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This work tackles the problem of resolving high-resolution velocity fields from a set of sparse off-grid observations. This task, crucial in many applications spanning from experimental fluiddynamics to compute vision and medicine, can be addressed with deep neural network models trained to employ physics-based constraints. This work proposes an original unsupervised deep learning framework involving sub-grid models that improve the accuracy of super-resolved instantaneous and sparse velocity fields of turbulent flows. Python code, dataset and results are available at

Introduction

Spatial reconstruction of physical velocity fields from sparse observation is still an open challenge with relevant applications in many research fields spanning from environmental science, physics simulations and measurements, medical images to computer graphics. Traditional super-resolution (SR) techniques, such as least-squared optimization or kernel-based interpolation, are typically easy to implement, but the output may not capture the physical nature of the problem. Besides, prior knowledge about the physical laws sometimes leads to intractable problems or is tricky to implement.

Recently deep learning (DL) has been used to address SR problems with exceptional and striking results, especially in image processing. In particular, Convolutional Neural Networks (CNN) show impressive results on image-like data. However, such approaches are counterbalanced by requiring that the input data be organized in a regular grid, preventing training and evaluating points on distributed irregular or sparse mesh. In addition, as common to data-driven approaches, the performances depend on the availability of training datasets, and accuracy may drop in unseen test conditions. Despite these drawbacks, the modularity of the neural network architectures and training loss functions lend DL models to embed custom prior knowledge. In particular, the recently proposed physics-informed neural networks (PINNs) show the possibility to constrain the output of a NN to satisfy a physical model, often described by partial differential equations (PDEs), leading to more scientifically valid and robust predictions [START_REF] Kashinath | Physics-informed machine learning: case studies for weather and climate modelling[END_REF][START_REF] Vinuesa | The potential of machine learning to enhance computational fluid dynamics[END_REF].

In this paper, we propose a novel framework based on Physics-informed Neural Networks to reconstruct instantaneous and sparse 2D velocity fields. In particular:

• We demonstrate how physics-informed neural networks can be used as post-processing tool to reconstruct instantaneous velocity fields from sparse measurement: once trained to reconstruct sparse data, the model can evaluate the vector field on a denser regular grid.

• We propose an unsupervised self-similarity constraint derived from Kolmogorov's theory for turbulent flows that aim to resolve the highest resolution scales properly. • Experimental results showed the possibility of super-resolving typical Particle Tracking Velocimetry (PTV) measurements, starting from 0.03 vector per pixel stochastically distributed and providing up to 1 vector per pixel on a regular grid with a mean angular error smaller than 8 degrees.

Related Works

Other then standard bi-cubic interpolation-based methods [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF], traditional approaches for vector field reconstruction rely on feature sparsity-based techniques [START_REF] Yang | Image super-resolution via sparse representation[END_REF][START_REF] Callaham | Robust flow field reconstruction from limited measurements via sparse representation[END_REF] , image deconvolution [START_REF] Zille | Super-resolution of turbulent passive scalar images using data assimilation[END_REF], kernel interpolation using divergencefree [START_REF] Mcnally | Divergence-free interpolation of vector fields from point values -exact ∇ • B = 0 in numerical simulations[END_REF][START_REF] Macêdo | Learning divergence-free and curl-free vector fields with matrix-valued kernels[END_REF][START_REF] Busch | Reconstruction of divergence-free velocity fields from cine 3d phase-contrast flow measurements[END_REF][START_REF] Gunes | Spatial resolution enhancement/smoothing of stereo-particle-image-velocimetry data using proper-orthogonal-decomposition-based and kriging interpolation methods[END_REF] or wavelet-based approaches [START_REF] Kim | Wavelet turbulence for fluid simulation[END_REF][START_REF] Deriaz | Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows[END_REF]. These methods are commonly used in commercial softwares and are supported by literature that spans decades. However, they suffer from known numerical instability, computational complexity, and the implementation of arbitrary prior knowledge is often challenging. Recently, several DL approaches have been applied for reconstructing velocity fields of turbulent flows. Most of the state-of-the-art rely on CNN-based models, e.g., [START_REF] Lee | Piv-dcnn: cascaded deep convolutional neural networks for particle image velocimetry[END_REF][START_REF] Kim | Unsupervised deep learning for super-resolution reconstruction of turbulence[END_REF][START_REF] Fukami | Super-resolution reconstruction of turbulent flows with machine learning[END_REF][START_REF] Cai | Dense motion estimation of particle images via a convolutional neural network[END_REF].

To embed governing physical laws, some works rely on soft constraints, i.e. addition in the loss function physical properties as divergence-free [START_REF] Mathis Bode | Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows[END_REF] or PDEs residuals based on the Navier-Stokes equations [START_REF] Esmaeilzadeh | Meshfreeflownet: a physics-constrained deep continuous space-time super-resolution framework[END_REF][START_REF] Wang | Physics-informed neural network super resolution for advection-diffusion models[END_REF]. Other studies rely on hard constraints where, by construction, the physical rules are respected: in [START_REF] Kim | Deep fluids: A generative network for parameterized fluid simulations[END_REF][START_REF] Arvind T Mohan | Embedding hard physical constraints in neural network coarse-graining of 3d turbulence[END_REF], authors propose a CNN-based architecture that outputs the scalar potential from which the velocity field is retrieved by taking the curl of such quantity, guaranteeing divergence-free. Differently, the work in [START_REF] Wang | Towards physics-informed deep learning for turbulent flow prediction[END_REF] proposes a multi-scale U-Net architecture that processes the flow at different spatio-temporal scales.The above models are trained using HR data. The work in [START_REF] Gao | Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels[END_REF] proposes to use a data-assimilation framework for unsupervised training.

Specific to static vector fields, the works in [START_REF] Bar-Sinai | Learning data-driven discretizations for partial differential equations[END_REF][START_REF] Kochkov | Machine learningaccelerated computational fluid dynamics[END_REF] propose to use DL together with a stencil-based interpolation scheme, while in [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF] a new resolution-invariant layer, dubbed Fourier Neural Operator, is introduced. Despite the outstanding results, these architectures do not generalize directly to grid-free test points. To overcome the limit, the work in [START_REF] Esmaeilzadeh | Meshfreeflownet: a physics-constrained deep continuous space-time super-resolution framework[END_REF] extend the CNN-based approach to query grid-free data at test time, yet requiring LR data structured on a uniform grid.

In their original version, Physics-informed Neural Network (PINNs) [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] are Multi-Layer Perceptor (MLP)-based models that aim to approximate the solution to PDEs by minimizing their residual error. The core intuition behind PINNs is that the back-propagation algorithm can be used to access derivatives with respect to inputs directly. Several works have already applied PINNs to turbulent flows with success [START_REF] Bottero | Physics-informed machine learning simulator for wildfire propagation[END_REF][START_REF] Jin | Nsfnets (navier-stokes flow nets): Physics-informed neural networks for the incompressible navier-stokes equations[END_REF][START_REF] Lu | Physics-informed neural networks with hard constraints for inverse design[END_REF]. Unfortunately, PINNs suffer from issues that prevent 1) encoding accurately high-frequency details, and 2) guaranteeing the right minimization of all the loss terms [START_REF] Wang | On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks[END_REF]. To overcome the former, the authors of [START_REF] Tancik | Fourier features let networks learn high frequency functions in low dimensional domains[END_REF] propose to encode the input with Random Fourier Features (RFF) able to capture more variability in frequencies. The latter issue can be addressed by using techniques for multi-task learning [START_REF] Wang | On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks[END_REF].

This work considers an instantaneous divergence-free, isotropic and homogeneous turbulent flow described by Navier-Stokes equations. Let u H ∈ R H×H be a high-resolution (HR) velocity field defined over the grid x H ∈ R H×H . Here H corresponds to the highest possible resolution scale that entirely resolves the target flow. Let

x N , u N ∈ R N ×2
with N H 2 be the observed sparse and off-grid coordinates and velocity vectors, respectively. Note that, since u N and x N are not necessarily on a grid, it is more convenient to define them as of N coordinates in R 2 . Finally, let u L ∈ R L×L with L H a low-resolution (LR) velocity vectors defined over the uniform coarse grid x L ∈ R L×L . L and N are chose so that u L and u N (risp. x L and x N ) have the comparable density in terms of particle per pixel.

Following the RFF-based PINNs framework presented in [START_REF] Wang | On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks[END_REF], we use an MLP to learn the mapping between sparse coordinates x N , encoded into RFF [START_REF] Tancik | Fourier features let networks learn high frequency functions in low dimensional domains[END_REF], and the sparse velocity components u N . A schematic overview of the network is depicted in Figure 1. Such model is trained by minimizing the mean-squared loss function between the given LR velocity field and the model prediction:

L rec = 1 L 2 i,j u N [i, j] -ûN [i, j] 2 2 , (1) 
where

ûN [i, j] = MLP(x N [i, j]
) is the estimated velocity on indices i, j, hereafter dropped for sake of clarity.

Under the theory Neural Tangent Kernel [START_REF] Jacot | Neural tangent kernel: Convergence and generalization in neural networks[END_REF], MLPs can be viewed as a kernel-based interpolation model that, once trained on LR data, can interpolate the learned function on a denser input mesh. Once trained on the sparse data (x N , u N ), this model can directly evaluate velocity on arbitrary input mesh, e.g., x L or x H .

In order to enforce physical consistency to the output of the neural network, one can add constraint derived from physical laws and models. Divergence-free soft constraints [START_REF] Mathis Bode | Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows[END_REF] can be added to (1), yielding a loss L tot defined as:

L tot = L rec + λ df L df , (2) 
L df = ∇ • u N 2 2 , (3) 
where λ df is a scalar parameter that can be tuned manually or automatically [START_REF] Wang | On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks[END_REF]. Alternatively, one can impose the divergence-free constraint as a hard constraint by predicting the scalar potential Ψ u N and then taking its curl [START_REF] Kim | Deep fluids: A generative network for parameterized fluid simulations[END_REF][START_REF] Arvind T Mohan | Embedding hard physical constraints in neural network coarse-graining of 3d turbulence[END_REF][START_REF] Hendriks | Linearly constrained neural networks[END_REF][START_REF] Beucler | Enforcing analytic constraints in neural networks emulating physical systems[END_REF], yielding by construction a divergence free velocity u N .

u N = ∇ × Ψ u N
As will be shown, despite interesting results, such constraints lead to high-frequency artifacts and inconsistent estimation of the gradient of the target function. In order to avoid such artifacts and increase the accuracy, we propose to use one novel regularization term by exploiting finer grid x H constraints without requiring HR data u H . In fact, even though the high-resolution target data u H are not available during train and validation, nothing prevents us from evaluating the physical consistency on x H at training time. This can be extended to any resolution grid, such as x L .

The sub-grid self-similarity constraint [START_REF] Héas | Power laws and inverse motion modelling: application to turbulence measurements from satellite images[END_REF] can be derived from Kolmogorov's theoretical works on turbulent flows. More precisely, homogeneity and isotropy at small scale can be translated as an invariance with respect to position x and direction n θ . In particular, the statistical distribution of the velocity increments δ u ( , x, θ) = [u(x + n θ ) -u(x)] • n θ at very low scale, i.e. below the elementary scale of the energy cascade, is driven by the following power law:

S 2 ( ) = E x E n θ |δ u ( , x H , θ)| 2 ≈ γ 2 , ( 4 
)
where γ is a scale parameters of the flow that can be estimated from the LR data. In the literature S 2 ( ) is known as the second-order structure function [START_REF] Effinger | Static structure function of turbulent flow from the navier-stokes equations[END_REF]. The formulation ( 4) is valid for < η, where η is the Kolmogorov scale or the elementary scale of the energy cascade (in the following ∈ [0, 4] pixel wrt HR grid). Finally, the model ( 4) can translated into the soft constraint L Sfun as

L Sfun = 1 2 S 2 ( ) -γ 2 2 2 . ( 5 
)
The resulting loss function features a weighted sum of these constraints forming a multi-task learning loss, that is

L tot = L rec + λ df L df + λ Sfun L Sfun . ( 6 
)

Experimental results

To validate the proposed approach, we use a dataset of synthetic images sequences based on 2D turbulence obtained from direct numerical simulation (DNS) of the 2D and divergence-free Naiver-Stokes equation with a Reynolds number equal to 3000. Different models are evaluated by reconstruction error (i.e., root mean squared error between prediction and target) and angular error (in degree) on the reconstructed LR and HR vector field for different hyper-parameters, such as network size, number of RFF, and different weights for the loss function, etc. The complete evaluation also considers different time-shots of the original flow and various up-sampling factors of the HR data and particle per pixel density. In addition, we will include the different terms of loss function ( 6) as a measure of fidelity of physical laws. Finally, we visually inspect the TKE spectrum and the reconstructed field.

The main results are showcased in Table 1 for an original sparse vector field simulating a PTV output obtained with 0.03 particle per pixel (ppp), hence providing 0.03 vector per pixel (vpp). Such field is synthetically built by randomly sampling at desired density the upsampled1 ground-truth HR data. The models are evaluated for reconstructing a vector field on a uniform grid at different resolution: 64×64 corresponding at 0.25 vpp., 128×128 (0.5 vpp), and 256×256 (1 vpp).

We evaluated the proposed framework against classic bicubic interpolation, taken as baseline. We first observe that the simplest model RFFMLP outperforms the baseline, yielding angular error below 5 • , demonstrating the effectiveness of neural networks models. Secondly, we observe that the self-similarity regularization improves the models' performance in all the cases. In our view, this is a significant property since this term imposes the velocity field at small scales to follow physically motivated behaviour. In general, regarding the divergence-free constraints, the soft-constrain-based model seems to outperform the hard-constrained one in terms of the evaluation metrics, yielding an angular error of 10 times smaller. However, the divergence-free constraint is not guaranteed on the overall image as revealed by the value of the related residual ( L div ∼ 10 -2 ), while with hard-constraint is on the order of 10 -11 . This issue seems to be due to inconsistency in estimating the gradient of the solution learned by the neural network. A possible currently investigated solution is to constrain such a gradient to be consistent with the spatial numerical gradient computed by finite differences on a regular mesh. When inspecting the Turbulent Kinetic Energy (TKE) spectra (see Figure 4, one can observe how the energy of high-frequency artifacts introduced by purely-data driven model is attenuated thanks to the self-similarity constraint. In particular, at the highest scales, corresponding to wavenumber k > 10 2 , the curves of the TKE spectra featuring the self-similarity constraints are better aligned to the ground-truth ones. Nevertheless, the difference in height indicates that a lot of noise is still introduced by the models, suggesting that there is still room ror improvement. 1: Comparison of reconstruction performances in terms of angular error and end point error (in parenthesis in pixel) for different resolution grid (the best results are in bold, vpp stands for vector per pixel). All the models are trained on sparse data with 0.03 vpp.

Conclusions

This study proposed a physical-informed neural network to reconstruct an instantaneous 2D velocity field from sparse observation. Based on Multi-Layer-Perceptron and Random Fourier Features, it takes as input any coordinates and outputs the associated velocity. Thanks to original physically-based regularization terms designed on higher spatial grids and exploiting automatic differentiation of neural networks, the proposed approach outperform standard methods, such as bi-cubic interpolation. It can be incorporated in other methods, for instance, extending the model operating on dynamic settings. In contrast with state-of-the-art models for super-resolution that typically process image-like data and require high-resolution labelled data, the proposed approach can process sparse grid-free observations in an unsupervised fashion. Numerical experimentation on synthetic data shows that the proposed approach can accurately reconstruct dense Eulerian velocity fields from sparse Lagrangian velocity measurements. We will provide more assessment details on real PIV and PTV experiments by submitting the final full-text paper. (right) Ground-truth and reconstructed vector fields with proposed models.

Broader Impact

In many domains spanning from geoscience to computer vision, from experimental fluid dynamics and medicine to art analysis, images can be modelled as the realization of vector fields transporting particles. Striking examples are satellites images of clouds, simulation of smokes, analysis of blood flows as well as the movement of the brush in a painting. Many related challenging tasks require to access such data at different resolution scales. PDEs can model the dynamics of such data with possibly complex boundary conditions, however standard solver suffers from computational issues due to the complexity of the problem. Moreover, these data often support sparse local measurements recorded by field sensors scattered on a broad area, for which grid-free approaches are desirable. The proposed work gets in line with the physics-informed deep learning methods that, thanks to deep learning models' modularity and the possibility of easily encoding physics-based prior knowledge, try to address the known limitation of standard solvers. In particular, the proposed approach shows the possibility of reconstructing a high-resolution vector field while maintaining physical consistency and processing grid-free data.

Figure 1 :

 1 Figure 1: The proposed approach for super-resolution of sparse and instantaneous 2D velocity fields. The MLP network takes coordinates as inputs and estimates associated velocities. Its optimization on grids enables to impose spatial constraints

Figure 2 :

 2 Figure 2: (left) Turbulent Energy Spectra against resolution scale for different models (ground-truth spectra in gray dashed line).

Table

  

		64 × 64 (0.25 vpp)	128 × 128 (0.5 vpp)	256 × 256 (1 vpp)
		Lrec	λSfunLsfun	Lrec	λSfunLsfun	Lrec	λSfunLsfun
	Bicubic	15.87 • (2.83)	-	17.77 • (3.23)	-	18.78 • (3.31)	-
	RFFMLP	4.87 • (1.83e-2)	2.93 • (0.62e-2)	4.77 • (1.80e-2)	2.89 • (0.61e-2)	4.78 • (1.81e-2)	2.89 • (0.62e-2)
	soft-div RFFMLP	1.56 • (0.18e-2)	1.50 • (0.14e-2)	1.53 • (0.17e-2)	1.44 • (0.13e-2)	1.54 • (0.18e-2)	1.44 • (0.13e-2)
	hard-div RFFMLP 12.43 • (8.72e-2) 7.22 • (3.16e-2) 11.93 • (8.33e-2) 7.20 • (3.16e-2) 11.96 • (8.40e-2) 7.21 • (3.16e-2)

Bicubic interpolation is used at the highest possible resolution.
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