιsI4 ∈ [−1,+1], so that x1,0 also writes as:

x1,0 =
1

2
|+−|I1 +

1

4
|+−|I2 +

1

8
|+−|I3 +

1

8
�I4 . (36)

x2,0 =
1

2
|+−|J1 +

1

4
|+−|J2 +

1

8
|+−|J3 +

1

8
�J4 . (37)

x2,0 is obtained analogously from J = [!(3, s); !(1, i)]
(I ∩ J = ∅) and x2,0 = 15 + 1.Z3

s (I) as in (34).
The e-polynotope (or e-zonotope) related to the s-
polynotope x1,0 (or s-zonotope since E = I) is thus
Px1,0 = Zx1,0 = 15 ± 1 (corollary 25). The indepen-
dence of x1,0 and x2,0 coming from I ∩ J = ∅ gives
(35). The polynotope x0 = [x1,0; x2,0] contains all the
information required to decompose the initial state set
[[14, 16]; [14, 16]] into a paving as in Fig. 6 for k = 0.
Moreover, assigning values +1 or −1 to evaluate some
of (or all) the signed symbols in (36)−(37) makes it pos-
sible to query about the range covered under some con-
ditional values of signed symbols. This feature makes it
possible to trace how each cell and/or cell groups within
the “implicit paving” of the initial state set will propa-
gate. It is worth underlining that this can be achieved
without any bissection, only through the polynomial
computations implementing the basic polynotope oper-
ators.

For the sake of illustration, an Euler sampling of the
Lotka-Volterra model is considered: x+ = x + f(x, 0)h,
where the time index k is omitted, x+ stands for xk+1,
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Fig. 6. Reachable sets resulting from a 3-level signed-inter-
val mixed encoding of the initial states of a Lotka-Volterra
model. The mixed polynotope computed at each time k char-
acterizes (overlapping) outer approximations of the propa-
gation of each of the 64 cells (red) paving the initial state set
with no bissection. This also works with cell groups (green).

and the step size is h = 0.15 s. The reduction operator
↓50 is applied at each iteration. The reachability analysis
reported in Fig. 6 results from N = 5 iterations start-
ing from the initial state (33)−(34) satisfying (35). Let
[+−+] be a short notation for [+1;−1; +1] (also apply-
ing for other sign combinations). Let x|(sI = v) denote
the s-polynotope obtained by substituting in x the ex-
pressions in v for the symbolic variables in sI . Unless v
depends on some symbols in sI , x|(sI = v) does not de-
pend anymore on sI . The related e-polynotope (resp. e-
zonotopic enclosure) is Px|(sI = v) (resp. Zx|(sI = v)).
Considering the vectors of unique symbol identifiers I
and J as in (36)−(37), the red (resp. green) cell at k = 0
in Fig. 6 corresponds to Px0|(sI1:3 = [+ − +], sJ1:3 =
[− − +]) (resp. Px0|(sI1 = [−], sJ1:2 = [+−])). Then,
the single s-polynotope xk computed at each iteration
k contains all the information required to obtain the re-
lated subplot in Fig. 6. In particular, the red (resp. green)
zonotopic sets are Zxk|(sI1:3 = [+−+], sJ1:3 = [−−+])
(resp. Zxk|(sI1 = [−], sJ1:2 = [+−])) for k = 1, . . . , 5.
These zonotopic enclosures are guaranteed to enclose
the set of states reached from the initial red cell (resp.
green cells) by iterating the sampled non-linear dynam-
ics. Moreover, the initial “implicit paving” gradually
leads to possibly overlapping cells (see the blue borders
in Fig. 6) since the complexity of the polynotope com-
puted at each iteration is reduced to a finite number (50)
of generators.
The sparse structure of the exponent matrix E of x at
k = 5 is given in Fig. 7. The monomials involve 16 sym-
bolic variables (10 of type unit interval: square marks,
6 of type signed: + marks). There are 90 non-zeros el-
ements. The maximum degree is 3. As expected from
the propagation of the initial mixed-encoding of states
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Fig. 7. Sparse structure of the exponent matrix E of x at
k = 5: 16 symbolic variables (interval: � marks, signed: +
marks), 50 monomials/generators, 90 non-zero elements.

through a non-linear dynamic, several mixed monomi-
als can be observed, that is, monomials involving both
continuous and discrete symbolic variables.

This example of reachability with a mixed-encoding of
state sets illustrates the ability of mixed polynotopes to
trace the propagation of a significant number of hier-
archically organized cells within non-trivial dynamics.
Bissections have been avoided by dealing with polyno-
mial dependencies between symbolic variables of differ-
ent types combining continuous and discrete value do-
mains. Moreover, the ability to explicitly characterize
the overlapping between cells forming a partition of the
initial state set paves the way for efficient symbolic ab-
straction techniques.

7.4.2 Non-linear and mixed filtering with PKF

The Polynotopic Kalman Fiter (PKF) developed in sec-
tion §6 is applied to the modified Lotka-Volterra dy-
namic without and with a mixed encoding of states:

x+ = x+ f(x, u)h+ Ev̄, (38)

y = x1 + Fw̄. (39)

The prediction model (38) (resp. measurement equation
(39)) correspond to (20) (resp. (21)) in the formulation of
PKF with v = [v̄; w̄] and Φ = I. The step size is h = 0.04
and k ∈ {0, . . . , N} ⊂ N with N = 750 iterations. The
initial and final times are t0 = 0 and tf = Nh = 30.
The input is u = 2 for t ∈ [10, 20[ i.e. 250 ≤ k < 500,
and u = 0 otherwise. E = 3.10−3I, F = 1.5. The state
and measurement noises are assumed to be bounded as
v̄ ∈ [−1,+1]2 and w̄ ∈ [−1,+1] i.e. Pv = [−1,+1]3.
The initial state set is assumed to be bounded by Px0 =
[[5, 25]; [5, 25]] ⊂ R2. These bounds are obtained from:

x1,0 = 15 + 10.Zgs ([!(g, s); !(1, i)]),

x2,0 = 15 + 10.Zgs ([!(g, s); !(1, i)]),

v = [Z0
s (!(1, i));Z0

s (!(1, i));Zgs ([!(g, s); !(1, i)])],

where g stands for the granularity level of a mixed en-
coding of the initial states and the measurement noise
at each sample time k. Two cases are considered:
i) g = 0 corresponds to a purely continuous case (solid
lines in Fig. 9) with only symbols of type unit interval.
ii) g = 2 corresponds to a mixed case (dashed lines in

Table 10
Computation times for 750 iterations of PKF in seconds (s).
Cases: continuous (g = 0) vs. mixed (g = 2), and ↓50 vs. ↓100.

g = 0 g = 2

q = 50 3.4 s 3.8 s

q = 100 13.9 s 14.8 s

Fig. 8. Memory footprint of the polynotopic state estimate
x with PKF: Evolution in time under ↓50. Left: Continuous
(g = 0). Right: Mixed (g = 2). Top: Memory size mem(x) in
kilo-octets occupied by the object x, depending on whether
the sparse exponent matrix E of x is transposed (red) or not
(blue). Bottom: Number of non-zero elements in E.

Fig. 9) involving symbols of different types (signed and
interval) in mixed polynotope computations.
At each iteration of PKF, the reduction operator ↓q with
q = 50 or q = 100 is used to: a) implement the reduction
of x as in (25), b) reduce the product x1x2 in f(x,u); this
is the only (inclusion preserving) difference between f

(20) and f̃ (26) in this example. Notice also that g (21)
equals g̃ (27) since the measurement/innovation equa-
tion (39) is linear. The simulation of the “true” system
is obtained from x0 = [22; 8] using Heun’s method. Con-
sistently with (39), only the first state x1 ∈ R is mea-
sured at each sample time k, and the main purpose of
PKF is to estimate state bounds Bx for the state x ∈ R2

while minimizing the (predicted) polynotope covariation
trace. The table 10 reports the computation times with
a Matlab implementation: The mixed encoding does not
increase very significantly the computation time in spite
of the number of discrete configurations, contrary to the
number of generators. The evolution in time of the mem-
ory footprint of x with ↓50 is also reported in Fig. 8: once
again, only a slight increase is observed in the mixed
case (g = 2) compared to the continuous one (g = 0).
The simulation results reported in Fig. 9 show a signif-
icant improvement of accuracy compared to EZGKF in
a purely bounded-error setting which requires around
2.5 s with q = 200 generators as in [7]. In particular,
PKF shows an enhanced ability to reconstruct x2 from
noisy measurements of x1. Mixed encoding tends to give
results with increased accuracy, especially for x1, pro-
vided the number of generators is sufficient. Meanwhile,
the maximum degree of computed polytopes is decreased
from 6 (resp. 7) in the continuous case g = 0 with q = 50
(resp. q = 100) to only 4 in both mixed cases i.e. g = 2
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Fig. 9. Estimated state bounds vs. “true” values (red) of x1

(top) and x2 (bottom) with the Lotka-Volterra model: PKF
with continuous (solid lines) or mixed (dashed lines) poly-
notopes, and ↓50 (magenta) or ↓100 as reduction operator.
Comparison with EZGKF in a bounded-error setting (grey).

with q = 50 or 100. This is consistent with the reduced
size of remainder intervals for g = 2 and the influence of
rewriting rules, in particular the inclusion neutral rule
(12). This illustrates the ability of PKF to efficiently deal
with nonlinear and mixed dynamics.

8 Conclusion

An approach for functional sets with typed symbols is
introduced in this work. An explicit distinction between
syntax and semantics helps formalize the management
of dependencies, characterize sources of conservatism
and analyze the impact of evaluation strategies (inner
first vs. outer first/lazy/call-by-need). Image-sets with
typed symbols generalize several set-representations
like zonotopes and polynomial zonotopes to mixed do-
mains, as exemplified with mixed polynotopes. The
combination of polynomial functions with interval,
signed and boolean symbolic variables through simple
rewriting rules makes it possible to gather in a single
compact and efficient data structure the description of
non-convex and non-connected sets which would usu-
ally require costly bissection/splitting strategies to be
propagated. The mixed-encoding of intervals proposed
in this context allows to tune the granularity level of the

discrete part of the description and, meanwhile, control
the combinatorial complexity through the use of reduc-
tion operators. In addition, the traceability of uniquely
identified typed symbols paves the way for advanced
mixed sensitivity analysis and symbolic abstraction
techniques. The reachability results show the relevance
of the proposed approach to deal with the verification
and synthesis of Cyber-Physical Systems (CPS). Based
on modeling tools for nonlinear hybrid systems, a com-
positional implementation of advanced reachability and
filtering algorithms is made possible by simply using
operator overloading. This has been exemplified with
the proposed Polynotopic Kalman Filter (PKF) which
paves the way to advanced hybrid nonlinear filter-
ing techniques preserving inclusion. Moreover, several
bridges with random variables and stochastic filtering
have been outlined as well as bridges with functional
programming and object oriented paradigms, robust
(and interpretable?) artificial intelligence [29,12] with
the neural network activation function ReLU, sensitivity
analysis, and symbolic abstractions of hybrid systems.
Much remains to be done to exploit these connections.
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[34] Vicenç Puig, Jordi Saludes, and Joseba Quevedo. Worst-case
simulation of discrete linear time-invariant interval dynamic
systems. Reliable Computing, 9(4):251–290, 2003.
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[41] Feng Xu, Vicenç Puig, Carlos Ocampo-Martinez, Sorin
Olaru, and Florin Stoican. Set-theoretic methods in robust
detection and isolation of sensor faults. Int. J. Syst. Sci.,
46(13):2317–2334, 2015.

22


	1 Introduction
	2 Inclusion function: beyond intervals
	3 Polynotope objects: Why and how?
	3.1 Functional sets
	3.2 Syntax and semantics
	3.3 Typed symbols and unique identifiers
	3.4 Construction/composition of polynotope objects
	3.5 s-functions
	3.6 Image-sets

	4 From symbolic zonotopes and mixed encoding to polynotopes
	4.1 Affine s-functions and zonotopes
	4.2 Mixed encoding
	4.3 Polynomial s-functions and polynotopes

	5 Modeling tools for nonlinear hybrid systems
	5.1 Discrete: Signed and Boolean logic functions
	5.2 Continuous: Nonlinear functions
	5.3 Hybrid: Switching functions

	6 Polynotopic Kalman Filter (PKF)
	7 Numerical Examples
	7.1 Discrete: Adder
	7.2 Continuous: Van-Der-Pol oscillator
	7.3 Hybrid: Traffic network
	7.4 Reachability and Filtering: Lotka-Volterra

	8 Conclusion
	Acknowledgements
	References

