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ABSTRACT
Apart from the impressive performance it has achieved in several
tasks, one of the most important factors remaining for the continu-
ous progress of deep learning is the increased work related to inter-
pretability, especially in a medical context. In a recent work, we pre-
sented competitive performance achieved with a CNN-based model
trained on normal speech for the French phone classification and how
it correlates well with different perceptual measures when exposed
to disordered speech. This paper extends that work by focusing on
interpretability. Here, the goal is to get insights into the way in which
neural representations shape the final task of phone classification so
that it can be used further to explain the loss of intelligibility in disor-
dered speech. In this way, an original framework is proposed, relying
firstly on the neural activity and a novel representation per neuron,
here considering the phone classification, and, secondly, permitting to
identify a set of neurons devoted to the detection of specific phonetic
traits on normal speech. Faced to disordered speech, a degradation
of that set of neurons is observed, demonstrating a loss of specific
phonetic traits in some patients involved, and the potentiality of the
proposed approaches to inform about speech alteration.

Index Terms— Deep learning, Interpretability, Phonetic traits,
Intelligibility, Head and Neck Cancer, Speech disorders.

1. INTRODUCTION

There is a common agreement that deep learning has achieved im-
pressive performance in several tasks. Their growing popularity has
aroused interest in how these widely used tools really work and has
given rise to a new line of research dedicated to their analysis. In-
terpretability becomes even more important when Deep Neural Net-
works (DNNs) are applied in a domain as medicine where trans-
parency is crucial and errors cannot be tolerated. In such a case,
understanding the nature of encoded representation performed by the
model is a way to guarantee its reliability. In this context, several
approaches have been proposed to get insights into the internal func-
tioning of these models. The most straight-forward interpretation
technique is based on the analysis of neuronal responses to a repre-
sentative input sample. To this end, selectivity property of individual
units has been of particular interest to researchers. Among works
we can find those relying on the whole activation of neuron as the
phone selectivity index attributed by [1] to units of an MLP trained
for phone recognition task, while [2] and [3] characterized the selec-
tivity of individual units through properties of samples maximizing
their activation. Of relevance to the present work, several studies
revealed that human-interpretable concepts can emerge without ex-
plicitly constraining the deep neural network to do it. Notably, [4]

and [5] were able to discover automatically meaningful object detec-
tors in their CNN trained for scene classification. As well, in [6], au-
thors have shown that semantic part detectors emerge in object classi-
fiers. While [7] introduced a more general method for interpretability,
called Network Dissection, measuring the alignment between convo-
lutional units and visual interpretable concepts. Most of the work re-
ported above are interested in interpreting CNNs applied in computer
vision domain. Even though CNNs have proven to be well suited for
other tasks beyond computer vision such as speech signal processing,
providing knowledge of how this input feature space is transformed
into gradually higher levels of representation is still a challenging
task due to the complex nature of speech signal, characterized within
acoustic features.

The work presented here is part of a long-term project which aims
to determine the linguistic units that contribute most to the mainte-
nance or loss of the intelligibility in speech disorders. Different steps
have been identified to reach this objective : (1) Modeling the charac-
teristics of phonemic units of ”normal” speech thanks to deep learn-
ing based system dedicated to a basic task of phone classification,
(2) investigating the representational properties of the model in terms
of phonetic contents, (3) the transfer of this deep learning modeling
into a prediction task of intelligibility typically in the context of nor-
mal and disordered speech and the study of its capacity in yielding
reasonable interpretation of the phonemic unit contribution in speech
intelligibility and its variation (improvement or alteration). In a pre-
vious work [8], we proposed a CNN-based architecture, trained on
healthy speech for French phone classification task, to respond partly
to the first step of that project. In this context, the encoding capabil-
ity of the CNN-based model for the targeted task was demonstrated
through very high correlation rates between its phone classification
rates and the perceptual measures available for both patients and con-
trol speakers present in the disordered speech corpus involved.

In this paper, the main contribution is to show that phonetic fea-
ture detectors emerge in the fully connected layers of the CNN-based
architecture mentioned above. To this end, an original framework
based on neuronal activity was proposed in order to identify the set
of interpretable neurons giving rise to such information on normal
speech. This framework involves a vector representation of neu-
ronal activity of units belonging to classification layers, coupled with
a scoring approach enabling to highlight the capacity of neurons
to detect specific phonetic features characterizing French phones.
Exposed to speech recordings produced by patients suffering from
speech disorders, the aim of this framework is to reveal a degraded
behavior of the identified set of neurons and the loss of some specific
phonetic traits in those patients, in different manner according to
their speech impairment and level of speech intelligibility.



2. CORPUS AND PHONETIC FEATURES

As mentioned in the introduction, the search of neurons giving rise
to phonetic features through the CNN model was carried out on nor-
mal/healthy speech. In this purpose, the BREF corpus was involved.
This corpus was also used to train the CNN architecture described
in the next section, on which this work relies. The BREF corpus is
composed of French read-speech records produced by 120 male and
female speakers, while reading texts from newspapers [9], leading
to about 115h of speech. All the speech productions were aligned
automatically by using a forced-alignment system, commonly based
on a Viterbi algorithm and three-state context-independent Hidden
Markov Models (HMM) trained on separate French speech data.
Thus, temporal boundaries of phones in speech records are available.

The C2SI-LEC corpus is a sub-part of the French speech corpus
recorded within the C2SI project between 2015 and 2017 [10]. The
overall corpus includes patients with Head and Neck Cancers (oral
cavity or oropharynx) and control speakers. All patients underwent
dedicated treatment consisting of surgery, and/or radiation therapy,
and/or chemotherapy. During the recording protocol, all speakers
were asked to record different speech production tasks (sustained
/a/ vowels, isolated pseudo-words, text or sentences reading, image
description and brief interviews to get spontaneous speech). Dif-
ferent perceptual evaluations were conducted by a jury of 5 to 6
experts (clinicians or speech therapists) including notably measures
of speech severity (LEC-Sev) and intelligibility (LEC-Intel), on a 0-
10 scale (0 - major speech disorder; 10 - no speech disorder) from the
text reading task, and measures of phonemic alteration (DES-Phon)
on a 0-3 scale (0 - no disorder; 3 - major disorders) from the image
description task. Ratings given by the experts are averaged to provide
unique values per speaker for the different perceptual evaluations.
In this study, the focus is made on the reading task only, considering
89 speech records produced by 82 patients (7 patients were recorded
twice) and 25 records for 24 control speakers (a control speaker was
recorded twice). Based on the reading text (systematically corrected
in case of reading errors), all the speech productions were aligned
automatically, in a similar way as described for the BREF corpus.

Phonetic Features of French Phones
French phones can be characterized within a set of phonetic features
that distinguish them. Different categorizations exist to define this
set. In this paper, we adopted the approach described in [11] to char-
acterize the French phones in terms of phonetic traits. Here, the no-
tion of phonetic traits imposes a binary status (i.e. equals 1 if phonetic
trait is present in the phone or 0 if absent). In order to define phonetic
traits in a way they are phonetically and acoustically pertinent, a dis-
tinction between vowels and consonants was done as in [12]. In this
context, the following phonetic traits will be considered : nasal, back,
high, round, open for vowels and sonorant, continuant, nasal, voiced,
compact, acute for consonants. Following the same logic, we investi-
gated later the capacity of the hidden neurons to detect phonetic traits
in separate spaces for vowels and consonants. This will be detailed
on the upcoming section.

3. FRAMEWORK DESCRIPTION

The fundamental goal of this work is to understand the nature of
information encoding at various stages of our CNN detailed in 3.1
and the way in which its neural representations shape the final task
of phone classification and, simultaneously, are able to emerge spe-
cific phonetic traits. As reported in the state of the art, the most
straight forward interpretation approach is to investigate the neuron
responses. As we go deeper in the layers of the neural network, ob-

serving the organization and structure of the activation space in re-
sponse to specific inputs is a way to characterize how the learned
representations evolve along the hierarchically structured layers.

3.1. Model Architecture

The CNN architecture used in this study was detailed in our previ-
ous work [8]. It is recalled that the CNN inputs consist of a slid-
ing context window of 11 successive acoustic frames, each having
40 log Mel-filter bank energy features along with their first and sec-
ond derivatives. These features were computed on a 20ms window
with an overlap of 10ms between two adjacent frames and served
as an input to the CNN. Inspired by [13], the CNN consists of two
pairs of convolution and max-pooling layers followed by three fully
connected layers of 1024 neurons, with a ReLU activation function.
Finally, a softmax layer corresponds to the posterior probability of
each class associated with 31 French phones and silence. It should be
mentioned that the three fully connected layers, denoted FC1, FC2,
and FC3 in the rest of the paper, will be the focus of the neuronal
activity based framework proposed in next sections.

One key factor of a reliable interpretation is the selection of data
used to ensure this task. Ideally, our CNN could be fully charac-
terized if all possible input patterns could be presented, i.e. frames
issued from the different French phones produced in all possible con-
texts, then neural responses measured for each of these inputs. It is
obvious that in practice, the adopted BREF corpus does not cover
all these possibilities, having to meet the need for training, validation
and interpretation of the model. However, we tend to build the richest
interpretation dataset possible covering the 31 French phones studied
here, which the CNN was trained on for classification purpose. For
this reason, we did not proceed to a random choice of frames for the
interpretation set. Rather, we considered all the frames associated
with speech segments (yielded by the automatic forced alignment)
related to a complete phone production as well as involving different
phone contexts and all the speakers available in the corpus. In addi-
tion to the diversity of the frames, the dataset was balanced in order
to achieve a roughly equal distribution of frames over the 31 phones.
Thus, the generated dataset used for interpretation purpose (different
from datasets used for CNN training and validation), named BREF-
Int, includes almost 85K of frames, and resulted in a classification
accuracy of 80.8% once fed to the trained CNN. We already evoked
in our previous work that our model is able to generalize to new data
since it reached 74% accuracy when evaluated on healthy control ut-
terances of the C2SI-LEC corpus described in section 2.

3.2. Representation Vectors of Neurons

In order to represent a neuron, the CNN is fed with the BREF-Int
dataset and the activation hn,i of the neuron n is extracted, given the
ith input frame. A normalized activation an,i is then calculated for
each neuron by dividing the activation values of the neuron for dif-
ferent input frames of the dataset by the maximum of these values
reached by the same neuron over all the samples; an,i =

hn,i

hmax,n

where hmax,n = max hn,j∀j.
Afterwards, a process to generate representation vectors reflecting the
neuronal activity was set up. An illustration of the steps we passed
through is shown in fig.1. For a neuron n, a histogram is generated
for each phone k in order to approximate the distribution of the neu-
ron activations as response to all the frames associated with k.
The histogram displays the number of frames falling into each in-
terval of normalized activation, also called bins, which have equal
width and divide the entire range of normalized activation [0; 1]. In
our case, we fixed the number of bins to 20. Subsequently, a vec-



Fig. 1: Process of representation vector generation for a neuron

tor Vn,k ∈ N20 containing the number of frames appearing in each
bin is derived from each histogram. Finally, a concatenation of these
vectors generated for each of the 31 phones for a given neuron results
in a 620-dimensional representation vector, and is considered later as
characterizing the neuron n for interpretation purpose. Interesting in-
sights about the organization of neurons per layer and the emergence
of interpretable ones, in regards with phonetic traits, will be revealed
in next sections.

3.3. Capacity of Neurons to detect Phonetic Traits

In order to align each neuron with the phonetic traits mentioned in
section 2 and to measure the hidden unit encoding degree for each of
these features, a score has to be defined. The aim of this score is to
quantify the degree to which a unit detects the presence of a phonetic
trait based on the activation of phones associated with, and comple-
mentary those which do not present this phonetic trait. To this end,
the analysis was still based on the values of normalized activations
for the individual units as a response to the dataset, already presented
in the previous section.

For each neuron n, let Ak,n be the normalized activation values
of n for all the frame samples belonging to the phone k. We note the
median activation value of the neuron n for the phone k as mAk,n .
The score Sn,Tx , quantifying the degree to which a unit detects the
presence of a phonetic trait, is therefore calculated for each neuron n
and phonetic trait Tx as follows:

Sn,Tx =
1

|Tx|
∑
k∈Tx

mAk,n − 1

|T̄x|
∑
k∈T̄x

mAk,n (1)

where x ∈ [v, c] denotes the macro-class of either vowels or conso-
nants, respectively v and c. Consequently, Tv denotes a vowel pho-
netic trait where: Tv ∈ {nasal, back, high, round, open} and Tc de-
notes a consonant phonetic trait where: Tc ∈ {sonorant, continuant,
nasal, voiced, compact, acute}. It has to be noted that since pho-
netic traits are binary concepts characterizing separately vowels and
consonants, the score is calculated, consequently, taking into account
either vowels or consonants. It is important to mention that the score
Sn,Tx ∈ [−1; 1]. Therefore, a strong value close to 1 reflects the fact
that the neuron is a strong detector for the phonetic trait in question
since it distinguished by a high activation level the phones presenting
the features. At the same time, a very low activation level represents
the complementary set of phones not presenting this feature. Con-
versely, when a neuron has a very low score close to −1, it means
that the neuron is a strong detector for the non phonetic trait, which
is relevant as well.

Now once we have a score reflecting how well a neuron encodes
a given phonetic trait, we consider that the neuron n is a detector of
the phonetic trait Tx if Sn,Tx exceeds a threshold. And conversely,
if Sn,Tx is below the threshold, then the neuron n is considered as

detector of the absence of phonetic trait Tx. Clearly, different thresh-
olds could lead to different numbers of neurons selected as phonetic
trait detectors across layers. However, we observe that it does not
result in a significant change in term of the distribution of this set of
neurons over the different phonetic traits. Thus, we have empirically
fixed the threshold to value ±0.25.

Given that a neuron can be a detector for several phonetic traits
(associated with relevant scores respecting the threshold), the top
phonetic trait is chosen in this case. If the neuron is identified as
detector for multiple phonetic features belonging to both vowel and
consonant macro-classes, it will be considered as detector for the top
phonetic trait for both vowels and consonants.

4. RESULTS

4.1. Emergence of phonetic features

As we previously detailed, a set of 620-dimensional vectors extract-
ing the hidden representations of neurons was prepared. A projection
of these representation vectors into a 2-dimensional space was per-
formed by t-Distributed Stochastic Neighbour Embedding (t-SNE)
[14] for each layer. Since t-SNE applies a non-linear dimensionality
reduction technique where the focus is on keeping the very similar
data points close together in lower-dimensional space, we expect to
have a visualization where neurons with similar encoding properties
appear in clusters. The first aim at this stage is to explore to what
decomposition the hidden layers converged to ensure the final task
of phone classification. The second aim is to determine if clusters
of neurons associated with a specific phonetic trait (according to the
score we defined) can be highlighted. Since our focus is basically
to analyze neurons with phonetic feature encoding properties, only
identified neurons respecting the fixed threshold will be displayed in
the following t-SNE visualization plots. Thus, a specific color is at-
tributed to each neuron according to the phonetic trait it detects based
on its score.
Fig. 2 illustrates the neurons considered as detectors for the conso-
nant phonetic traits. This visualization reveals impressive insights
Firstly, the absence of FC1 visualization in the plot is due to the fact
that none of its neurons were identified as a phonetic trait detector,
neither for vowels nor for consonants. On the other hand, the number
of phonetic trait detectors increases by a factor of close to two when
we go deeper in layers towards the final layer performing phone clas-
sification. Indeed, although FC2 and FC3 have the same number of
hidden neurons (1024), the total number of neurons detecting conso-
nant phonetic traits has increased from 206 detectors in FC2 to 373 in
FC3. This emergence of phonetic trait detectors when going deeper
in layers suggests these features allow discrimination among phone
classes. In fig. 2, we can observe the presence of dense neuron clus-
ters automatically identified as encoding the same phonetic trait. To
analyze in more details, fig. 2(b) and fig. 2(d) show the sorted count
of neurons detecting consonant phonetic traits in FC2 and FC3 re-
spectively. We observe that neurons detecting the nasality trait have
the strongest presence in both layers. A similar study was performed
on the vowel phonetic traits and generated roughly the same patterns.
These results suggest that phonetic trait detection is an important part
of the representation built by the CNN to obtain discriminative infor-
mation for the final task of phone classification.

4.2. Application to disordered speech

As specified in the previous section, BREF-Int dataset issued from
the BREF corpus was used to fix the set of interpretable neurons in
each layer, that we considered as emerging phonetic features. Let
XBREF,L,x be this set of neurons for the layer L and the macro-class



Fig. 2: t-SNE visualization highlighting neurons with phonetic trait encoding properties for consonants: (a) & (c) Plots of the embedded
neurons of layers FC2 and FC3. (b) & (d) Sorted counts of neurons in FC2 and FC3 detecting each of the consonant phonetic traits.

x. In this section, we want to examine to which extent we can rely on
this set of neurons to extract relevant interpretations about the speech
alteration by injecting disordered speech.

To do so, each individual recording per speaker (involving con-
trols and patients) available in C2SI-LEC corpus is injected in the
CNN following the same process described in section 3. This permits
to define the set of neurons having a score that exceeds the prede-
fined threshold fixed on the BREF-Int dataset. It is important to note
that even though we are no more dealing with balanced data in terms
of number of samples per phone, we assume that the proposed score
is relatively robust when exposed to highly imbalanced data (C2SI-
LEC recordings) since it is based on the median calculus per phone
distribution which is less sensitive to outliers than the mean. Once
the set of neurons being selected for the corresponding speaker spk,
noted Xspk,L,x, it will be compared to the corresponding set of inter-
pretable neurons issued from the BREF-Int dataset. This comparison
is based on the Sørensen–Dice index, noted SDI, used to measure the
similarity between two sets of data. In our case, for a given layer L,
macro-class x and C2SI-LEC speaker spk:

SDIspk,L,x =
2|Xspk,L,x ∩XBREF,L,x|
|Xspk,L,x|+ |XBREF,L,x|

(2)

Ranging between 0 and 1, a strong value of SDIspk close to 1 reflects
that the two sets of neurons Xspk and XBREF are almost equal. Pre-
cisely, the evoked neural responses of the set of interpretable neurons
to the C2SI-LEC speaker were as strongly selective for phonetic fea-
tures as they were for the same ones on the BREF-Int dataset. In other
words, this means that the speech production of C2SI-LEC speaker
in question presents acoustic characteristics close to BREF healthy
speakers in terms of phonetic feature production (which is supposed
to be the case for most of control speakers). While a low score close
to 0 means that the two sets of neurons Xspk and XBREF are almost
disjoint. This implies that almost none of the phonetic feature detec-
tors has expressly provided a selective response for a phonetic feature
when exposed to the C2SI-LEC speaker spk. Consequently, we can
assume that the speech production of the speaker in question does
not exhibit typical acoustic characteristics. To confirm this assump-
tion, Pearson correlation coefficients, noted r, were calculated be-
tween SDI and each of the perceptual measures for the overall set
of C2SI speakers. Table 1 is a sum-up of the obtained correlations
per layer and macro-class of either vowels or consonants. Firstly, it
can be mentioned that these correlation rates are rather coherent with
those reached in [8] and reported in Table 1 (CNN accuracy for the
phone classification task). Secondly, SDI scores issued from FC3 cor-
relates better with the different perceptual measures than those from
FC2. This reflects that the more we get close to the phone-level de-
cisions, perceptual measures are better ”represented”. Correspond-
ingly, this is consistent with conclusions raised in section 4.1, when

Table 1: Correlation between Sørensen–Dice index and perceptual
measures considering vowels or consonants and layers FC2 and FC3.

LEC-Sev LEC-Intel DES-Phon
CNN Accuracy 0.91 0.78 −0.88

FC2 Vowels 0.82 0.66 −0.76
Consonants 0.85 0.75 −0.78

FC3 Vowels 0.84 0.73 −0.79
Consonants 0.88 0.78 −0.82

observing the increase in number of interpretable neurons detecting
phonetic features when going deeper in layers. This finding comes to
strengthen that phonetic features contribute to the discrimination of
phones, and will be therefore very interesting for the characterization
of speech disorders and related to intelligibility loss.

5. CONCLUSION AND FURTHER WORK

In this paper, we argue that an interpretation involving phone-level
decisions, as well as having access to more abstract level of represen-
tation as phonetic features, is of a great interest to go into the char-
acteristics of disordered speech. Therefore, we propose a complete
framework in order to analyze the role of dense layers and individ-
ual hidden units within a CNN model. The latter was trained for the
task of French phone classification, but the proposed framework can
be applied for other kinds of classification tasks or application do-
mains. In our specific context, this framework reveals the presence
of interpretable neurons detecting distinctive phonetic traits in the
dense layers of the CNN while dealing with normal/healthy speech.
Exposed to disordered speech (due to Head and Neck Cancers), we
observed, based on strong correlations with perceptual evaluation of
speech disorders by experts, that this set of phonetic trait detectors is
less efficient while alterations in speech production increase. In fur-
ther work, we will confront this loss of efficiency and related phonetic
traits with the clinical information available per patient. Preliminary
analyses show in particular that the distinction between some groups
of patients according to the size of their tumors is possible within the
proposed framework and, notably, the SDI scores. Finally, the sets
of interpretable neurons, able to detect phonetic traits, will be at the
core of the third step of our overall project, related to intelligibility.
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