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Manipulation of acoustical waves is experimentally and theoretically investigated based on the
concept of coherent perfect absorption. It is shown that the absolute control of antisymmetric modes
of an acoustic duct is possible using an ultrathin wiremesh. By varying the relative phase of two
counter-propagating (normal/oblique) incident waves, absorption from a wiremesh can be tuned
from zero to unity. Experimental as well as numerical results demonstrate that this phenomenon
is extremely broadband, allowing for instance the symmetrization of the acoustical wave with short
pulse in the time domain.

The search for new ways of absorbing waves is still very
active and more particularly in acoustics due to the con-
tinuous demand in noise control for quiet environment.
The most classical sound absorbers are made of porous
parts that allow broadband attenuation at high frequen-
cies but that remain low-pass filter and thus ine�cient at
low frequencies. In the last decade, many types of meta-
material absorbers [1–4] have been proposed. They all
are based on the use of subwavelength resonances with
finely tuned parameters that provide up to perfect ab-
sorption near the resonance frequencies, and are inher-
ently ine�cient in the limit of zero frequency. One step
further has been achieved recently by the introduction of
the Coherent Perfect Absorber (CPA) idea to control and
to tune the rate of absorption [5–8]. It corresponds to the
time reversal of a laser [5, 6, 9] and it uses the tuning of
the incident waves from each side of the absorber.

It appears that a challenging task remains: to ab-
sorb sound near the zero frequency limit while remaining
broadband. Indeed, when using typical subwavelength
resonators the quality factor of the peak of absorption the
resonance frequency increases when this frequency goes
to zero [10, 11]. To avoid resonance is a solution to obtain
broadband low frequency absorption as demonstrated by
metallic conductive films [12, 13], where CPA with total
absorption is possible. In the domain of airborne acous-
tics, ultrathin millimetric resistive sheets o↵er the same
possibilities [14, 15]. Often called wiremesh, their e�-
ciency has no lower bound limit on frequency; they are
used even for static flow, for instance in filtration, and
they remain e�cient up to high frequencies as long as the
wavelength is larger than the millimetric thickness.

In this letter, we present experimental and numerical
evidences of the low and mid frequency absorption pos-
sibilities of the ultrathin resistive sheets. After showing
the capabilities of CPA for scattering, we apply it in a
symmetric closed cavity where it has important and nat-
ural impacts: when the absorber is at the center of sym-
metry of the cavity the antisymmetric waves are totally
absorbed. Since the resistive sheets are very thin com-

pared to audible airborne acoustic typical wavelengths
the cancellation of antisymmetric acoustic field is very
broadband and it allows us to demonstrate it experimen-
tally in the time domain with short pulses. We also take
advantage of the wide bandwidth of this e↵ect to design
cavities where the sound field is symmetrized indepen-
dently of the source position on a broad frequency range.
Let us begin by a description of the system at hands.

In acoustics, a resistive screen can be made of a thin
porous material and the simplest realization is a very
fine mesh cloth referenced in the following as wiremesh.
Through such a screen, the acoustic velocity is continuous
and the pressure p, described elsewhere by the Helmholtz
equation: r2

p + k
2
p = 0, makes a jump at the screen

which is given by:

[@np]s = 0 and [p]s = �(Z/ik) @np (1)

where @n denotes the normal derivative, k = !/c0 is
the wavenumber, ! is the frequency, c0 is the speed of
sound and Z is the screen impedance normalized by ⇢0c0.
With the exp(�i!t) convention that is chosen here, there
is absorption if <(Z) > 0. As long as viscous e↵ects
dominate inertial e↵ects, this screen is purely resistive,
|=(Z)| ⌧ <(Z), and the resistance is proportional to
the viscosity and depends on the wire diameter, the type
of weave and the size of the apertures. Consequently,
the purely resistive wiremesh considered in the follow-
ing is modelled by a positive real Z independent of the
frequency.
Due to its high flexibility and to avoid vibration, it is

advantageous to bond the wiremesh to a more rigid per-
forated plate, see Fig. 1a (in the following we will simply
call wiremesh the assembly of these two thin parts). The
resistance of the assembly is then given by the product of
the intrinsic resistance of the wiremesh by the percentage
of open area (POA) of the perforated plate.
In the particular case of a plane wave at normal inci-

dence to the screen, the problem becomes unidimensional
and the reflection and transmission coe�cients are writ-
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FIG. 1. Generic wiremesh absorber (a) Schematic of the ab-
sorber illuminated by unidirectional acoustic wave, (b) Mea-
sured absolute values of the reflection |R| and transmission |T |
coe�cients. The SVDs are the measured singular values of the
scattering matrix. (c) Symmetrical and (d) antisymmetrical
cases displaying respectively zero and perfect absorption.

ten as:

R = Z/(2 + Z) and T = 2/(2 + Z), (2)

and the absorption coe�cient for an incident wave on one
side is:

↵ = 1� |R|2 � |T |2 =
1

2

 
1�

����
Z � 2

Z + 2

����
2
!

(3)

The resistance Z = 2 maximizes the absorption coe�-
cient of the screen ↵ = 1/2 when the incident wave is
only on one side of the screen [16, 17]. In this case, the
reflection and transmission coe�cients are also equal to

R = T = 1/2. (4)

Fig. 1b displays the measured reflection (R) and trans-
mission (T ) coe�cients of an assembly of a wiremesh of
resistance 1.02 with a perforated plate with a POA of
50% leading to an impedance very close to Z = 2. These
measured coe�cients are nearly equal to 1/2 in a hyper-
wide frequency band extending from zero frequency to
the maximum measurement frequency given by the cut-
o↵ frequency of the measuring tube.

The two singular values (SV) of the scattering matrix,

S =

✓
R T

T R

◆
, (5)

correspond to the maximum and minimum outgoing wave
fluxes for any incoming waves with unit flux. They are
given by:

�S = 1 and �A =

����
Z � 2

Z + 2

���� (6)

(a) Wiremesh illuminated by beams at angle 

(b) !1-!2=0  (c) !1-!2= /2  (d) !1-!2=   

FIG. 2. Numerical simulation of an incident Gaussian beam
on wiremesh Z = 2/ cos(✓), (a) Schematic drawing of the
wiremesh with incident Gaussian beams at oblique angle ✓ =
⇡/6, (b) Symmetrical case (�1��2 = 0), (c) Intermediate case
(�1 ��2 = ⇡/2), and (d) Antisymmetrical case (�1 ��2 = ⇡)

which correspond respectively to the symmetrical (Fig.
1c) and antisymmetrical (Fig. 1d) cases [18]. When
Z = 2, these SVs are theoretically as well as experimen-
tally equal to 1 and 0 (see Fig. 1b). In the symmetrical
case, there is no dissipation and everything works as if the
screen were not present. In the antisymmetrical case, the
waves are completely absorbed and the screen becomes a
CPA [5, 19]. In particular, it can be noted that the mea-
sured singular value �A which corresponds to the CPA
never exceeds 0.008 for all measured frequencies.

This CPA e↵ect is further illustrated in Fig. 2
where two Gaussian beams of same amplitude are
incident on the screen with the same angle ✓ and
at the same point. In this case, �S = 1 and
�A = |(cos(✓)Z � 2)/(cos(✓)Z + 2)|. Thus the optimal
impedance varies according to the inclination of the wave
with Z = 2/ cos(✓). It can be seen that when the two
waves are in phase (Fig. 2b) the waves propagate, far
from the screen, as if the screen were not there. On the
contrary, when the two incident waves are of opposite
phase (Fig. 2d) they are completely absorbed (CPA).
For an intermediate phase, the waves are partially ab-
sorbed, Fig. 2c.

In view of the previous results, it appears that using a
wiremesh resistive screen in acoustics leads to CPA with
a huge subwavelength ratio. In our experiment, the to-
tal thickness of the wiremesh is 1.2 mm while the lowest
measured frequency is 50 Hz (see Fig. 1): it leads to a
subwavelength ratio of 6800 as well as a hyper-wide fre-
quency band. We insist that the prefix ”hyper” refers
here to the fact that the CPA operates from zero fre-
quency limit (here measured down to 50 Hz due to loud-
speaker limitations) to the cut-o↵ frequency of the duct
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(here around 6 kHz). An interesting aspect is that such a
large bandwidth opens the possibility to extend the CPA
e↵ect into the time domain. For a scattering problem it
would be obvious that short wavepackets incident from
both sides and with good phase adjustment would lead
to total absorption (by a simple Fourier transform argu-
ment of the previous results). We choose now to go one
step further by using the symmetry of closed cavities to
provide the phase coherence ingredient in CPA. Indeed, it
appears that a mirror symmetric cavity naturally allows
to decompose the wave into components with di↵erent
parities (i.e. symmetric and antisymmetric). Thus, par-
ity and phase coherence coming together, the CPA e↵ect
is accomplished by locating the wiremesh at the symme-
try axis. To explore this aspect in an actual experiment,
we consider a closed duct of length 2L (L = 405 mm) in
which the CPA wiremesh (with Z = 2) is placed at the
mid-position (the symmetry axis). At the left extrem-
ity of the duct we sent a pulse through a small orifice
[20] and two microphones M1 and M2 are located at the
two extremities, see Fig. 3a. The incident pulse sig-
nal is measured at M1 by windowing the multiple echoes
(Fig. 3b). First, as a reference, when the wiremesh is
not present, the pressure signals are displayed in Fig. 3c,
where the incident pulse is reproduced every 4 ⌧ (where
⌧ = L/c0 =1.18 ms is half the time of flight between
the two microphones) since the wave is reflected at both
extremities of the duct [21]. Then, in the presence of
the wiremesh, the situation is clearly di↵erent with equal
signals at both ends from early time 2 ⌧ (Fig. 3d). The
reason for this symmetrization of the pressure in the duct
is simple: when the pulse reaches the screen (at time ⌧),
it is half transmitted and half reflected, and, from that
instant, the sound field becomes completely symmetri-
cal with respect to the middle of the duct, reaching the
symmetrical microphones at 2 ⌧ . It can be noticed that
the equal amplitude of the two pulses on each side of the
screen corresponds to half the amplitude of the incident
wave.

The symmetrization of the acoustic field by introduc-
ing a CPA wiremesh at the symmetry axis of a cavity can
also be observed in the frequency response spectrum. In
the same experimental setup as described above, in or-
der to detect the resonance frequencies of the closed duct,
we now measure the transfer function defined as the ra-
tio of the pressure at microphone M2 with the voltage
applied to the source (approximately proportional to the
flow rate of the source), see Fig. 4. Without wiremesh
(red line), the peaks correspond to the modes of a closed
tube of length 2L and are given by fn = n c0/4L where
c0/4L = 211.5 Hz and n= 1, 2, ... When the wiremesh
is inserted at the mid-position of the tube (dashed blue
line), half of the modal resonances are suppressed. The
cut-o↵ resonances correspond to antisymmetric modes
while the resonances associated with symmetric modes
remain unchanged. This e↵ect of suppression of the an-

d

FIG. 3. Measured temporal signals (a) sketch of the experi-
mental setup (b) Input signal from the source (c) Measured re-
sponses at microphones M1 (solid red) and M2 (dashed blue)
for an empty tube, (d) Measured responses at M1 and M2 for
tube with Z = 2 wiremesh

tisymmetric modes and thus of symmetrization of the
resonances is described in the Supplemental Material by
a simple one-dimensional model.
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FIG. 4. Experimental results for the transfer function
pM2/source in the same geometry as in Fig. 3(a) for an empty
tube (solid red) and for a tube with Z = 2 wiremesh (dashed
blue)

Rather surprisingly, this antisymmetric mode suppres-
sion by a resistive screen is robust to geometric changes
and is maintained even when the symmetric geometry has
a variable cross-section. To illustrate this phenomenon,
two di↵erent symmetric geometries are considered in Fig.
5. The first is a bi-triangular duct, Fig. 5a, while the sec-
ond is a duct loaded by side cavities,Fig. 5b. For a given
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source at point S, the frequency response spectrum at
point P is numerically computed using COMSOL Multi-
physics and results are displayed in Fig. 5c-d with and
without a resistive screen of impedance Z =2 located in
the symmetry plane. It appears that the resonances as-
sociated to antisymmetric modes are suppressed for both
geometries as in the constant section case. Thus the an-
tisymmetric suppression occurs even when the waves are
not plane and normal to wiremesh. We can see such
behavior in Fig. 5a, for the mode at kH = 2.1 which
exhibits that wiremesh is e↵ective even on higher order
modes. However, the suppression e↵ect is diminished
possibly for modes with high angle of inclination on the
wiremesh as in Fig. 5d at kH = 1.5.

This work demonstrates experimentally and theoreti-
cally the control of antisymmetric acoustic waves in ducts
using a ultrathin resistive screen. It is based on the
concept of coherent perfect absorption, and since the
ultrathin sheets are of purely resistive nature, their ef-
fects are not linked to a resonance phenomenon. Conse-
quently, the symmetrization of the acoustic waves is ex-
tremely broadband, starting from zero frequency, and can
even be exhibited in the time domain with short pulses.
In addition, it is shown that this symmetrization e↵ect
is robust to variations of the duct cross-section. This
work opens up the possibility of creating ultrathin noise
controllers and attenuators that are simultaneously ex-
tremely broadband and ultra-subwavelength.
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Garćıa, and V. Pagneux, Applied Physics Letters 107,
244102 (2015).
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FIG. 5. Transfer function |P/S| calculations for ducts of variable cross-section with and without Z = 2 wiremesh where S is a
monopole source strength at point S and P is the pressure at point P. (a) Empty bi-triangular geometry (top) and with Z = 2
wiremesh (bottom), (b) Empty cavity loaded geometry (top) and with Z = 2 wiremesh (bottom), (c) Variation of |P/S| with
respect to k for bi-triangular ducts and (d) Variation of |P/S| with respect to kH for cavity loaded ducts
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Supplemental material: One dimensional model of the cavity

with a resistive sheet

I. CALCULATION OF THE MODES

x = 0 x = L x = 2L

p1 = A1 cos(k x) p2 = A2 cos(k (2L-x))
Wiremesh

FIG. 1. One dimensional analysis of acoustic field in a duct with thin wiremesh

To compute the modes in a duct of length 2L with thin wiremesh at the center (see Fig. 1),

the acoustic field can be written as p1 = A1 cos(kx) for 0 < x < L and p2 = A2 cos(k(2L� x)) for

L < x < 2L. At the wiremesh position, the continuity of velocity and the impedance relation that

have been wrtitten as

[p0]L = 0 and [p]L = (�Z/ik) p0 (1)

lead to

(A1 +A2) sin(kL) = 0 (2)

(A1 �A2) cos(kL) = iZA1 sin(kL). (3)

which eventually conduct to the dispersion relation

D = sin(kL)(2 cos(kL)� iZ sin(kL)) = 0. (4)

When Z = 0, two sets of solutions exist: one with sin(kL) = 0 (A1 = A2) and the other with

cos(kL) = 0 (A1 = �A2). They correspond respectively to the symmetric and antisymmetric

modes of the empty tube of length 2L.

When Z is di↵erent from 0, the symmetric modes (sin(kL) = 0 and A1 = A2) keep real

eigenfrequencies k; actually they do not feel the presence of the wiremesh because they p0 = 0 at

x = L (see equation (1)). On the other hand, the eigenfrequencies of the antisymmetric modes are

no longer real as can be seen in Fig. 2. These modes progressively acquire a negative imaginary

part while their real parts remain equal to n⇡/2 (n = 1, 2, 3, ...). For Z = 2, these modes disappear
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with an imaginary part that tends to infinity. For a resistance higher than 2, they reappear from

infinity and return to the symmetrical modes with a real part equal to m⇡ (m = 0, 1, 2, ...). Why

Z = 2 is so special for the antisymmetric modes? This can be seen if we use the symmetry of the

system that allows us to decompose the eigenproblem into 2 subproblems; one for the symmetric

modes and one for the antisymmetric modes. For the antisymmetric problem, we arrive at the

wave equation with boundary conditions : p = 0 at x = 0 and ikp = (Z/2)p at x = L. It is then

clear that for Z = 2 , these boundary conditions (p = 0 , ie hard wall, and p = ikp, ie wave totally

radiating to the right) correspond the problem of a semi-infinite tube that is known to have no

resonance frequencies at all.

Z < 2
Z Z Z 

real(kL) 

Z < 2 Z < 2

Z = 1.8

im
ag

(k
L)

 

Z > 2
Z 

real(kL) 

Z 
Z > 2
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Z > 2

Z = 2.2
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ag

(k
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Z 
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FIG. 2. Colour map of |D| for two values of the resistance Z. Blue values correspond to |D| = 0. Symmetric

modes marked with red circles do not move. The antisymmetric modes (indicated by a red ⇥ at Z = 0)

acquire a negative imaginary part when Z moves away from 0. The imaginary part becomes larger and

larger until the modes disappear at infinity for Z = 2. For a resistance higher than 2, these modes return

from infinity to the symmetrical modes (red circles).

II. CALCULATIONS WITH A SOURCE

When a point source is placed inside a rigid duct at x = x0 (see Fig. 3), the Helmholtz equation

with point source can be written in the form

p
00
+ k2p = �(x� x0). (5)

The presence of the source at x = x0 gives two relations linking the pressure and its derivative

on both sides of the source at x = x0: [p0]x0 = 1 and [p]x0 = 0. To simplify the solution of

this problem, it can be considered as the sum of two problems, one symmetric and the other

antisymmetric: p(x) = ps(x) + pa(x) (see Fig. 3).
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FIG. 3. One-dimensional problem in a duct in the presence of a wiremesh and with a source considered as

the addition of a symmetric problem and an antisymmetric problem.

For the symmetric problem, the pressure derivative always vanishes on the wiremesh (x = L)

which can therefore be considered as a rigid wall (p0s(L) = 0). The symmetric solution can then be

written:

ps = S1 cos(kx) 0 < x < x0, (6)

ps = S2 cos(k(x� L)) x0 < x < L, (7)

where S1 and S2 are given by

2k sin(kL)S1 = � cos(k(L� x0)), (8)

2k sin(kL)S2 = � cos(kx0). (9)

For the antisymmetric problem, the pressure and its derivative for x < L are linked at the

wiremesh by

pa(L) =
Z

2ik
p0a(L) (10)

Then, the antisymmetric pressure can be written

pa = A1 cos(kx) 0 < x < x0, (11)

pa = A2(sin(k(L� x)) + iZ/2 cos(k(L� x)) x0 < x < L, (12)

where A1 and A2 are given by

k[2 cos(kL)� iZ sin(kL)]A1 = iZ/2 cos(k(L� x0)) + sin(k(L� x0)), (13)

k[2 cos(kL)� iZ sin(kL)]A2 = cos(kx0). (14)
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A plot of these solutions is given in Fig. 4.

symmetric 
pressure

antisymmetric 
pressure

wiremeshsource
total 
pressure

FIG. 4. Pressure in the tubes for Z = 2, kL = 2.7 and x0 = 0.1L. The solid lines are the real part of

the pressure while the dashed lines are the imaginary part. In blue the symmetric pressure ps, in red the

antisymmetric pressure pa and in black the total pressure p = ps + pa.

In order to compare these one-dimensional results with the experimental results, the source

is placed on one of the walls by setting x0 = 0. The pressure is calculated at the point where

there is a microphone, i.e. at x = 2L. The total pressure at the microphone is then equal to

pt(2L) = ps(0)� pa(0). The symmetric and antisymmetric pressure are

ps(0) = � cos(kL)

2k sin(kL)
, pa(0) =

2 sin(kL) + iZ cos(kL)

2k(2 cos(kL)� iZ sin(kL))
(15)

As it can be seen in Fig. 5, the calculations compare qualitatively well with the experimental

results: the presence of a wiremesh of resistance Z = 2 makes the antisymmetric modes disappear.

A more quantitative comparison is not possible here because the acoustic flow rate of the source

was not measured during the experiments. The one-dimensional calculations can therefore be used

to predict the e↵ect of a resistive sheet in a tube quite easily (see Fig. 6).
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(a) experiments (b) computations

Z=0
Z=2

Z=0
Z=2

FIG. 5. Comparison of the ratio between the pressure at x = 2L and the source at x = 0 (a) experimental

results (b) one-dimensional calculations. The green curves correspond to an empty tube (Z = 0) and the

black curves to a tube with a wiremesh Z = 2. We see that half of the resonance peaks (corresponding to

antisymmetric modes) are suppressed for Z=2.

Z=2
Z=0.5
Z=4

FIG. 6. Ratio between the pressure at x = 2L and the source at x = 0 for 3 di↵erent values of the resistance.

Black: Z = 2, magenta: Z = 0.5, cyan: Z = 4.


