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ABSTRACT

This work tackles the problem of resolving high-resolution velocity fields from a set of sparse
off-grid observations. This task, crucial in many applications spanning from experimental fluid-
dynamics to compute vision and medicine, can be addressed with deep neural network models trained
to employ physics-based constraints. This work proposes an original unsupervised deep learning
framework involving sub-grid models that improve the accuracy of super-resolved instantaneous
and sparse velocity fields of turbulent flows. Python code, dataset and results are available at
https://github.com/Chutlhu/TurboSuperResultion/
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1 Introduction

Spatial reconstruction of physical velocity fields from sparse observation is still an open challenge with relevant
applications in many research fields spanning from environmental science, physics simulations and measurements,
medical images to computer graphics. Traditional super-resolution (SR) techniques, such as least-squared optimization
or kernel-based interpolation, are typically easy to implement, but the output may not capture the physical nature of
the problem. Besides, prior knowledge about the physical laws sometimes leads to intractable problems or is tricky to
implement.

Recently deep learning (DL) has been used to address SR problems with exceptional and striking results, especially
in image processing. In particular, Convolutional Neural Networks (CNN) show impressive results on image-like
data. However, such approaches are counterbalanced by requiring that the input data be organized in a regular grid,
preventing training and evaluating points on distributed irregular or sparse mesh. In addition, as common to data-driven
approaches, the performances depend on the availability of training datasets, and accuracy may drop in unseen test
conditions.

Despite these drawbacks, the modularity of the neural network architectures and training loss functions lend DL models
to embed custom prior knowledge. In particular, the recently proposed physics-informed neural networks (PINNs)
show the possibility to constrain the output of a NN to satisfy a physical model, often described by partial differential
equations (PDEs), leading to more scientifically valid and robust predictions [1, 2].

In this paper, we propose a novel framework based on Physics-informed Neural Networks to reconstruct instantaneous
and sparse 2D velocity fields. In particular:

• We demonstrate how physics-informed neural networks can be used as post-processing tool to reconstruct
instantaneous velocity fields from sparse measurement: once trained to reconstruct sparse data, the model can
evaluate the vector field on a denser regular grid.

• We propose an unsupervised self-similarity constraint derived from Kolmogorov’s theory for turbulent flows
that aim to resolve the highest resolution scales properly.
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Figure 1: The proposed approach for super-resolution of sparse and instantaneous 2D velocity fields. The MLP network takes
coordinates as inputs and estimates associated velocities. Its optimization on grids enables to impose spatial constraints

• Experimental results showed the possibility of super-resolving typical Particle Tracking Velocimetry (PTV)
measurements, starting from 0.03 vector per pixel stochastically distributed and providing up to 1 vector per
pixel on a regular grid with a mean angular error smaller than 8 degrees.

2 Related Works

Other then standard bi-cubic interpolation-based methods [3], traditional approaches for vector field reconstruction
rely on feature sparsity-based techniques [4, 5] , image deconvolution [6], kernel interpolation using divergence-
free [7, 8, 9, 10] or wavelet-based approaches [11, 12]. These methods are commonly used in commercial softwares and
are supported by literature that spans decades. However, they suffer from known numerical instability, computational
complexity, and the implementation of arbitrary prior knowledge is often challenging. Recently, several DL approaches
have been applied for reconstructing velocity fields of turbulent flows. Most of the state-of-the-art rely on CNN-based
models, e.g., [13, 14, 15, 16].

To embed governing physical laws, some works rely on soft constraints, i.e. addition in the loss function physical
properties as divergence-free [17] or PDEs residuals based on the Navier-Stokes equations [18, 19]. Other studies rely
on hard constraints where, by construction, the physical rules are respected: in [20, 21], authors propose a CNN-based
architecture that outputs the scalar potential from which the velocity field is retrieved by taking the curl of such quantity,
guaranteeing divergence-free. Differently, the work in [22] proposes a multi-scale U-Net architecture that processes the
flow at different spatio-temporal scales.The above models are trained using HR data. The work in [23] proposes to use
a data-assimilation framework for unsupervised training.

Specific to static vector fields, the works in [24, 25] propose to use DL together with a stencil-based interpolation
scheme, while in [26] a new resolution-invariant layer, dubbed Fourier Neural Operator, is introduced. Despite the
outstanding results, these architectures do not generalize directly to grid-free test points. To overcome the limit, the
work in [18] extend the CNN-based approach to query grid-free data at test time, yet requiring LR data structured on a
uniform grid.

In their original version, Physics-informed Neural Network (PINNs) [27] are Multi-Layer Perceptor (MLP)-based
models that aim to approximate the solution to PDEs by minimizing their residual error. The core intuition behind
PINNs is that the back-propagation algorithm can be used to access derivatives with respect to inputs directly. Several
works have already applied PINNs to turbulent flows with success [28, 29, 30]. Unfortunately, PINNs suffer from
issues that prevent 1) encoding accurately high-frequency details, and 2) guaranteeing the right minimization of all
the loss terms [31]. To overcome the former, the authors of [32] propose to encode the input with Random Fourier
Features (RFF) able to capture more variability in frequencies. The latter issue can be addressed by using techniques
for multi-task learning [31].
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3 Method

This work considers an instantaneous divergence-free, isotropic and homogeneous turbulent flow described by Navier-
Stokes equations. Let uH ∈ RH×H be a high-resolution (HR) velocity field defined over the grid xH ∈ RH×H . Here
H corresponds to the highest possible resolution scale that entirely resolves the target flow. Let xN ,uN ∈ RN×2

with N � H2 be the observed sparse and off-grid coordinates and velocity vectors, respectively. Note that, since
uN and xN are not necessarily on a grid, it is more convenient to define them as of N coordinates in R2. Finally, let
uL ∈ RL×L with L� H a low-resolution (LR) velocity vectors defined over the uniform coarse grid xL ∈ RL×L. L
and N are chose so that uL and uN (risp. xL and xN ) have the comparable density in terms of particle per pixel.

Following the RFF-based PINNs framework presented in [31], we use an MLP to learn the mapping between sparse
coordinates xN , encoded into RFF [32], and the sparse velocity components uN . A schematic overview of the network
is depicted in Figure 1. Such model is trained by minimizing the mean-squared loss function between the given LR
velocity field and the model prediction:

Lrec =
1

L2

∑
i,j

‖uN [i, j]− ûN [i, j]‖22, (1)

where ûN [i, j] = MLP(xN [i, j]) is the estimated velocity on indices i, j, hereafter dropped for sake of clarity.

Under the theory Neural Tangent Kernel [33], MLPs can be viewed as a kernel-based interpolation model that, once
trained on LR data, can interpolate the learned function on a denser input mesh. Once trained on the sparse data
(xN ,uN ), this model can directly evaluate velocity on arbitrary input mesh, e.g., xL or xH .

In order to enforce physical consistency to the output of the neural network, one can add constraint derived from
physical laws and models. Divergence-free soft constraints [17] can be added to (1), yielding a loss Ltot defined as:

Ltot = Lrec + λdfLdf, (2)

Ldf = ‖∇ · uN‖22, (3)

where λdf is a scalar parameter that can be tuned manually or automatically [31]. Alternatively, one can impose
the divergence-free constraint as a hard constraint by predicting the scalar potential ΨuN and then taking its curl
uN = ∇×ΨuN [20, 21, 34, 35], yielding by construction a divergence free velocity uN .

As will be shown, despite interesting results, such constraints lead to high-frequency artifacts and inconsistent estimation
of the gradient of the target function. In order to avoid such artifacts and increase the accuracy, we propose to use one
novel regularization term by exploiting finer grid xH constraints without requiring HR data uH . In fact, even though
the high-resolution target data uH are not available during train and validation, nothing prevents us from evaluating the
physical consistency on xH at training time. This can be extended to any resolution grid, such as xL.

The sub-grid self-similarity constraint [36] can be derived from Kolmogorov’s theoretical works on turbulent flows.
More precisely, homogeneity and isotropy at small scale can be translated as an invariance with respect to position x and
direction nθ. In particular, the statistical distribution of the velocity increments δu(`,x, θ) = [u(x + `nθ)− u(x)] · nθ
at very low scale, i.e. below the elementary scale of the energy cascade, is driven by the following power law:

S2(`) = Ex

[
Enθ

[
|δu(`,xH , θ)|2

]]
≈ γ`2, (4)

where γ is a scale parameters of the flow that can be estimated from the LR data. In the literature S2(`) is known as
the second-order structure function [37]. The formulation (4) is valid for ` < η, where η is the Kolmogorov scale or
the elementary scale of the energy cascade (in the following ` ∈ [0, 4] pixel wrt HR grid). Finally, the model (4) can
translated into the soft constraint LSfun as

LSfun =
1

2
‖S2(`)− γ`2‖22. (5)

The resulting loss function features a weighted sum of these constraints forming a multi-task learning loss, that is

Ltot = Lrec + λdfLdf + λSfunLSfun. (6)

4 Experimental results

To validate the proposed approach, we use a dataset of synthetic images sequences based on 2D turbulence obtained
from direct numerical simulation (DNS) of the 2D and divergence-free Naiver-Stokes equation with a Reynolds number
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equal to 3000. Different models are evaluated by reconstruction error (i.e., root mean squared error between prediction
and target) and angular error (in degree) on the reconstructed LR and HR vector field for different hyper-parameters,
such as network size, number of RFF, and different weights for the loss function, etc. The complete evaluation also
considers different time-shots of the original flow and various up-sampling factors of the HR data and particle per pixel
density. In addition, we will include the different terms of loss function (6) as a measure of fidelity of physical laws.
Finally, we visually inspect the TKE spectrum and the reconstructed field.

The main results are showcased in Table 1 for an original sparse vector field simulating a PTV output obtained with
0.03 particle per pixel (ppp), hence providing 0.03 vector per pixel (vpp). Such field is synthetically built by randomly
sampling at desired density the upsampled1 ground-truth HR data. The models are evaluated for reconstructing a vector
field on a uniform grid at different resolution: 64×64 corresponding at 0.25 vpp., 128×128 (0.5 vpp), and 256×256 (1
vpp).

We evaluated the proposed framework against classic bicubic interpolation, taken as baseline. We first observe that the
simplest model RFFMLP outperforms the baseline, yielding angular error below 5◦, demonstrating the effectiveness of
neural networks models. Secondly, we observe that the self-similarity regularization improves the models’ performance
in all the cases. In our view, this is a significant property since this term imposes the velocity field at small scales to
follow physically motivated behaviour. In general, regarding the divergence-free constraints, the soft-constrain-based
model seems to outperform the hard-constrained one in terms of the evaluation metrics, yielding an angular error of
10 times smaller. However, the divergence-free constraint is not guaranteed on the overall image as revealed by the
value of the related residual ( Ldiv ∼ 10−2), while with hard-constraint is on the order of 10−11. This issue seems to
be due to inconsistency in estimating the gradient of the solution learned by the neural network. A possible currently
investigated solution is to constrain such a gradient to be consistent with the spatial numerical gradient computed by
finite differences on a regular mesh. When inspecting the Turbulent Kinetic Energy (TKE) spectra (see Figure 4, one
can observe how the energy of high-frequency artifacts introduced by purely-data driven model is attenuated thanks to
the self-similarity constraint. In particular, at the highest scales, corresponding to wavenumber k > 102, the curves of
the TKE spectra featuring the self-similarity constraints are better aligned to the ground-truth ones. Nevertheless, the
difference in height indicates that a lot of noise is still introduced by the models, suggesting that there is still room ror
improvement.

64× 64 (0.25 vpp) 128× 128 (0.5 vpp) 256× 256 (1 vpp)
Lrec λSfunLsfun Lrec λSfunLsfun Lrec λSfunLsfun

Bicubic 15.87◦ (2.83) - 17.77◦ (3.23) - 18.78◦ (3.31) -
RFFMLP 4.87◦ (1.83e-2) 2.93◦ (0.62e-2) 4.77◦ (1.80e-2) 2.89◦ (0.61e-2) 4.78◦ (1.81e-2) 2.89◦ (0.62e-2)

soft-div RFFMLP 1.56◦ (0.18e-2) 1.50◦ (0.14e-2) 1.53◦ (0.17e-2) 1.44◦ (0.13e-2) 1.54◦ (0.18e-2) 1.44◦ (0.13e-2)
hard-div RFFMLP 12.43◦ (8.72e-2) 7.22◦ (3.16e-2) 11.93◦ (8.33e-2) 7.20◦ (3.16e-2) 11.96◦ (8.40e-2) 7.21◦ (3.16e-2)

Table 1: Comparison of reconstruction performances in terms of angular error and end point error (in parenthesis in pixel) for
different resolution grid (the best results are in bold, vpp stands for vector per pixel). All the models are trained on sparse data with
0.03 vpp.

5 Conclusions

This study proposed a physical-informed neural network to reconstruct an instantaneous 2D velocity field from sparse
observation. Based on Multi-Layer-Perceptron and Random Fourier Features, it takes as input any coordinates and
outputs the associated velocity. Thanks to original physically-based regularization terms designed on higher spatial
grids and exploiting automatic differentiation of neural networks, the proposed approach outperform standard methods,
such as bi-cubic interpolation. It can be incorporated in other methods, for instance, extending the model operating
on dynamic settings. In contrast with state-of-the-art models for super-resolution that typically process image-like
data and require high-resolution labelled data, the proposed approach can process sparse grid-free observations in an
unsupervised fashion. Numerical experimentation on synthetic data shows that the proposed approach can accurately
reconstruct dense Eulerian velocity fields from sparse Lagrangian velocity measurements. We will provide more
assessment details on real PIV and PTV experiments by submitting the final full-text paper.

1Bicubic interpolation is used at the highest possible resolution.
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Figure 2: (left) Turbulent Energy Spectra against resolution scale for different models (ground-truth spectra in gray dashed line).
(right) Ground-truth and reconstructed vector fields with proposed models.

6 Broader Impact

In many domains spanning from geoscience to computer vision, from experimental fluid dynamics and medicine to
art analysis, images can be modelled as the realization of vector fields transporting particles. Striking examples are
satellites images of clouds, simulation of smokes, analysis of blood flows as well as the movement of the brush in a
painting. Many related challenging tasks require to access such data at different resolution scales. PDEs can model the
dynamics of such data with possibly complex boundary conditions, however standard solver suffers from computational
issues due to the complexity of the problem. Moreover, these data often support sparse local measurements recorded by
field sensors scattered on a broad area, for which grid-free approaches are desirable.
The proposed work gets in line with the physics-informed deep learning methods that, thanks to deep learning models’
modularity and the possibility of easily encoding physics-based prior knowledge, try to address the known limitation of
standard solvers. In particular, the proposed approach shows the possibility of reconstructing a high-resolution vector
field while maintaining physical consistency and processing grid-free data.
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