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State-Specific Configuration Interaction for Excited States
Fábris Kossoski1, a) and Pierre-François Loos1, b)

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

Abstract: We introduce and benchmark a new systematically improvable route for excited-state calculations, state-
specific configuration interaction (∆CI). Starting with a reference built from optimized configuration state functions,
separate CI calculations are performed for each targeted state (hence state-specific orbitals and determinants). Accounting
for single and double excitations produces the ∆CISD model, which can be improved with second-order Epstein-Nesbet
perturbation theory (∆CISD+EN2) or a posteriori Davidson corrections (∆CISD+Q). These models were gauged against
a vast and diverse set of 294 reference excitation energies. We have found that ∆CI is significantly more accurate
than standard ground-state-based CI, whereas close performances were found between ∆CISD and EOM-CC2, and
between ∆CISD+EN2 and EOM-CCSD. For larger systems, ∆CISD+Q delivers more accurate results than EOM-CC2
and EOM-CCSD. The ∆CI route can handle challenging multireference problems, singly- and doubly-excited states,
from closed- and open-shell species, with overall comparable accuracy, and thus represents a promising alternative to
more established methodologies.
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Most molecular electronic structure methods rely on differ-
ent descriptions for ground and excited states. The ground
state is described first, at a given level of theory, providing a
baseline for later accessing the excited states, which in turn
makes use of another approach or a distinct formalism al-
together. For example, Kohn-Sham (KS) density-functional
theory (DFT) is a ground-state method,1–3 whereas the excited
states are obtained later with a linear response treatment of
time-dependent density-functional theory (TDDFT).4–7 Sim-
ilarly, the coupled-cluster (CC)8–11 equations are solved for
the ground state, whereas a diagonalization of the similarity-
transformed Hamiltonian is implied in excited-state calcula-
tions based on the equation-of-motion (EOM)12,13 or linear-
response14,15 formalisms. Within configuration interaction (CI)
methods,16 the underlying formalism is the same for ground
and excited states, but typical implementations also rely on a
special treatment for the ground state, given the use of ground-
state Hartree-Fock (HF) orbitals and the fact that the truncated
CI space is spanned by excitations from the ground-state HF
determinant. Apart from truly multireference approaches,17,18

excited state methods entail a formal distinction between the
targeted excited states and the ground state.

It is thus important to devise methods that minimize this
unbalance as much as possible, aiming at a more unified de-
scription of ground and excited states, while keeping a modest
computational cost. This also means a more balanced descrip-
tion among the excited states, and here we highlight the case
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of singly- and doubly-excited states, which differ by the num-
ber of excited electrons during the electronic transition. Most
excited-state methodologies either fail to properly describe
doubly-excited states or require higher-order excitations to be
accounted for.19 In this sense, a methodology that offers a com-
parable accuracy for singly- and doubly-excited states would
be equally desirable.

In light of these motivations, there has been an ever-growing
interest in so-called state-specific methods. The general prin-
ciple is to employ a single formalism, approaching each state
of interest independently, and without resorting to any prior
knowledge about the other states. The first and probably the
most well-known state-specific method is ∆SCF,20,21 where
excited states are described by a single determinant and rep-
resent higher-lying solutions of the HF or KS equations. By
optimizing the orbitals for a non-Aufbau determinant, ∆SCF
attempts to recover relaxation effects already at a mean-field
level. There is a growing body of evidence showing that DFT-
based ∆SCF usually outperforms TD-DFT,22–32 most notably
for doubly-excited and charge transfer states.25,26 However,
∆SCF still represents a major limitation to open-shell singlet
states, because of strong spin-contamination associated with
the single-determinant ansatz. Restricted open-shell Kohn-
Sham (ROKS)22,33 offers one way around this problem, by
optimizing the orbitals for a Lagrangian that considers both the
mixed-spin determinant and the triplet determinant with spin
projection ms = 1. In wave-function-based methods, excited-
state mean field (ESMF) theory27–29 has been proposed as a
state-specific alternative to excited states. In the ESMF ap-
proach, excited-state orbitals are optimized for a CI with sin-
gle excitations (CIS) ansatz,16 and energies can be further
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corrected with second-order Møller-Plesset (MP2) perturba-
tion theory.27,34 An extension of ESMF to DFT has also been
proposed.35 Variants of CC methods that directly target excited
states have also been actively pursued.36–39

An important practical question for all the aforementioned
methods concerns the optimization of orbitals for excited states,
which typically appear as saddle point solutions in the orbital
parameter space,39–42 therefore being more difficult to obtain
than ground-state solutions.43–45 In this sense, specialized algo-
rithms for obtaining excited-state orbitals have been proposed
and developed by several groups.23–25,30,31 Related methods
that aim at describing multiple states within the same theo-
retical framework, though usually in a state-averaged fashion,
include complete active space self-consistent field,46 ensemble
DFT,47–56 and multi-state TDDFT.57–61

Here we propose state-specific CI as a novel route for
excited-state calculations. First, the orbitals are optimized
for a minimal set of configuration state functions (CSFs), as
illustrated in Fig. 1, which provides a state-specific reference.
By running separate calculations for the ground state and for
a targeted excited state, excitation energies can be obtained
as the energy difference between the individual total energies.
We label this approach ∆CSF, in close parallel to the ∆SCF
method. By being a proper eigenstate of the total spin operator,
∆CSF cures the spin-contamination problem of ∆SCF, thus
leading to truly state-specific orbitals and an improved refer-
ence, particularly for singlet excited states. Being a mean-field
method [with an O(N5) computational cost associated with the
integral transformation, where N is the number of basis func-
tions], ∆CSF is intended to provide a balanced set of reference
wave functions for a subsequent, more accurate calculation. At
this second stage, which we label ∆CI, correlation effects are
captured by performing separate CI calculations for each state.
When accounting for all single and double excitations, we
obtain the ∆CISD model, which is now expected to provide de-
cent excitation energies with an O(N6) computational scaling.
Notice that, because we perform all singles and doubles with
respect to each reference determinant, the maximum excitation
degree is potentially higher than two (except of course for a
one-determinant reference). This also applies to higher-order
CI calculations. In this way, each state is described as much as
possible in a state-specific way, with a different set of orbitals
as well as determinants.

We can further compute the renormalized second-order
Epstein-Nesbet (EN2) perturbation correction62 from the de-
terminants left outside the truncated CISD space of each cal-
culation, giving rise to the ∆CISD+EN2 model. The EN2
perturbative correction involves a single loop over external
determinants that are connected to the internal determinants
via at most double excitations, thus entailing an overall O(N8)
scaling associated with the number of quadruply-excited deter-
minants. Despite this unfavorable scaling, the corresponding
prefactor of the EN perturbative correction is rather small,
making such calculations still affordable. Alternatively, we
could calculate one of the several types of a posteriori David-
son corrections17,63,64 in a state-specific fashion, leading to
a ∆CISD+Q approach. We recall that computing Davidson
corrections is virtually free, such that ∆CISD+Q presents the

closed-shell
ground state

doubly-excited
state

doublet
ground state

doublet
excited state

singly-excited state (1 CSF) singly-excited state (2 CSFs)

FIG. 1. Types of configuration state functions (CSFs) employed as
a reference for different classes of excited states in our ∆CSF and
∆CISD approaches.

same computational cost and O(N6) scaling as ∆CISD.65

The remaining question is how to build an appropriate refer-
ence for each state of interest. Our general guideline is to select
the smallest set of CSFs that provides a qualitatively correct
description of the state of interest, as shown in Fig. 1. Here
we adopted the spin-restricted formalism. The HF determi-
nant is the obvious choice for the ground state of closed-shell
singlets. For singly-excited states of closed-shell systems, we
chose either one or two CSFs, depending on each particular
excited state. For most cases, a single CSF associated with
two unpaired electrons should be enough. Some excited states,
however, display a strong multireference character, like those
of N2, CO2, and acetylene, thus requiring two CSFs. For
genuine doubly-excited states where a pair of opposite-spin
electrons are promoted from the same occupied to the same
virtual orbital, we selected a single determinant associated with
the corresponding double excitation. For ground and excited
states of open-shell doublets, a single-determinant restricted
open-shell HF reference is adopted as well.

Strictly speaking, our ∆CISD approach can be seen as a type
of multireference CI (MRCI), though with two key differences
with respect to typical realizations of MRCI.17 First, it relies
on a minimal set of CSFs as the reference space, whereas in
the conventional form of MRCI the reference is built from
a much larger complete active space. This means that the
CI space becomes more amenable in the former approach,
enabling calculations for larger systems. The second impor-
tant difference is that the reference in ∆CISD is state-specific,
which is expected to favor the overall fitness of the orbitals
when compared with state-averaged orbitals of standard MRCI
(whenever excited states are involved). ∆CISD also resem-
bles the ESMF theory27–29 of Neuscamman and coworkers in
their underlying motivation: a state-specific mean-field-like
starting point, subject to a subsequent treatment of correlation
effects. In ∆CISD, however, the starting point is much more
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compact and arguably closer to a mean-field description than
the CIS-like ansatz of ESMF. This makes the CI expansion up
to double excitations feasible in our approach, though not in
ESMF, which in turn resorts to generalized MP2 to describe
correlation.27,34 This ∆CSF ansatz has already been suggested
as a more compact alternative to the ESMF one,28 but again in
the spirit of recovering correlation at the MP2 level, whereas
we propose a state-specific CISD expansion, that could be
followed by Davidson or EN2 perturbative corrections.

Our state-specific CI approach was implemented in quantum
package,62 whose determinant-driven framework provides a
very convenient platform for including arbitrary sets of de-
terminants in the CI expansion. In this way, we can easily
select only the determinants that are connected to the reference
determinants according to a given criterion provided by the
user. On top of that, the state-specific implementation further
profits from the configuration interaction using a perturbative
selection made iteratively (CIPSI) algorithm66–69 implemented
in quantum package, which allows for a large reduction of
the CI space without loss of accuracy. At each iteration of
the CIPSI algorithm, the CI energies are obtained with the
Davidson iterative algorithm,70 which is ended when the EN2
perturbation correction computed in the truncated CI space
lies below 0.01 mEh.69 Our state-specific CI implementation
can be employed for different selection criteria for the excited
determinants, based for example on the seniority number,71 the
hierarchy parameter,72 or the excitation degree. Here, we con-
sidered the more traditional excitation-based CI. After the CI
calculation, we computed the renormalized EN2 perturbation
correction62 from the determinants left outside the truncated CI
space, which is relatively cheap because of the semi-stochastic
nature of our algorithm.73 We also evaluate the seven variants
of Davidson corrections discussed in Ref. 17. To get state-
specific orbitals, we first run a CIS calculation and obtained
the natural transition orbitals (NTOs),74 which proved to be
more suitable guess orbitals than the canonical HF orbitals.
The dominant hole and particle NTOs are taken as the singly-
occupied orbitals, and for pronounced multireference states,
the second most important pair of NTOs was also considered
(as illustrated in Fig. 1). The orbital optimization was per-
formed with the Newton-Raphson method, also implemented
in quantum package.39,41

Having our state-specific approaches presented, our main
goal here is to assess their performance in describing elec-
tronic excited states. For that, we calculated vertical exci-
tation energies for an extensive set of 294 electronic tran-
sitions, for systems, states, and geometries provided in the
QUEST database.75 We considered small-76,77 and medium-
sized78,79 organic compounds, radicals and “exotic” systems,80

and doubly-excited states.77–79 The set of excited states com-
prises closed-shell (singlets and triplets) and open-shell (dou-
blets) systems, ranging from one up to six non-hydrogen atoms,
and of various characters (valence and Rydberg states, singly-
and doubly-excited states). We employed the aug-cc-pVDZ ba-
sis set for systems having up to three non-hydrogen atoms, and
the 6-31+G(d) basis set for the larger ones. We compared the
excitation energies obtained with our state-specific approaches
against more established alternatives, such as CIS,81 CIS with

perturbative doubles [CIS(D)],82,83 CC with singles and dou-
bles (CCSD)13,84–86 and the second-order approximate CC with
singles and doubles (CC2),87,88 the latter two understood as
EOM-CC. The excitation energies obtained with the different
methodologies were gauged against very accurate reference
values, of high-order CC or extrapolated full CI quality.76–80

The complete set of reference methods and energies are pro-
vided in the Supporting Information.

Our first important result is that the combination of the
Newton-Raphson method starting with NTOs proved to be
quite reliable in converging the ∆CSF ansatz to excited-state so-
lutions. In most cases, the orbitals are optimized with relatively
few iterations (typically less than 10), and to the correct tar-
geted state. A second-order method such as Newton-Raphson
is required if the targeted solution is a saddle point in the or-
bital rotation landscape, which is expected to be the case for
excited states.42,89 At convergence, the number of negative
eigenvalues of the orbital Hessian matrix, i.e., the saddle point
order, can provide further insights about the topology of the
solutions for a given CSF ansatz. For the closed-shell systems,
we found that the lowest-lying solution (global minimum) ob-
tained with the open-shell CSF is always an excited state since
it cannot properly describe the closed-shell ground state. In
turn, higher-lying excited states tend to appear as saddle points,
with increasing order as one goes up in energy, even though
this behavior is not very systematic. It was not uncommon,
for example, to encounter two different excited states as local
minima or sharing the same saddle point order. For some sys-
tems, we searched for symmetry-broken solutions of excited
states by rotating the orbitals along the direction associated
with a negative eigenvalue of the orbital Hessian, but this pro-
cedure leads to solutions representing a different state. We did
not explore this exhaustively though, and we cannot rule out
the existence of symmetry-broken excited-state solutions. Im-
portantly, state-specific solutions could be found for different
types of states, including singly- and doubly-excited states, for
closed-shell singlets and open-shell doublets, and for the first
as well as higher-lying states of a given point group symmetry.
The full list of saddle point orders is shown in the Supporting
Information.

Before diving into the main discussion, we mention that the
excited-state reference could be based on single-determinant
∆SCF orbitals, rather than the ∆CSF orbitals we have adopted.
However, the former method is heavily spin-contaminated, be-
ing an exact mixture of singlet and triplet, whereas the latter
method targets one spin multiplicity at a time. In this way,
the excitation energies obtained with ∆CSF appear above (for
singlets) and below (for triplets) the single energy obtained
with ∆SCF, overall improving the comparison with the refer-
ence values. In turn, we compared ∆SCF and ∆CSF excited-
state orbitals for ∆CISD calculations, and found overall little
differences in the excitation energies. Still, we think ∆CSF
is preferable because it delivers truly state-specific orbitals,
whereas ∆SCF produces the same orbitals for the singlet and
triplet states, and is thus less state-specific.

The state-specific ∆CI approach offers a well-defined route
towards full CI by increasing the excitation degree, in analogy
with standard ground-state-based CI methods. We explored



4

both routes by calculating 16 excitation energies for small
systems, by considering up to quadruple excitations (full set
of results are available in the Supporting Information). Even
though this is a small set for obtaining significant statistics, it
is enough to showcase the main trends when comparing state-
specific and ground-state-based CI methods. The mean signed
error (MSE) and mean absolute error (MAE) are shown in Ta-
ble I. The convergence for standard CI is quite slow, with CISD
largely overestimating the excitation energies, CISDT leading
to more decent results, which are improved at the CISDTQ
level. In turn, we found that ∆CI displays much more accurate
results and accelerated convergence than their ground-state-
based counterparts. Already at the ∆CISD level, the accuracy
is far superior to that of standard CISD, being comparable to
CISDT. Going one step further (∆CISDT) does not lead to a
visible improvement, whereas the state-specific quadruple exci-
tations of ∆CISDTQ recover much of the remaining correlation
energy, hence the motivation to investigate various flavors of
Davidson correction. We found that the MAEs of ∆CISD are
comparable to that of CISDT, which can be understood from
the observation that the doubly-excited determinants accessed
from the excited-state reference can only be achieved via triple
excitations from the ground-state reference. The comparison
between state-specific and ground-state-based CI for a given
excitation degree (∆CISD against CISD and ∆CISDTQ against
CISDTQ) shows that the MAEs are reduced by one order of
magnitude in the former route, when compared with the latter.
No gain is observed from CISDT to ∆CISDT, though.

TABLE I. Mean Signed Error (MSE) and Mean Absolute Error
(MAE), in Units of eV, with Respect to Reference Theoretical Val-
ues, for the Set of 16 Excitation Energies Listed in the Supporting
Information.

method MSE MAE
CISD +3.91 3.91
CISDT +0.07 0.17
CISDTQ +0.13 0.13
∆CISD −0.14 0.18
∆CISDT −0.20 0.20
∆CISDTQ −0.02 0.02
∆CISD+EN2 −0.00 0.03
∆CISD+PC −0.10 0.14
CIS(D) −0.03 0.35
CC2 −0.05 0.32
CCSD +0.01 0.08
CC3 +0.01 0.03
CCSDT −0.01 0.02

We now start the discussion on how well our state-specific
CI approaches compare with more established methods by
presenting in Fig. 2 the distribution of errors and statistical
measures associated with a set of 237 singly-excited states of
closed-shell systems. At the ∆CSF level, the excitation en-
ergies are systematically underestimated, thus a substantially
negative MSE. This happens because the CSF reference for the
excited states (typically containing two determinants) already
recovers some correlation, whereas the one-determinant HF
reference of the ground state does not. The MAE of the ∆CSF

approach (0.62 eV) is comparable to that of CIS (0.65 eV). The
overall similar performance of these two methods is somewhat
expected since the orbital relaxation that takes place in the
state-specific CSF is partially described via the single excita-
tions of CIS. Moving to the ∆CISD level, we find that corre-
lation effects are described in a reasonably balanced way for
ground and excited states. The MAE is significantly reduced
(0.18 eV) with respect to that of ∆CSF, being smaller than in
CIS(D) (0.21 eV) and comparable to CC2 (0.17 eV). The ab-
solute MSE also decreases, but remains negative, whereas the
other CI- or CC-based methods present positive MSEs. This
shows that there is still some bias toward a better description
of excited states at the ∆CISD level, probably reflecting the
two-determinant reference (compared to one-determinant for
the ground state).

The perturbative correction introduced at the ∆CISD+EN2
approach reduces the statistical errors even more, showing the
same MAE as CCSD (0.06 eV). At times, however, the EN2
correction leads to erroneous results due to the presence of
intruder states, which typically occurs for some higher-lying
states of a given symmetry.90 Instead of relying on perturbation
theory to correct the CISD total energies, we can resort to one
of Davidson corrections.17 Even though this correction is not
as accurate as the EN2 perturbative energy, more often than
not it improves upon ∆CISD, and with virtually no additional
computational cost.91 We found that all seven ∆CISD+Q vari-
ants provide MAEs in the 0.10 eV to 0.12 eV range. Since
the Pople correction64 is arguably the most well-behaved one,
with fewer outlier excitation energies, we only present here
the statistical measures associated with this correction, labeled
∆CISD+PC from hereon, while the full set of results can be
found in the Supporting Information.

We also surveyed the performance of our state-specific meth-
ods for 10 genuine doubly-excited states19 and 47 excited states
of open-shell doublets (doublet-doublet transitions),80 both
sets were extracted from the QUEST database.75 The statistical
measures are shown in Table S1 of the Supporting Informa-
tion, together with those of singly-excited states of closed-shell
systems. The important finding in this comparison is that the
state-specific methods provide reasonably similar MAEs for
the three types of excited states. For instance, ∆CISD has
MAEs of 0.18 eV for singly-excited states of closed-shell sin-
glets, 0.17 eV for doublet-doublet transition and 0.16 eV for
doubly-excited states. This contrasts with the case of more
familiar methods, which cannot describe doubly-excited states
unless higher-order excitations are included.19 We notice that
the MSE of ∆CSF is more negative for singly-excited states
of closed-shell molecules (−0.55 eV) than for doubly-excited
states (−0.20 eV), being closer to zero for doublet-doublet tran-
sitions (0.07 eV), which reflects the one-determinant reference
adopted for both the excited and ground states in the latter
cases. This difference does not translate into comparatively
smaller errors in the correlated results though.

For the doubly-excited states, we further compare in Table
II the performance of state-specific CI against higher-order
CC methods. The accuracy of the ∆CSF mean-field model
is superior to CC3 and approaches CCSDT, which highlights
the importance of orbital relaxation for doubly-excited states.
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FIG. 2. Distribution of Errors in Excitation Energies with Respect to Reference Theoretical Values and Corresponding Mean Signed Error
(MSE) and Mean Absolute Error (MAE), for Various Excited-State Methodologies.

∆CISD is significantly more accurate than CCSDT, whereas
the perturbative and the Davidson corrections bring a small
improvement.

TABLE II. Mean Signed Error (MSE) and Mean Absolute Error
(MAE), in Units of eV, with Respect to Reference Theoretical Values,
for the Set of 10 Doubly-Excited States Listed in the Supporting
Information.

Method MSE MAE
∆CSF −0.20 0.46
∆CISD +0.03 0.16
∆CISD+EN2 −0.05 0.13
∆CISD+PC +0.02 0.13
CC3 +0.85 0.85
CCSDT +0.38 0.38
CCSDTQ +0.03 0.03

The performance of our state-specific methods can also be
assessed for specific types of excited states, say for ππ∗ transi-
tions or for systems of a given size. This is shown in Table III,
which compares the MAEs across different categories. Many
trends can be identified, but here we highlight the most notori-
ous and interesting ones, starting with spin multiplicity. While
the ∆CISD results are comparable for singlets and triplets, we
found that the perturbative correction has a more pronounced
effect for the triplets, bringing the MAE down to 0.06 eV, the
same as obtained with CCSD. To some extent, the worse per-
formance of the EN2 correction for the singlets stems from
intruder states (most noticeably the ground state when it shares
the same point group symmetry as the targeted excited state).
We also found that the Davidson corrections bring a some-
what larger improvement for triplets than for singlets, with
some flavors having MAEs of 0.07 eV for the triplets, being
essentially as accurate as CCSD (MAE of 0.06 eV). For the

doublet-doublet transitions, the EN2 and +Q corrections are as
helpful as they are for the triplets (see Table S1 of the Support-
ing Information).

Regarding the character of the excitations, we found that
∆CISD is considerably better for Rydberg (MAE of 0.12 eV)
than for valence (MAE of 0.21 eV) excited states. Interest-
ingly, the difference at the ∆CSF level is proportionally smaller
(0.65 eV against 0.56 eV), suggesting that the ∆CISD differ-
ence actually stems from the description of correlation. In turn,
the EN2 correction has a larger impact on valence excitations,
making little difference for the Rydberg states, such that the
∆CISD+EN2 results become comparable for both types of ex-
citation. Additional trends can be observed when dividing the
valence excitations into nπ∗, ππ∗, or σπ∗, and the Rydberg ex-
citations as taking place from n or π orbitals. Our state-specific
methods are typically more accurate for nπ∗ excitations than
for ππ∗ excitations. ∆CISD+EN2, for example, is as accu-
rate as CCSD for nπ∗ transitions, with corresponding MAEs
of 0.06 eV. We also found that the less common σπ∗ excita-
tions are much better described across all methods than the
more typical nπ∗ and ππ∗ transitions. For this type of state,
∆CISD+EN2 is the best performing method, with MAEs as
small as 0.03 eV. When separating the Rydberg states by the
character of the hole orbital, n or π, additional interesting fea-
tures can be seen. Except for CCSD, all the other methods
considered here provide more accurate results for the Ryd-
berg excitations involving the π orbitals. Not only that, but
the MAEs are quite small and comparable across all methods
(except for ∆CSF and CIS), ranging from 0.06 eV to 0.11 eV.
Surprisingly, CIS is much more accurate for π Rydberg (MAE
of 0.29 eV) than for n Rydberg (MAE of 1.17 eV) excitations.

The third and most important line of comparison concerns
the system size. Under this criterion, we divided the excited
states into three groups, small, medium, and large, depend-
ing on the number of non-hydrogen atoms (see Table III). We
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TABLE III. Mean Absolute Error, in Units of eV, with Respect to Reference Theoretical Values, for Different Types of Singly-Excited States of
Closed-Shell Systems Listed in the Supporting Information.

# States ∆CSF ∆CISD ∆CISD+EN2 ∆CISD+PC CIS CIS(D) CC2 CCSD
All states 237 0.62 0.18 0.08 0.10 0.65 0.21 0.17 0.08
Singlet 127 0.56 0.17 0.10 0.12 0.68 0.22 0.19 0.10
Triplet 110 0.69 0.18 0.06 0.09 0.61 0.19 0.15 0.06
Valence 155 0.65 0.21 0.08 0.10 0.61 0.19 0.14 0.08
Rydberg 82 0.56 0.12 0.10 0.11 0.72 0.24 0.22 0.08
nπ∗ 56 0.60 0.16 0.06 0.07 0.54 0.10 0.09 0.06
ππ∗ 80 0.75 0.26 0.10 0.12 0.74 0.27 0.20 0.10
σπ∗ 18 0.39 0.13 0.03 0.06 0.26 0.11 0.07 0.04
n Rydberg 40 0.61 0.12 0.12 0.14 1.17 0.37 0.39 0.07
π Rydberg 38 0.46 0.10 0.08 0.09 0.29 0.11 0.06 0.10
1-2 non-H atoms 69 0.83 0.18 0.06 0.12 0.71 0.24 0.23 0.06
3-4 non-H atoms 122 0.57 0.18 0.09 0.10 0.70 0.20 0.16 0.08
5-6 non-H atoms 46 0.41 0.15 0.12 0.07 0.43 0.18 0.12 0.10

found that ∆CSF becomes more accurate as the system size
increases, which we assign to a diminishing effect of the one-
vs two-determinant imbalance discussed above. As the system
size increases, the correlation energy recovered by the two de-
terminants of the excited states is expected to become smaller
in comparison to the total correlation energy, thus alleviating
this imbalance. In contrast, CISD should provide less accurate
total energies for larger systems, due to its well-known lack
of size-consistency. This issue would be expected to reflect
on excitation energies to some degree, which are not absolute
but relative energies. However, a more balanced reference
provided by ∆CSF might compensate for the lack of size-
consistency when larger systems are targeted. Indeed, ∆CISD
presents comparable MAEs across the three sets of system size
(0.15 eV to 0.18 eV). In contrast, ∆CISD+Q and ∆CISD+EN2
seem to go opposite ways: the former becomes more accurate
and the latter less as a function of system size. Similarly, CC2
becomes more accurate and CCSD loses accuracy as the system
size increases,78,92 to the point where the theoretically more
approximate CC2 becomes the favored methodological choice.
Our results thus show that state-specific methods represent a
competitive alternative for larger systems. For molecules con-
taining five or six non-hydrogen atoms, ∆CISD+EN2 becomes
practically as accurate as CCSD, with MAEs in the 0.10 eV
to 0.12 eV range. The ∆CISD+Q models turn out to be the
most accurate choice for systems of this size, with MAEs rang-
ing from 0.07 eV to 0.09 eV (see Table S5 of the Supporting
Information).

Butadiene, glyoxal, the carbon dimer (C2) and trimer (C3)
are particularly interesting and challenging systems that de-
serve a dedicated discussion. The excitation energies for these
molecules can be found in the Supporting Information.

The dark 21Ag excited state of butadiene is a notoriously
famous example, having received much attention (see Ref. 19
and references therein). Prior studies had assigned it as a
doubly-excited state, due to important contributions from
doubly-excited determinants.93,94 More recently, though, it
has been re-assigned as a singly-excited state,95 meaning that
the doubly-excited determinants actually represent strong or-
bital relaxation effects. Here, our state-specific results support

this interpretation, since one CSF associated with a single
excitation provided reasonable excitation energies, whereas
attempts to employ a doubly-excited reference produced much
higher-lying solutions. Already at the ∆CSF level, we ob-
tained an excitation energy (7.18 eV) comparable to the much
more expensive CCSD (7.20 eV), though still overestimating
the CCSDTQ reference value of 6.56 eV.78 This result demon-
strates the ability of ∆CSF to capture orbital relaxation effects,
at only a mean-field cost, which in contrast needs at least dou-
ble excitations in EOM-CC. Inclusion of correlation at the
∆CISD level brings the excitation energy down to 6.93 eV.
An important question in butadiene concerns the energy gap
between the 21Ag dark state and the lower-lying 11Bu bright
state, whose correct ordering has only recently been settled.96

Having the CCSDTQ reference value of 0.15 eV for the energy
gap,78 we observe that EOM-CC methods considerably over-
estimate it (0.94 eV in CC2 and 0.65 eV in CCSD), whereas
the state-specific methods deliver improved results (0.65 eV in
∆CSF and 0.39 eV in ∆CISD).

Another challenging system is glyoxal, which presents ex-
cited states of genuine multireference character.97 While the
first pair of NTOs has a dominant weight, the second pair is
non-negligible. In this sense, most of the first excited states of
glyoxal lie in between the cases of most singly-excited states
(that can be qualitatively described with one CSF) and those
that need two CSFs. Being an intermediate case, here we per-
formed ∆CISD calculations with references containing one or
two CSFs, for the first two singlet states and first four triplet
states. With one CSF only, ∆CSF typically overestimates the
reference excitation energies, with the corresponding ∆CISD
improving the overall comparison. For this set of six excited
states, the associated MAEs are 1.14 eV for ∆CSF and 0.65 eV
for ∆CISD when using a single CSF as reference. Despite
the improvement brought at the CISD level, this is still lim-
ited by the lack of an actual multiconfigurational reference
for these states. When two CSFs are employed as the refer-
ence for the excited states, the MAEs are reduced to 0.58 eV
(∆CSF) and 0.22 eV (∆CISD), which can be further decreased
to 0.08 eV with ∆CISD+PC. We thus recommend augmenting
the excited-state reference whenever it displays at least some
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multireference character, and the weight of the first pairs of
NTOs could serve as an easy proxy for this.

Finally, we comment on the lowest-lying 11∆g and higher-
lying 21Σ+

g doubly-excited states of C2 and C3, which would
require at least CCSDTQ quality calculations to become ac-
curate to within 0.1 eV.19 C2 displays a strong multireference
ground state, and thus we employed two CSFs as the refer-
ence, the closed-shell HF and the determinant associated with
the (σ∗2s)

2 → (σ2pz )
2 transition. For its doubly-excited states,

we employed the two CSFs needed to describe both doubly-
excited states, generated from the HF determinant through the
(π2px )

2 → (σ2pz )
2 and (π2py )

2 → (σ2pz )
2 excitations, π2px and

π2py being degenerate orbitals. In C3, the multireference char-
acter of the ground state is weaker, and thus we adopted a single
HF determinant as reference. In turn, four CSFs are needed for
its doubly-excited states, built from the HF determinant by per-
forming (σg)2 → (π∗2px

)2, (σg)2 → (π∗2py
)2, (σu)2 → (π∗2px

)2,
and (σu)2 → (π∗2py

)2 transitions, where π∗2px
and π∗2py

are de-
generate orbitals. We therefore re-assign the doubly-excited
states of C3 as (σ)2 → (π∗)2, which had been first assigned as
(π)2 → (σ∗)2.19 Notice that, for both systems, what differenti-
ates 11∆g and 21Σ+

g is essentially the phase between the two
CSFs differing by the occupation of the degenerate orbitals
(π in C2, π∗ in C3). Thus, the higher-lying state orbitals were
obtained by optimizing for the second CI root associated with
the reference (two CSFs in C2, four in C3). We found that
∆CISD is more accurate than CCSDT for C2, and even more
accurate than CCSDTQ for C3.

To summarize, here we have presented a novel route to per-
form excited-state calculations, based on a state-specific CI
approach. The orbitals are optimized for a targeted state with
a minimal set of CSFs, serving as the reference wave func-
tion for the CI calculations, which can be further corrected
with Epstein-Nesbet perturbation theory or with a posteriori
Davidson corrections. We have surveyed these methods against
more established alternatives by computing excitation energies
for a vast class of molecules and types of excitations from
the QUEST database. State-specific CI was found to be sub-
stantially more accurate than the standard CI methods based
on a ground-state reference. Importantly, it delivers reliable
results across different types of excited states, most notably
when comparing singly- and doubly-excited states, and can
easily handle ground and excited states of multireference na-
ture. The overall accuracy of ∆CISD rivals that of CC2 (MAEs
of 0.17 eV to 0.18 eV), whereas ∆CISD+EN2 is comparable to
CCSD (MAEs of 0.08 eV), with ∆CISD+Q lying in-between
(MAE of 0.10 eV to 0.12 eV). For larger systems, ∆CISD+Q
leads to more accurate results (MAE of 0.07 eV to 0.09 eV)
than CC2 and CCSD (MAEs of 0.10 eV to 0.12 eV).

There are many exciting possibilities to be pursued from
this work. One is to develop analogous state-specific coupled-
cluster methods. In light of the huge improvement we have
observed when going from ground-state-based to state-specific
CI, we expect a similar gain when comparing EOM-CC to state-
specific CC methods where tailored CSFs are employed as the
reference wave function.98–100 One could also develop state-
specific implementations of seniority-based71 and hierarchy-
based72 CI for excited states. It would be important to assess

the performance of our state-specific approaches to even larger
systems, which would require switching from a determinant-
driven to an integral-driven implementation. Although evaluat-
ing nonorthogonal matrix elements is more challenging than
their orthogonal analogs, the calculation of static properties
such as dipole moments and oscillator strengths is possible
thanks to the recent generalized extension of the nonorthog-
onal Wick’s theorem proposed by Burton.101,102 Yet another
exciting possibility is to move from a state-specific to a state-
averaged reference, while contemplating only a small set of
important determinants for describing a given set of states.
This would be expected to solve some of the issues encoun-
tered here when two states of the same symmetry are strongly
coupled, and to provide an even more balanced description of
correlation between ground and excited states.
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SUPPORTING INFORMATION AVAILABLE

Additional statistical measures for different sets of excited
states and for all flavors of ∆CISD+Q models. Separate ta-
bles gathering the excitation energies for butadiene, glyoxal,
C2, and C3. For the full set of 294 excited states, total en-
ergies and excitation energies obtained at the ∆CSF, ∆CISD,
∆CISD+EN2, and seven variants of ∆CISD+Q models, exci-
tation energies computed with CIS, CIS(D), CC2, and CCSD,
number of determinants in the reference, saddle point order
associated with the ∆CSF solutions, the reference excitation
energies and corresponding method, and additional statistical
measures. For a subset of 16 excited states, total energies
and excitation energies obtained at the ∆CISDT, ∆CISDTQ
and ground-state-based CISDT and CISDTQ levels of theory.
For the subset of 10 doubly-excited states, excitation energies
obtained at the CC3, CCSDT, CC4, and CCSDTQ levels of
theory.
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7Huix-Rotllant, M.; Ferré, N.; Barbatti, M. Quantum Chemistry and Dy-
namics of Excited States; John Wiley & Sons, Ltd, 2020; Chapter 2, pp
13–46.



8
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