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In Brief
The integration of newly trained
immunopeptide MS2PIP models,
DeepLC, and Percolator into one
software package called
MS2Rescore allows for a
significant boost in
immunopeptide identification
rate as well as a substantial
increase in specificity.
MS2Rescore is search engine-
agnostic and unbiased toward
HLA types. MS2Rescore,
therefore, shows great promise
to extend the current neo- and
xeno-epitope landscape in
existing and future
immunopeptidomics
experiments.
Highlights
• MS2Rescore significantly boosts immunopeptide identification rates• Data-driven post-processing allows for a ten-fold increase in specificity• MS2PIP and DeepLC predictors are integrated with Percolator post-processing• MS2Rescore accepts identification results from MaxQuant, PEAKS, MS-GF+ and X!Tandem• MS2Rescore shows great promise to extend current neo- and xeno-epitope landscapes
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RESEARCH
MS2Rescore: Data-Driven Rescoring
Dramatically Boosts Immunopeptide
Identification Rates
Arthur Declercq1,2 , Robbin Bouwmeester1,2 , Aurélie Hirschler3 ,
Christine Carapito3 , Sven Degroeve1,2 , Lennart Martens1,2,* , and Ralf Gabriels1,2
Immunopeptidomics aims to identify major histocompati-
bility complex (MHC)-presented peptides on almost all
cells that can be used in anti-cancer vaccine development.
However, existing immunopeptidomics data analysis
pipelines suffer from the nontryptic nature of immuno-
peptides, complicating their identification. Previously,
peak intensity predictions by MS2PIP and retention time
predictions by DeepLC have been shown to improve tryptic
peptide identifications when rescoring peptide-spectrum
matches with Percolator. However, as MS2PIP was
tailored toward tryptic peptides, we have here retrained
MS2PIP to include nontryptic peptides. Interestingly, the
new models not only greatly improve predictions for
immunopeptides but also yield further improvements for
tryptic peptides. We show that the integration of new
MS2PIP models, DeepLC, and Percolator in one software
package, MS2Rescore, increases spectrum identification
rate and unique identified peptides with 46% and 36%
compared to standard Percolator rescoring at 1% FDR.
Moreover, MS2Rescore also outperforms the current
state-of-the-art in immunopeptide-specific identification
approaches. Altogether, MS2Rescore thus allows sub-
stantially improved identification of novel epitopes from
existing immunopeptidomics workflows.

The immune system is a complex, yet remarkable system
that protects us from both invaders from outside the body,
that is, pathogens, as well as from inside the body, that is,
malignancies (1). Increased understanding of the immune
system allowed for great medical achievements such as
vaccination, which is currently available for over 29 diseases,
enabled the eradication of smallpox, and prevents over
3 million deaths each year (https://www.cdc.gov/vaccines/
vpd/vaccines-diseases.html?CDC_AA_refVal=https%3A%2F
%2Fwww.cdc.gov%2Fvaccines%2Fvpd-vac%2Fdefault.htm).
However, many diseases such asMycobacterium tuberculosis
or malignancies lack effective vaccines due to improper T-cell
activation. A key issue in developing effective vaccines for
these diseases is the lack of accurately identified major
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histocompatibility complex (MHC)-presented epitopes or
immunopeptides. These epitopes are presented on the cell
surface and enable T-cells to discern healthy cells from
infected or malignant cells. While much effort has recently
been invested in accurate prediction of these epitopes in silico
(2), these are mostly limited to viruses as these contain fewer
potential protein antigens (3). Moreover, these tools are not
yet sufficiently precise to confidently identify epitopes (4, 5).
Therefore, experimental immunopeptidomics workflows, such
as epitope detection through LC-MS, are still the best way to
accurately identify these immunopeptides (6).
While immunopeptidomics workflows have been readily

developed and applied (7), acquisition of immunopeptides
through LC-MS suffers from some major problems. First, the
acquisition of immunopeptide spectra is hampered due to the
low abundance of immunopeptides and even more so of neo-
epitopes. Infrequently occurring epitopes are still very chal-
lenging to identify through LC-MS, despite enrichment efforts
and sample preprocessing (8). Second, in contrast to standard
proteomics experiments where proteins are usually digested
with trypsin before LC-MS, immunopeptides are captured
through immune purification with antibodies followed by acidic
elution resulting in mostly nontryptic peptides. The nontryptic
nature of immunopeptides results in one less positive charge
due to themissingarginineor lysineat thepeptide’sC-terminus,
causingmany immunopeptides to be singly charged duringMS
acquisition. These singly charged peptides are much harder to
analyze because, during fragmentation of the peptide, the
charge resides on one of the fragments, leaving the other un-
charged and thus lost (9). Moreover, most contaminants are
singly charged as well, making identifications of immunopep-
tides much harder (10). The nontryptic nature of immunopep-
tides hampers not only the acquisition but also the identification
of immunopeptide spectra. To match each acquired spectrum
with the peptide from which the spectrum originated, prote-
omics database search engines such as SEQUEST (11), X!
Tandem (12), Andromeda (13), or PEAKS DB (14) generate in
e, Belgium; 2Department of Biomolecular Medicine, Ghent University,
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silico spectra for all potentiallymatchingpeptides. Thecomplete
list of peptides that could be in the sample is called the search
space. It is important to note that spectra from peptides that are
not included in this search space cannot be identified, even
though they were acquired. In standard shotgun proteomics
experiments, in silico tryptic digestion of relevant proteins yields
a broad yet representable search space. In immunopeptido-
mics, however, the search space tends to be two orders of
magnitude larger due to (i) seemingly random cleavage from the
protein of origin, (ii) the variable length of MHC class I bound
peptides, 8 to 11 amino acids, and MHC-II peptides, 6 to 24
amino acids (15) and (iii) the potential occurrence of conforma-
tional cis- and trans-spliced immunopeptides, which are
nonlinear peptides that originate from the same or different
proteins, respectively (16). Additionally, sequence variants and
noncanonical protein sequences are often considered as well,
even further increasing the search space. Such a search space
expansion leads to considerably more ambiguity between
candidate peptide-spectrum matches (PSMs) (17), lower PSM
scores, drastically elevated false discovery rate (FDR) score
thresholds, and ultimately in fewer identified immunopeptides
(18). Furthermore, because tryptic peptides have been the
longtime standard in proteomics, search engines as well as
bioinformatics tools that aid in identifying LC-MS spectra are
tailored toward tryptic peptides, making them less accurate or
not applicable at all for immunopeptidomics.
The high need for neo- and xeno-epitope discovery led to

the development of many bioinformatics tools to improve or
validate identifications in immunopeptidomics. On the one
hand, motif deconvolution tools have been developed that
leverage binding motifs of immunopeptides to validate
immunopeptide identifications. On the other hand, full pipe-
lines have been developed to improve immunopeptide iden-
tification. For example, MHCquant (19), which is a recent
computational workflow designed specifically for neo-epitope
identification, and PEAKS DB (14). Even though PEAKS DB is
not specifically designed for immunopeptides, it is highly
interesting due to its de novo–assisted database searches,
which tend to work well for large search spaces. Even though
these tools can help with immunopeptide identification, they
do not use all available information, such as retention time and
fragment ion intensity patterns. Previously, it has been proven
that integrating retention time predictions in standard prote-
omics workflows can improve identification rates (20). Simi-
larly, adding peak intensity predictions to postprocessing
tools such as Percolator can also improve identification rates
drastically (21), which has already been proven to work for
immunopeptides as well by efforts such as Prosit (22, 23).
Similarly, tools such as DeepLC (24) and MS2PIP (25–27) can
provide accurate retention time predictions and peak intensity
predictions, respectively, to aid in postprocessing. Indeed,
when combined with Percolator, identification rates at a fixed
FDR have been proven to substantially increase (21). How-
ever, currently, DeepLC and MS2PIP are solely trained on
2 Mol Cell Proteomics (2022) 21(8) 100266
tryptic peptides. This absence of lysine and arginine at the C-
terminus is less of a problem for DeepLC as the effect on
retention time is small and is accounted for through feature
encoding (28). However, this is not the case for MS2PIP, as
alterations in peptide composition as well as fragmentation
patterns and labeling methods heavily alter peak intensity
patterns (25). Therefore, we here present greatly improved
MS2PIP models that include immunopeptides and nontryptic
peptides in general. Moreover, we have integrated MS2PIP
and DeepLC with Percolator into the free and open-source
MS2Rescore software tool, which enables improved rescor-
ing of peptide identifications from various proteomics search
engines. Altogether, we show that well-adapted fragmentation
spectrum and retention time predictions integrated into
MS2Rescore drastically increase immunopeptide identification
rates and outperform existing postprocessing methods.
EXPERIMENTAL PROCEDURES

Training and Evaluation of New MS2PIP Spectrum Prediction
Models for Immunopeptides

To train and test new MS2PIP models, five publicly available
immunopeptide data sets and one publicly available chymotrypsin-
digestion data set were downloaded from PRIDE Archive (29, 30).
Similarly, for evaluation on representative unseen data, four distinct
data sets were downloaded: (i) a data set containing HLA-I immuno-
peptides, (ii) a data set containing HLA-II immunopeptides, (iii) the data
set with tryptic peptides that was previously used to evaluate the
existing MS2PIP higher-energy collision-induced dissociation (HCD)
models, and (iv) a data set containing chymotrypsin-digested peptide
data. The corresponding ProteomeXchange project identifiers as well
as the number of unique peptides and HLA patterns for each data set
are listed in supplemental Table S1.

As tandem mass spectrometry (MS2) fragmentation patterns are
highly dependent on the instrument, instrument settings, fragmenta-
tion method, and any applied labeling methods (25), all MS2PIP train,
test, and evaluation data must originate from experiments with the
same experimental parameters. Unlabeled HCD data from
Quadrupole-Orbitrap instruments was used, as this makes the newly
trained models widely applicable and plenty of training data is readily
available on public repositories. For each PRIDE Archive project, the
raw mass spectrometry files were converted to Mascot Generic
Format (MGF) files using ThermoRawFileParser (v1.3.4) (31). The
corresponding identification files were converted to MS2PIP input files
using custom Python scripts and were further filtered to retain unique
combinations of peptide sequence, modifications, and precursor
charge at 1% FDR. Next, all spectra were combined into one MGF file.
The universal spectrum identifier (32) was used as unique identifier for
each PSM to ensure reproducibility and a one-on-one mapping be-
tween peptide identifications and spectra. Data from each PRIDE
Archive project was either used as train/test data or as evaluation data
to ensure fully independent data sets, except for the chymotrypsin
data, where the same project was used to provide both training/
testing data (70%) and evaluation data (30%). This split was made
after selecting unique peptide-modification-charge combinations, to
ensure no overlap in samples between both splits.

Similarly to the 2019 MS2PIP models, new models were trained with
the XGBoost machine learning algorithm (33). The Hyperopt (34),

package (v0.2.5) was used in combination with four-fold cross-vali-
dation for hyperparameter optimization, allowing 400 boosting rounds
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and early stopping fixed at 10 rounds. Hyperparameters were opti-
mized for each training data set separately, as well as for b- and y-ion
models. All selected hyperparameters are shown in supplemental
Table S2. To evaluate each model, the Pearson correlation coeffi-
cient (PCC) was calculated between observed and predicted b- and y-
ion peak intensities for each spectrum. The model performances were
further analyzed by peptide length and precursor charge. Ultimately,
three models were trained: the immunopeptidemodel solely trained on
immunopeptides, the immunopeptide-chymotrypsin model trained on
immunopeptides supplemented with chymotrypsin-digested peptides,
and the nontryptic immunopeptide model solely trained on nontryptic
immunopeptides. Ultimately, two models were integrated into
MS2PIP: (i) the immunopeptide model and (ii) the immuno-chymo-
trypsin model. The former can be used for immunopeptide peak in-
tensity predictions and the latter for tryptic and more general
nontryptic peptide predictions. For further analysis into rescoring
immunopeptide PSMs, only the immunopeptide model was used, as it
showed the best performance for both HLA-I and HLA-II
immunopeptides.

To compare MS2PIP predictions with Prosit predictions, the same
evaluation data sets were used as mentioned above. Prosit (v1.1.2)
was downloaded from GitHub (https://github.com/kusterlab/prosit)
and the hcd_hla and irt_prediction models were downloaded from
Figshare (https://figshare.com/projects/prosit/35582). MS2PIP pre-
dictions were acquired for the general proteomics and chymotrypsin
evaluation data with the immuno-chymotrypsin model and for the
HLA-I and HLA-II evaluation data with the immunopeptide model.
Peptides that were not included in the Prosit output were filtered out of
the MS2PIP predictions. The performance was measured in both PCC
and spectral angle to ensure a thorough comparison. Only correlations
for singly charged fragment ions were taken into account, as the newly
trained MS2PIP models only predict intensities for these ions.

Evaluation of MS2Rescore on HLA Class I Peptides and
Comparison with Prosit Rescoring

To validate the capacity of the new MS2PIP models to improve
immunopeptide identification rates, the new models were imple-
mented with DeepLC (v0.1.36) and Percolator (v3.5) into MS2Rescore.
MS2Rescore calculates various meaningful features based on (i) the
search engine output, (ii) the DeepLC-predicted and the observed
retention times, and (iii) the MS2PIP-predicted and the observed MS2
peak intensities. These features are then passed to Percolator for PSM
rescoring. Search engine features were selected based on the previ-
ous publication by Granholm et al. (35) and replicated for use with
MaxQuant search results (36). MS2PIP features were used as first
described by Silva et al (21). All features generated by MS2Rescore are
listed in supplemental Table S3.

MS2Rescore was validated on a large-scale HLA class I data set
(37), which was also used to validate the recently published Prosit-
rescoring effort for immunopeptides (PXD021398) (23). This allows
both an evaluation of the improved identification rates due to the new
MS2PIP models and a straight-forward comparison with Prosit
rescoring. First, the msms.txt identification files for the projects’ two
MaxQuant searches (alkylated and nonalkylated samples), the Prosit-
rescored Percolator output files, and the raw mass spectrometry files
were downloaded from PRIDE Archive. The mass spectrometry files
were then further processed with ThermoRawFileParser (v1.3.4) (31)
and the PSMs for each of the two MaxQuant searches were rescored
separately. Two rescoring methods were evaluated: (i) using only
search engine features, replicating a normal Percolator run, and (ii)
using the full MS2Rescore feature set, including search engine-,
MS2PIP-, and DeepLC-features. Additionally, these rescoring
methods were compared with the original MaxQuant results and with
the downloaded Prosit-rescoring results.
Each rescoring method was evaluated at varying FDR thresholds in
terms of identification rate and number of unique identified peptides.
The contribution of the different feature sets in MS2Rescore was
visualized using Percolator’s model weights, and the distributions of
retention time difference and MS2PIP prediction correlations were
compared between decoy PSMs, accepted target PSMs, and rejected
target PSMs.

Additionally, as reported by Wilhelm et al. (23), sequence motif
patterns for HLA pattern C*12:03 were further analyzed with
GibbsCluster (v2.0) (38), for the gained and lost peptides compared to
rescoring with only search engine features.

Evaluation of MS2Rescore Across Collision Energy Settings and
Peptide Abundances

To further analyze MS2Rescore performance for various experi-
mental collision energy settings, replicate LC-MS/MS runs were per-
formed on HL60 cells at collision energy values of 25, 27, 30, 32, and
35 NCE (supplemental Methods). The resulting spectra were searched
with the Andromeda search engine (MaxQuant v1.6.14.0) against the
human UniProtKB-SwissProt (14-09-2020; 20, 388 sequences, Tax-
onomy ID 9606) database without any enzyme specificity. A minimal
peptide length of seven amino acids was required. Oxidation (M) was
set as variable modification with a maximum of three modifications per
peptide. Mass tolerances were set at 5 ppm and 20 ppm for MS1 and
MS2 spectra, respectively. FDR was kept at 100% with the use of a
decoy strategy for downstream rescoring with (i) only search engine
features and (ii) the full MS2Rescore feature set. Furthermore, for all
LC-MS/MS runs at all collision energy settings, precursor intensities
were obtained from the MaxQuant msms.txt file to assess any dif-
ferences in the performance of MS2Rescore between low and high
abundant peptides.

Evaluation of MS2Rescore on HLA Class II Peptides

To validate MS2Rescore for HLA class II peptides, another set of
raw mass spectrometry files were downloaded from PRIDE Archive
(PXD015408). As the uploaded search engine results were already
filtered at 5% FDR, the spectra were reanalyzed with PEAKS DB
(v10.5) (14) with the same search parameters that were used in the
original publication, that is, no enzyme specificity, precursor error
tolerance of 10 ppm, fragment ion tolerance of 0.01 Da, with oxidation
(M), deamidation (NQ), and trioxidation (C) as variable modifications,
searched against the UniProtKB-SwissProt database (01-2021, 22,
235 sequences, Taxonomy ID 10090). The mzIdentML identification
file as well as the corresponding MGF files were exported from PEAKS
DB and were rescored with MS2Rescore with (i) only search engine
features and (ii) the full MS2Rescore feature set, as described above
for the evaluation on HLA class I peptides.

General Data Processing and Data Visualization

All plots, unless specified, were generated in Jupyter notebooks
(v6.4.0) using Python (v3.8.3) with the Matplotlib (v3.4.2) (39), Seaborn
(v0.11.0) (40), UpSetPlot (v0.6.0), and spectrum_utils (v0.3.5) (41)
libraries.

RESULTS

Newly Trained MS2PIP Models Accurately Predict
Immunopeptide Spectrum Peak Intensities

In order to improve the identification rate of immunopep-
tides by leveraging peak intensity predictions, new models for
MS2PIP were trained specifically for immunopeptides. Despite
using different training set compositions, all newly trained
Mol Cell Proteomics (2022) 21(8) 100266 3
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models drastically improve predictions for both HLA-I and
HLA-II data in comparison with the tryptic 2019 HCD model
(Fig. 1A). Surprisingly, even for standard tryptic shotgun pro-
teomics data, the predictions from the new models are slightly
better, largely due to the portion of tryptic peptides within the
immunopeptide training data. Indeed, when these peptides
are left out of the training data, accuracy drops in comparison
with the 2019 HCD model. While both immunopeptide models
are well suited to predict peak intensities for tryptic and
immunopeptides, the performance on chymotrypsin-digested
peptides is not as high (supplemental Fig. S1). Thus, even
though immuno- and chymotrypsin-digested peptides are
both considered nontryptic, they are still very different for
MS2PIP peak intensity predictions. Overall, immunopeptide
peak intensity predictions are drastically improved by all the
newly trained models, with the immunopeptide model
showing the highest accuracy (median PCC of 0.94). The
exact median PCCs are listed in supplemental Table S4. Ex-
amples of a prediction with median PCC values with the
immunopeptide model and the corresponding, less accurate,
2019 model prediction are shown in Figure 1, B and C.

MS2Rescore Drastically Improves Immunopeptide
Identification Rates

Ultimately, the goal of these newly trained models is to
improve immunopeptide identification rates by providing more
accurate peak intensity predictions. Therefore, (i) identification
results without rescoring, (ii) rescoring with solely search
FIG. 1. Performance evaluation of the new nontryptic MS2PIP mo
predicted and observed peak intensity values on spectrum level for the
model, and immuno-chymotrypsin model. Performance is evaluated on
immunopeptide data, and chymotrypsin data (A). Predictions for imm
(top) compared to observed MS2 spectrum (mzspec:PXD005231:20160
visualization as its PCC lies close to the median for the immunopeptide m
for the same immunopeptide (C) as visualized in B. HCD, higher-energy c
Pearson correlation coefficient.
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engine features (replicating a normal Percolator run), (iii)
rescoring with MS2Rescore (including DeepLC and the new
MS2PIP models), and (iv) rescoring with the recently published
Prosit models were compared in terms of the total amount of
identifications as well as the number of unique identifications
based on sequence. Overall, rescoring with both MS2Rescore
and Prosit substantially improved the spectrum identification
rate in comparison with rescoring with search engine features
alone or not rescoring and this at both 1% and 0.1% FDR.
Indeed, MS2Rescore achieves an identification rate of 11.1%,
out of 18 million spectra, compared to 7.6% for traditional
rescoring (an increase of 46%), and only 1.9% for the Max-
Quant search results, all at 1% FDR (Fig. 2, A and B). More-
over, 83% of the identified spectra at 1% FDR are retained
when restricting the threshold to 0.1% FDR. Thus, providing
peak intensities and retention time predictions to Percolator
substantially increases the number of identified immunopep-
tides. This is clearly illustrated by analyzing the Percolator
weights for each separate feature as well as the combined
absolute weights for search engine features, MS2PIP features,
and DeepLC features (supplemental Fig. S2). Similarly, the
number of unique identified immunopeptides increases by
36% when adding MS2PIP and DeepLC Features for the 1%
FDR and even more so for 0.1% FDR where the number of
unique identified peptides reaches nearly 300% of the number
of traditional Percolator identification results (Fig. 2, C–F).
These gains are consistent across all 95 HLA class I alleles
included in the data (supplemental Figs. S3–S4), showing that
dels. Boxplots comparing Pearson correlation distributions between
2019 HCD model, immunopeptide model, nontryptic immunopeptide
general tryptic proteomics data, HLA-I immunopeptide data, HLA-II
unopeptide “KQHGVNVSV” by new immunopeptide MS2PIP model
513_TIL1_R1:scan:10909) (bottom) (B). This peptide was selected for
odel on all HLA-I evaluation data. Predictions by the 2019 HCD model
ollision-induced dissociation; MS2, tandem mass spectrometry; PCC,



FIG. 2. Percentage of identified spectra and unique identified peptides using different rescoring methods (PXD021398). Bar charts
showing the spectrum identification rate out of 18.375.659 spectra (A and B), showing the total number of unique identified peptides in terms of
sequence (C and D), and showing the shared (blue), gained (green), and lost (red) number of unique (by sequence) identified immunopeptides in
relation to rescoring with only search engine features (E and F). All results are shown for the 1% FDR (A, C, and E) and 0.1% FDR (B, D, and F)
thresholds. FDR, false discovery rate.

MS2Rescore for Immunopeptidomics
the newly trained MS2PIP model, and therefore MS2Rescore,
is generalizable across different HLA types. In fact, MS2Re-
score allows for a substantial increase in identification rate for
HLA types with initially fewer identifications (e.g., A0101,
A0204, B4402…), indicating that MS2Rescore especially im-
proves the peptide identification coverage for harder-to-
identify HLA alleles.
The power of providing these predictions to Percolator is

further illustrated when visualizing the distributions for decoy
PSMs, rejected target PSMs, and accepted target PSMs.
Indeed, the distributions for decoy and rejected target PSMs
are highly similar for both the retention time error as well as the
PCC, while the accepted target PSMs accumulate around low
retention time errors and high PCCs (Fig. 3, A and B). The
accepted target PSMs are clearly separable from the decoy
and rejected target PSMs using only the PCC and retention
time error distributions (Fig. 3, C and D). Furthermore, while
both metrics correlate with the search engine score, a large
amount of decoy and rejected target PSMs can only be
separated from the target PSMs by also including PCC or
retention time error information (Fig. 3, E and F). This clearly
illustrates how Percolator achieves its much-improved sepa-
ration between true and false target PSMs when provided with
peak intensity and retention time prediction features.
Furthermore, PSMs that previously would have been incor-
rectly accepted below a 1% FDR because of a high search
engine score alone are now rejected due to a low PCC, a high
retention time error, or both. This most likely accounts for the
small percentage of identified peptides that are lost after
rescoring.

MS2Rescore Outperforms the Current State-of-the-Art

The integration of MS2PIP-, DeepLC-, and search engine-
based features in MS2Rescore has proven to substantially
increase the identification rate of immunopeptides and
furthermore, outperforms the recently published Prosit-
rescoring method (23). In comparison with Prosit, MS2Re-
score gains 5% and 35% more identifications at 1% FDR and
0.1% FDR, respectively. This trend continues for the number
of unique identified peptides with a respective increase of 8%
and 57% (Fig. 2). Indeed, over 32,000 unique peptides were
identified below the 0.1% FDR threshold by MS2Rescore,
while Prosit rescoring only identified these peptides at the 1%
FDR threshold, highlighting the gain in confidence in terms of
unique identified immunopeptides (supplemental Fig. S5).
MS2Rescore thus substantially increases the identification
rate, especially for more stringent FDR thresholds.
Peptides for which Prosit cannot predict MS2 peak in-

tensities, that is, unmodified (C), cysteinylated (C), and acet-
ylation (N-terminus), were left out of the Prosit-rescoring
output. That is why MS2Rescore includes more PSMs in the
unfiltered data set at 100% FDR, especially for the noIAA
sample (supplemental Fig. S6, A and B). For a second, thor-
ough comparison, these PSMs were left out of the MS2Re-
score output as well. However, this seemed to have a rather
negligible impact on the number of identifications at 1% and
0.1% FDR (supplemental Fig. S6, C and D), and thus the dif-
ference in identification rates cannot be attributed to these
filtered peptides.
Furthermore, a comparison of the peptide spectrum pre-

diction accuracy of the newly trained MS2PIP models and
Prosit indicates that higher performance of MS2Rescore
cannot be attributed to improved peak intensity predictions.
Indeed, depending on the correlation metric that is used,
either MS2PIP or Prosit performs slightly better than the other
on the evaluation data (supplemental Fig. S7). It is important to
note, however, that for Prosit, the correct collision energy (CE)
value should be selected for optimal performance. To
Mol Cell Proteomics (2022) 21(8) 100266 5



FIG. 3. Distributions of MS2PIP-, DeepLC, and search engine-based features. Density plots showing the distribution of the smallest
retention time error between observed and predicted retention time (A) and showing the Pearson correlation between observed and predicted
peak intensities (B) for each PSM split in decoys (red) rejected targets, q value >0.01(blue) and accepted targets, q value <0.01 (green) (note the
rejected targets distribution coincides with the decoy distribution). Scatterplots showing the relation between observed and predicted retention
time (C), between Pearson correlation and retention time error (D), between retention time error and search engine score (E), and between
Pearson correlation and search engine score (F) for decoys (red), rejected targets (blue), and accepted targets (green) for all PSMs from
“GN20170531_SK_HLA_C0102_R1_01”. Note that all retention time errors are the smallest retention time error for each precursor (see
rt_diff_best supplemental Table S3), all Pearson correlation coefficients are calculated for each full log2 transformed spectrum, and all zero
values are caused by the fact that either the observed or predicted intensities for a given ion type are all zero. PSMs, peptide-spectrum matches.
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determine if the difference in rescoring between MS2Rescore
and Prosit is driven by a difference in features, all MS2Rescore
features that do not have a close counterpart in Prosit
rescoring were removed for a separate run. This includes all
DeepLC retention time features and various search engine
features (supplemental Table S3). As MS2Rescore and Prosit
both include various similar peak intensity prediction features,
these were retained. With this reduced feature set, the per-
formance of MS2Rescore is slightly lower than for Prosit
rescoring (supplemental Fig. S6, A–D), which confirms that the
retention time features and additional search engine features
result in improved MS2Rescore performance over Prosit
rescoring.
Similarly to Prosit, the identified sequence motif for HLA

type C*12:03 was highly similar to the motif reported in the
original publication of the data set (23, 37), while the peptides
6 Mol Cell Proteomics (2022) 21(8) 100266
that were removed by MS2Rescore compared to search en-
gine rescoring showed quite different, less conserved
sequence motifs (supplemental Fig. S8).

MS2Rescore Generalizes Well Across Collision Energy
Settings and Peptide Abundances

Because MS2PIP does not account for CE in its predictions,
MS2PIP and consequently MS2Rescore could potentially be
biased toward spectra obtained with certain CE values.
Therefore, search results of replicate mass spectrometry runs
with CE settings varying from 25 to 35 were postprocessed
with MS2Rescore. For each CE value, MS2Rescore shows a
significant increase in identification rate. However, for larger
(less optimal) CE values, the overall identification rate de-
creases (supplemental Fig. S9A). This is most likely due to a
reduced quality in fragmentation spectra, which is reflected in
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the decreased explained ion current and in line with the b- and
y-ion MS2PIP PCC distributions for accepted PSMs when
using suboptimal CE values (supplemental Fig. S9, D–F). Most
interestingly, the relative gain in unique identified peptides for
MS2Rescore increases for higher (and therefore less optimal)
CE values, approaching a 60% increase for CE 35, by slightly
shifting the feature weights away from fragmentation features
in favor of DeepLC retention time features (supplemental
Fig. S9, B and C). Consequently, MS2Rescore is able to
recover peptides that would otherwise be lost due to lower-
quality fragmentation spectra.
A similar effect is observed for low abundant peptides.

Indeed, the largest relative gain achieved by MS2Rescore in
terms of number of unique identified peptides is seen for the
lowest precursor intensities (supplemental Fig. S10, A and B),
where traditional rescoring fails to recover most identifica-
tions. MS2Rescore is thus not only able to increase the
amount of identifications for immunopeptides in general, it can
recover peptides previously lost due to low precursor in-
tensities and thus lower-quality spectra or nonoptimal instru-
ment settings.

MS2Rescore is Unbiased to Different HLA Classes

To evaluate the performance of MS2Rescore on HLA class II
peptides, another publicly available data set was reanalyzed.
However, while for the HLA class I data set human immuno-
peptides and MaxQuant search engine (13) results were used,
for this HLA class II data set, mouse data was searched with
PEAKS DB (14). As was the case for HLA class I peptides,
MS2Rescore significantly increases the identification rate for
HLA class II peptides with 15% and 57% for the 1% and 0.1%
FDR threshold, respectively (supplemental Fig. S11). These
increases are, however, slightly lower than for the HLA class I
data set. Moreover, where previously conventional rescoring
showed a significant increase in comparison to search engine
rescoring, here, the gain in comparison with no rescoring is
lower for both identification rate as well as number of unique
identified peptides. This is likely due to (i) the less extensive
search engine features that are calculated for the PEAKS DB
pipeline in MS2Rescore (supplemental Table S3) and (ii) to the
fact PEAKS DB is likely better equipped to identify immuno-
peptides than MaxQuant due to its de novo–assisted data-
base search (14). Nevertheless, the full MS2Rescore feature
set, including peak intensity and retention time predictions,
still results in a significantly higher identification rate. Alto-
gether, these results show that MS2Rescore generalizes well
across HLA class I and class II immunopeptides, across
different species, and can boost the performance from
different search engines.
DISCUSSION

By training new peak intensity prediction models, we were
able to greatly enhance immunopeptide identification rate
through PSM rescoring. While all newly trained MS2PIP models
greatly enhance peak intensity predictions for immunopep-
tides, the model trained solely on immunopeptides performed
best. Even though the immuno-chymotrypsin model contained
the same immunopeptide train set, the addition of the
chymotrypsin-digested peptides did lower the performance
slightly. Similarly, not including chymotrypsin-digested pep-
tides in the training data resulted in lower accuracies for the
chymotrypsin-digested peptides. Indeed, immunopeptides are
generally much smaller and consequently carry a lower charge
state; as a consequence, these immunopeptide-specific
MS2PIP models are not able to predict the behavior of longer
and higher charged peptides in the mass spectrometer. While
both immuno- and chymotrypsin-digested peptides are
considered nontryptic, their properties can be very different,
leading to reduced accuracy of peak intensity of MS2PIP when
applied on a different type of nontryptic peptides. Surprisingly,
while immuno- and chymotrypsin-digested peptides are
antagonistic, immunopeptides and tryptic peptides seem
synergistic in terms of training data. This comes as no surprise
as almost 50% of the immunopeptide training data consists of
tryptic peptides. Immunopeptides are thus not necessarily
nontryptic. However, the actual occurrence of tryptic peptides
in immunopeptidomics samples is most likely much lower. This
unrepresentatively sized tryptic portion most likely originated
from the tryptic bias in current immunopeptidomics workflows.
Indeed, in previous studies, tryptic MHC peptide coverage
could rise to 70% (42). By training new, nontryptic models of
MS2PIP, we take a first step in decreasing this tryptic bias to
ultimately be able to analyze an unbiased immunopeptide
landscape.
Moreover, by integrating the new immunopeptide model

with retention time predictions and search engine features into
MS2Rescore, we greatly enhanced the ability of Percolator to
rescore immunopeptide PSMs, resulting in a much-improved
immunopeptide identification workflow. Furthermore, rescor-
ing drastically increases the number of unique identified
peptides, which is of crucial importance for the discovery of
potential neo-epitopes for cancer vaccination or xeno-
epitopes for anti-bacterial and to a lesser extent, anti-viral
vaccines. Moreover, while previously almost no identifica-
tions were found at a more confident 0.1% FDR threshold,
MS2Rescore allows a lowering of the FDR threshold to 0.1%,
while retaining 83% of the peptides identified at 1% FDR. This
illustrates the large increase in confidence of the identified
PSMs MS2Rescore introduces. Besides the increase in both
PSM confidence and identification rate, MS2Rescore has
shown to be unbiased with regard to HLA patterns and CE
settings. Most importantly, the relative identification gain
introduced by MS2Rescore is even larger for HLA patterns that
initially had fewer identifications, showing that MS2Rescore is
able to increase the view on the immunopeptide landscape for
traditionally harder-to-identify HLA patterns. Moreover,
MS2Rescore is able to recover peptide identifications that
Mol Cell Proteomics (2022) 21(8) 100266 7
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would have been lost due to lower-quality spectra by making
use of DeepLC retention time features and can therefore
recover substantial additional identifications for low abundant
peptides. This potentially enables the recovery of biologically
relevant neo- or xeno-epitopes that occur less frequently in
the sample. Furthermore, MS2Rescore is able to gain immu-
nopeptide identifications regardless of the search engine
used, for both HLA class I and class II peptides, and across
different species.
Additionally, MS2Rescore with DeepLC and the new immu-

nopeptide MS2PIP models shows an improved identification
rate over the recently published Prosit effort, especially for
lower FDR thresholds. As Prosit has shown to provide more
accurate predictions compared to previous MS2PIP models, it
is unlikely that MS2Rescore’s higher performance can be
attributed to superior peak intensity predictions. Indeed, the
peak intensity prediction accuracies of the new MS2PIP
models and of Prosit are highly similar for immunopeptides
(supplemental Fig. S7) even when Prosit has been optimized
for the right CE. These negligible differences in peak intensity
prediction correlations are therefore likely not the reason for the
higher performance of MS2Rescore in favor of Prosit. Instead, it
is more likely that the main difference in rescoring performance
is the result of the generation of more relevant MS2PIP-,
DeepLC, and search engine–derived features. Indeed, when
the majority of the search engine features and all DeepLC
retention time features were omitted, reflecting the more limited
Prosit feature set, the performance of MS2Rescore drops as
well (supplemental Fig. S6). By providing a more extensive
feature set, MS2Rescore creates a unique feature space that
allows Percolator to separate true from false identifications
much better than when provided with limited features without
retention time or peak intensity information (Fig. 3). The com-
bination of all these calculated features is therefore likely to be
driver of MS2Rescore’s superior performance.
MS2Rescore is freely available under the permissive Apache

2.0 open-source license on GitHub (https://github.com/
compomics/ms2rescore) and can easily be installed locally
through the cross-platform PyPI Python package as well as
with a standalone windows install script. Both a command line
interface and a graphical user interface are available, various
identification files from different search engines are accepted,
and both MS2PIP and DeepLC can handle a variety of modi-
fications, eliminating the need to filter identification files before
rescoring. Altogether, these new models show great promise
to greatly extend the immunopeptide landscape in existing
and future immunopeptidomics experiments.
DATA AVAILABILITY

MS2Rescore is available at https://github.com/compomics/
ms2rescore. All additional code used in this work is available
at compomics/ms2rescore-immunopeptidomics-manuscript
(github.com). The data used for training and evaluation of
8 Mol Cell Proteomics (2022) 21(8) 100266
the newly trained models, the models themselves as well as
the MS2Rescore output is available on Zenodo at https://doi.
org/10.5281/zenodo.6532013. Additional mass spectrometry
proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE (30) partner repository
with the data set identifier PXD033868.

Supplemental data—This article contains supplemental data
(6, 37, 43–50).

Acknowledgments—NanoLC-MS/MS instruments were
supported by the French Proteomic Infrastructure (ProFI
FR2048; ANR-10-INBS-08-03).

Funding and additional information—R. B. acknowledges
funding from the Vlaams Agentschap Innoveren en Onderne-
men under project number HBC.2020.2205.; R. G. received
funding from the Research Foundation Flanders (FWO)
[1S50918N]. S. D. and L. M. acknowledge funding from the
European Union’s Horizon 2020 Programme (H2020-INFRAIA-
2018-1) [823839]; L. M. acknowledges funding from the
Research Foundation Flanders (FWO) [G028821N] and from
Ghent University Concerted Research Action [BOF21/GOA/
033]. A. D. received funding from the Research Foundation
Flanders (FWO) [1SE3722].

Author contributions—A. D., A. H., and R. G. methodology;
A. D. software; A. D., R. B., and R. G. validation; A. D. and R. G.
formal analysis; A. D. andR.G.writing–original draft; A. D., R. B.,
A. H., C. C., S. D., L. M., and R. G. writing–review and editing;
A.D.,R.B.,C.C.,S.D., L.M., andR.G. fundingacquisition; A.D.,
R. B., S. D., L.M., andR.G. conceptualization; A. D., A. H., C. C.,
andR.G. investigation;C.C. andL.M. resources; L.M. andR.G.
project administration; R. G. supervision.

Conflict of interest—The authors declare that they have no
conflict of interest with the contents of the article.

Abbreviations—The abbreviations used are: CE, collision
energy; FDR, false discovery rate; HCD, higher-energy
collision-induced dissociation; MS2, tandem mass spec-
trometry; MGF, mascot generic format; PCC, Pearson corre-
lation coefficient; PSM, peptide-spectrum match..

Received December 8, 2021, and in revised from, June 30, 2022
Published, MCPRO Papers in Press, July 6, 2022, https://doi.org/
10.1016/j.mcpro.2022.100266

REFERENCES

1. Sattler, S. (2017). In: Advances in Experimental Medicine and Biology,
Springer New York LLC), New York: 3–14

2. Raoufi, E., Hemmati, M., Eftekhari, S., Khaksaran, K., Mahmodi, Z., Far-
ajollahi, M. M., et al. (2020) Epitope prediction by novel immu-
noinformatics approach: a state-of-the-art Review. Int. J. Pept. Res. Ther.
26, 1155–1163

3. Mayer, R. L., and Impens, F. (2021) Immunopeptidomics for next-generation
bacterial vaccine development. Trends Microbiol. 29, 1034–1045

https://github.com/compomics/ms2rescore
https://github.com/compomics/ms2rescore
https://github.com/compomics/ms2rescore
https://github.com/compomics/ms2rescore
https://github.com/compomics/ms2rescore-immunopeptidomics-manuscript
http://github.com
https://doi.org/10.5281/zenodo.6532013
https://doi.org/10.5281/zenodo.6532013
http://doi.org/https://doi.org/10.1016/j.mcpro.2022.100266
http://doi.org/https://doi.org/10.1016/j.mcpro.2022.100266
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref1
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref1
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref3
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref3
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref3
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref3
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref4
http://refhub.elsevier.com/S1535-9476(22)00074-3/sref4


MS2Rescore for Immunopeptidomics
4. Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., and
Nielsen, M. (2007) Large-scale validation of methods for cytotoxic T-
lymphocyte epitope prediction. BMC Bioinformatics 8, 1–12

5. Zhang, H., Lundegaard, C., and Nielsen, M. (2009) Pan-specific MHC class I
predictors: a benchmark of HLA class I pan-specific prediction methods.
Bioinformatics 25, 83–89

6. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J., and Mann, M.
(2015) Mass spectrometry of human leukocyte antigen class i peptidomes
reveals strong effects of protein abundance and turnover on antigen
presentation. Mol. Cell Proteomics 14, 658–673

7. Solleder, M., Guillaume, P., Racle, J., Michaux, J., Pak, H. S., Müller, M.,
et al. (2020) Mass spectrometry based immunopeptidomics leads to
robust predictions of phosphorylated HLA class I ligands. Mol. Cell
Proteomics 19, 390–404

8. Faridi, P., Purcell, A. W., and Croft, N. P. (2018) In Immunopeptidomics we
need a sniper instead of a shotgun. Proteomics 18, e1700464

9. Pfammatter, S., Bonneil, E., Lanoix, J., Vincent, K., Hardy, M.-P. P., Cour-
celles, M., et al. (2020) Extending the comprehensiveness of immuno-
peptidome analyses using isobaric peptide labeling. Anal. Chem. 92,
9194–9204

10. Purcell, A. W., Ramarathinam, S. H., and Ternette, N. (2019) Mass spec-
trometry–based identification of MHC-bound peptides for immunopepti-
domics. Nat. Protoc. 14, 1687–1707

11. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to
correlate tandem mass spectral data of peptides with amino acid se-
quences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–
989

12. Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tandem
mass spectra. Bioinformatics 20, 1466–1467

13. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and
Mann, M. (2011) Andromeda: a peptide search engine integrated into the
MaxQuant environment. J. Proteome Res. 10, 1794–1805

14. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., et al. (2012)
Peaks DB: de novo sequencing assisted database search for sensitive
and accurate peptide identification. Mol. Cell Proteomics 11, M111.
010587

15. Jiang, J., Natarajan, K., and Margulies, D. H. (2019). In: Advances in
Experimental Medicine and Biology, Springer New York LLC, New York:
21–62

16. Faridi, P., Li, C., Ramarathinam, S. H., Vivian, J. P., Illing, P. T., Mifsud, N. A.,
et al. (2018) A subset of HLA-I peptides are not genomically templated:
evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 3,
eaar3947

17. Colaert, N., Degroeve, S., Helsens, K., and Martens, L. (2011) Analysis of
the resolution limitations of peptide identification algorithms. J. Proteome
Res. 10, 5555–5561

18. Verheggen, K., Ræder, H., Berven, F. S., Martens, L., Barsnes, H., and
Vaudel, M. (2020) Anatomy and evolution of database search engines—a
central component of mass spectrometry based proteomic workflows.
Mass Spectrom. Rev. 39, 292–306

19. Bichmann, L., Nelde, A., Ghosh, M., Heumos, L., Mohr, C., Peltzer, A., et al.
(2019) MHCquant: automated and reproducible data analysis for immu-
nopeptidomics. J. Proteome Res. 18, 3876–3884

20. Dorfer, V., Maltsev, S., Winkler, S., and Mechtler, K. (2018) CharmeRT:
boosting peptide identifications by chimeric spectra identification and
retention time prediction. J. Proteome Res. 17, 2581–2589

21. Silva, A. S. C., Bouwmeester, R., Martens, L., and Degroeve, S. (2019)
Accurate peptide fragmentation predictions allow data driven approaches
to replace and improve upon proteomics search engine scoring func-
tions. Bioinformatics 35, 1401–1403

22. Li, K., Jain, A., Malovannaya, A., Wen, B., and Zhang, B. (2020) DeepRe-
score: leveraging deep learning to improve peptide identification in
immunopeptidomics. Proteomics 20, e1900334

23. Wilhelm, M., Zolg, D. P., Graber, M., Gessulat, S., Schmidt, T., Schnat-
baum, K., et al. (2021) Deep learning boosts sensitivity of mass spec-
trometry-based immunopeptidomics. Nat. Commun. 12, 3346

24. Bouwmeester, R., Gabriels, R., Hulstaert, N., Martens, L., and Degroeve, S.
(2021) DeepLC can predict retention times for peptides that carry as-yet
unseen modifications. Nat. Methods, 1–7

25. Gabriels, R., Martens, L., and Degroeve, S. (2019) Updated MS2PIP web
server delivers fast and accurate MS2 peak intensity prediction for
multiple fragmentation methods, instruments and labeling techniques.
Nucl. Acids Res. 47, W295–W299

26. Degroeve, S., Maddelein, D., and Martens, L. (2015) MS2PIP prediction
server: compute and visualize MS2 peak intensity predictions for CID and
HCD fragmentation. Nucl. Acids Res. 43, W326–W330

27. Degroeve, S., and Martens, L. (2013) MS2PIP: a tool for MS/MS peak in-
tensity prediction. Bioinformatics 29, 3199–3203

28. Ruiz Cuevas, M. V., Hardy, M.-P., Holly, J., Bonneil, É., Durette, C., Cour-
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