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Abstract

We propose a numerical study of the evaporation of sessile droplets using a

Volume-Of-Fluid (VOF) method in the free-software Basilisk. We consider pure

liquid droplets forming a spherical-cap onto a smooth or rough substrate and

we investigate two different modes of evaporation: the unpinned mode where

the contact angle is constant and the pinned mode where the wetting area is

constant. The numerical method used to implement the contact angle and for

the reconstruction of the interface is fully described, especially for the pinned

mode for which we present a new VOF implementation. In the unpinned mode,

the parametric studies predict that the volume decreases in time according

two phases, which matches the signature behaviour of evaporating unpinned

droplets, irrespective of the geometrical parameters. In the pinned mode, the

volume follows a linear decrease for the whole evaporation time and the contact

angle analysis indicates a linear decrease in time which was expected according

to the theory and validated with some experiments we performed.
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1. Introduction

Evaporation of liquid drops in the air is a phenomenon of loss mass that ap-

pears when the air is not saturated with the vapor of the liquid: interest in this

field has been driven by academic and industrial applications. Since Maxwell

[1] and later Langmuir [2], who studied the simplest evaporation problem of a5

spherical drop and derived the general framework of the studies of drop evap-

oration in an infinite medium, lots of theoretical works have investigated the

process of drying. In particular, drops containing dispersed particles [3, 4, 5]

are considered because of their fundamental role in industrial applications such

as metal corrosion [6], ink-jet printing [7] or patterning of substrates [8].10

For a sessile drop deposited on a solid substrate, the evaporation dynam-

ics is generally quasi-steady and controlled by a diffusion process of vapor into

the air [1, 9, 10, 11, 12, 13] where the contact angle between the interface and

the substrate at the intersection of the three-phase contact line, the diffusion

coefficient of water vapor in air, and the external condition control the mass15

flux across the interface. Consequently, the drop mass decreases in time but the

temporal dynamics of the contact area, the drop radius, and the contact angle

depend on the behaviour of the contact line [9].

Evaporation occurs often following three principal modes [14]: unpinned, where

the radius decreases; pinned, where the contact angle decreases; and stick-and-20

slide, where both the radius and the contact angle can vary independently.

These modes usually follow one another during the whole evaporation but most

of the time, only one mode predominates: thus, in our simulations, only one

mode is considered during the entire evaporation. Each mode has a huge im-

pact on the dynamics of flows inside the drop, especially for drops containing25

dispersed particles. Indeed, the spatial shape of the deposit, for instance the

patterns of stain at the end of the process of evaporation, depends on the evapo-

ration mode, on the particles concentration and is under control of the capillary

flows inside the drop. A well-known example is the ring-shaped pattern called

the coffee-ring [3]. The patterns are the key drivers in many engineering appli-30
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cations: for instance, for saline sessile drops, the local salt deposit at the end of

evaporation can induce local surface reactions like corrosion [6]. The capillary

flows are principally radial because of the tension surface and the spherical-

cap shape of the drop: the resulting flows transport dispersed particles to the

contact line. Consequently, the repartition of the solute particles along the in-35

terface becomes non-homogeneous and leads to surface tension gradients. This

produces solutal Marangoni flows that may be directed either towards or away

from the edge of the drop [15, 16, 17, 18].

The complete evaporation process is challenging to understand and a way to do

it is to combine analytical and numerical approaches. In this communication,40

we investigate the evaporation of pure liquid droplets. In the case of pure liquid

evaporation and in particular pure water evaporation, the heat transfert at the

interface appears minor so we decided to neglect the thermal Marangoni effects

[19]. Simulating a pure liquid droplet is simpler because we do not deal with

particle transport, chemical species concentration, or pinning due to a particle45

deposit. But, it is an excellent model for trying approaches and for numeri-

cal tests. This work will be further completed to study mixture droplets with

dispersed particles. We propose then to study numerically the evaporation dy-

namics of pure liquid droplets, with a free software called Basilisk [20], that

implements numerical methods for partial differential equations such as Navier-50

Stokes. A Volume-Of-Fluid (VOF) method is used to describe the interface and

to handle the moving contact line [21]. The implementation of the contact an-

gle, in particular in the pinned mode with the no-slip boundary condition [22],

represents an important numerical interest. The validity of the numerical ap-

proaches employed will be demonstrated by the confrontation against theories55

and experimental data [6, 9, 14, 23, 24]. The Section 2 presents briefly the the-

ory of the droplet evaporation and in Section 3 we detail the numerical method

used to investigate the two modes of evaporation. In particular, we give a com-

plete description of the numerical implementation for the pinned mode in the

framework of a VOF implementation. Section 4 presents the numerical results60

and for the pinned mode, a comparison with experiences we performed.
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2. Analytical model for droplet evaporation

2.1. Spherical droplet

The first approach for the modeling of a spherical droplet evaporation was

proposed by Maxwell [1] in 1877, who found an analytical solution with an elec-

trostatics analogy. Later, Langmuir [2] proposed a heat conduction analogy to

derive the same relation for the mass evaporation rate.

The evaporation phenomenon is a phase change transition from a liquid to its

own vapor. A droplet of water evaporating into air at room temperature can

be described, in a first approximation, as a diffusive mechanism where water

vapor is transported into the gas phase [14]. Then, other supplementary heat

and mass transfer mechanisms can appear, such as convection or radiation.

When a spherical droplet evaporates into air, the vapor concentration field is

not uniform through the gas phase, but it is uniform along the interface. In-

deed, the vapor concentration at the droplet surface equals to its equilibrium or

saturation condition cs, whereas, far from the droplet, the vapor concentration

reaches the boundary value c∞ ≈ Hcs, where H is the relative humidity of

the environment. This vapor concentration difference in the surrounding gas

phase creates a concentration gradient which drives the evaporation process.

Therefore, evaporation can be described by a diffusion equation for the vapor

concentration, c

∂tc = ∇ · (Dv∇c) (1)

where t is the time and Dv is the water vapor diffusivity in the air.

In our study, we consider small droplets that keep a spherical-cap shape dur-

ing the whole process of evaporation. A droplet adopts a spherical shape if

the gravity g can be neglected compared to the surface tension γ [14]. The

ratio between surface and inertia forces defines the dimensionless Bond number,

Bo = (∆ρgr0h0)/γ, where ∆ρ is the density difference between the liquid and

the air, r0 is the initial radius of the drop and h0 is the initial height of the

drop. This number has to be lower than 1 to have a spherical-cap.

A droplet evaporation is not a stationary process but it can be considered as
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a quasi-steady process as long as the vapor concentration adjusts rapidly com-

pared to the time required for the entire droplet evaporation, tF . Therefore, the

transient term, ∂tc, can be neglected in Equation (1) which simplifies into the

Laplace equation, ∆c = 0. The vapor concentration field is thus the solution

of a Laplace equation and the vapor transport is only a mass diffusion. For a

spherical droplet in air, the outward evaporation mass flux J along the interface

is described by the Fick’s law

J(r, t) = n . Dv∇c (2)

where r is the drop radius and n is the normal vector to the droplet surface.

From the evaporation mass flux, an evaporation velocity, noted ve, can be de-

fined. This velocity determines the liquid mass that is transformed into vapor

during the evaporation, ρlve, where ρl is the liquid density. According to the

mass balance at the interface, we can write:

ρlve ≈ Dv∇c ≈ Dv
(cs − c∞)

r0

ve ≈
Dv(cs − c∞)

ρlr0

(3)

This velocity scale defines the dimensionless Peclet number Pe ≈ (ver0)/Dv ≈

cs/ρl ≈ cste. Thus, Pe is a constant for the problem and is smaller than 1

(of the order of 10−5) which indicates that the vapor diffusion process is faster

than the droplet evaporation so that the hypothesis on the quasi-steady regime

is consistent. Indeed, the diffusion time scale is tD = r20/Dv, with r0 the typical

length of the drop (the initial radius), so the time ratio appears very small:

tD
tF

=
r20

DvtF
≈ cs − c∞

ρl
≈ cs(1−H)

ρl
� 1 (4)

For instance, the time ratio for water is between 10−6 and 10−9, depending on

the surrounding air humidity [14].65

2.2. Sessile droplet

Figure 1 shows a sessile droplet configuration where the presence of the

substrate induces a loss of symmetry and the emergence of a triple contact
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Figure 1: Sessile droplet sitting on a solid substrate. The interface of the drop forms a contact

angle θ with the substrate surface.

point with solid, liquid, vapor in a singular point. Several authors [4, 9, 25]

used the electrostatics analogy as Maxwell [1] did to derive a model for a sessile

droplet evaporation. The evaporation mass flux along the drop interface is not

uniform anymore because of the contact with the substrate. The analytical

solutions for a sessile droplet are quite complex compared to the solution for a

spherical droplet as long as they are dependent on the value of the contact angle,

θ. Therefore, only approximated solutions for the evaporation mass flux profile

J(r, t) exist as the one proposed by [26]. For a spherical-cap sessile droplet, the

volume V can be expressed as

V (r, θ) =
πr3

3

(1− cosθ)2(2 + cosθ)

sin3θ
(5)

The total time of evaporation tF can be predicted as [14]

tF =
πρr20θ0

16Dv∆c
(6)

where θ0 is the initial contact angle.

3. Numerical model

A sessile droplet is a three-phase problem, as the droplet is in contact with

a solid substrate and with the gaseous environment. With appropriate bound-70

ary conditions and the implementation of an adjustable contact angle, we can

simulate the action of the substrate on the droplet, and thus, we obtain a two-

phase problem to solve numerically. The evaporation problem requires solving
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the Navier-Stokes equations, the diffusion equation, and the advection of the

interface.75

3.1. Basilisk

We use a free software, Basilisk [20], based on the Gerris solver [27, 28] pre-

viously developed by the same authors, and benefits from various improvements

as in particular the mesh adaptation methods. We solve a two-phase problem,

with the one-fluid formulation: the different phases are treated as one fluid with80

variable material properties that change abruptly at the interface between the

phases. We thus introduce the volume fraction f(x, t), which equals to 1 for

the liquid, index l, 0 for the surrounding air, index g and between 0 and 1 for

the interface cells. We define the density and viscosity as functions of f , i.e.

ρ = fρl + (1 − f)ρg and µ = fµl + (1 − f)µg. The advection equation for85

the density can then be replaced with an equivalent advection equation for the

volume fraction ∂tf + ∇ · (fu) = 0, where u is the velocity.

The spatial discretization is done using a quad-tree square cells structure in 2D

(octree in 3D). It allows less costly dynamical grid refinement into user-defined

regions which is really useful for two-phase flows as most of the interesting90

physics takes place in the vicinity of the interface (see Figure 2 for an example

of adaptative discretization). This Adaptative Mesh Refinement (AMR) is one

of the key strengths of Basilisk.

Figure 2: Example of the Adaptative Mesh Refinement (in grey) in Basilisk around an interface

(in blue). The mesh automatically adjusts into user-defined regions to capture all the physics

of the problem.
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3.2. Navier-Stokes equations

Basilisk uses a finite volume approach which provides a conservative numer-

ical scheme, thus the precision of the transport only depends on the scheme

order and the mesh refinement. To solve the Navier-Stokes equations, as we

consider an incompressible flow, we make use of the solver provided by Basilisk,

based on a CFL-limited timestep, the Bell-Collela-Glaz advection scheme, and

the implicit viscosity solver. We added the term representing the volume source

arising from the phase-change. We detail here the time integration with the

projection method, as the pressure plays a specific role for incompressible flows.

A staggered in time discretization of the density and pressure leads to a formally

second-order accurate time discretization

un+1 − un

∆t
+ An =

1

ρn
(−∇p+ Dn + fn) (7)

where p is the pressure, A = ∇·(uu) is the advection term, D = ∇·µ(∇u+∇uT )

is the diffusion term and f denotes all other forces, such as gravity and surface

tension. Then, the projection step computes an intermediate velocity field u∗

u∗ = un + ∆t

(
−An +

1

ρn
(Dn + fn)

)
(8)

The pressure is calculated such that the velocity at the new time step is diver-

gence free. This gives the following Poisson equation

∇ ·
(

1

ρn
∇p

)
=

1

∆t

(
∇ · u∗ +

J

(ρl − ρg)
δI

)
(9)

where δI is the Dirac distribution function expressing the fact that we added

the source term coming from the evaporation flux J which is concentrated only

in cells containing the interface. From Equation (3), the order of magnitude of

J scales as Dv(cs−c∞)/r0 ∼ 10−4. Then, from Equation (9), we found than the

added source term is negligible and does not matter for interface dynamics, in

our case considering a pure diffusive model. Nevertheless, for the understanding

of the vapor dynamics outside of the droplet, this added source term is necessary

because the low vapor density compared to the liquid density does pushed the
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saturated vapor from the interface giving a Stefan flow. Finally, the n + 1

velocity field is computed as

un+1 = u∗ −∆t
1

ρn
∇p (10)

3.3. Diffusion equation95

For the interface advection, we have to solve in a first time the diffusion

equation given by Equation (1). We use a time-implicit backward Euler dis-

cretisation, then we write the vapor concentration c at the time step n + 1 as

cn+1 = cn + ∆t∇ · (Dv∇cn+1) (11)

This leads to a Poisson-Helmholtz problem for cn+1 with the following boundary

conditions: the saturation vapor cs at the interface and the vapor value at the

computational domain limits at given relative humitidy H, c∞ = Hcs. The

system of equations resulting is solved using a multigrid solver.

3.4. Advection of the interface100

For the evaporating droplet dynamics, the interface needs to be tracked

and followed. Therefore, once the velocity field is computed, a Volume-Of-

Fluid (VOF) method is used [29]. The VOF approach enables a satisfactory

reconstruction of the interface and guarantees the mass conservation using a

conservative advection transport. The VOF method consists into two steps:105

1. from the volume fraction f , we localize the cells that contain parts of the

interface and we reconstruct the interface shape piece by piece with an

affine function.

2. we advect the interface with a velocity field corresponding to the outward

evaporation mass flux. This flux is calculated for each time step according110

Equation (2) once the vapor concentration, c, is computed by Equation

(11).

In our model, the flux gives an ”evaporation velocity” or an ”interface velocity”

which leads to the interface displacement. It does not correspond to the velocity
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of fluid particles, it is the result of the loss for each time step of a small slice115

of liquid replaced by some vapor. The ”evaporation velocity” is added to the

mixed cells containing the interface, as described by Equation 9.

3.5. Contact angle implementation

For the sessile droplet configuration, the droplet is deposited on a substrate

made of a non-corrosive material. We modelled the action of the substrate on120

the droplet by setting the value of the contact angle, θ, defined as the angle

between the drop interface and the solid surface. Changing the contact angle is

equivalent to changing the material type of the substrate, for instance, a water

droplet on a silver substrate can form a contact angle close to 90˚, which is

a particular case of interest, whereas on gold substrates smaller contact angles125

around 30˚ are mesured [30]. These values depend on the surface condition

of the material and they can also be influenced by the droplet size [31]. The

contact angle can vary or not during the evaporation process, the different cases

will be discussed in Section 4. Before presenting the numerical results of the

two modes, we need to describe the implementation of the contact angle and130

the pinned interface in the framework of the VOF reconstruction.

For the contact angle, we followed the method of Afkhami et al. [32]. In a

2D case, the cell containing the triple contact point is marked as a cell along

the solid boundary with a volume fraction f 6= 0 and f 6= 1 and with a right cell

with f = 0. This defines without ambiguity the cell. We compute the height

functions for the two cells above the substrate (lines h[1] and h[2] in the Figure

3) in the horizontal direction from the y axis. We need some extra points to

compute the curvature correctly at the triple point. We extend the work of [32]

to a 5x5 stencil: consequently, the values of the ghost cells at each time step

(two layers below the substrate, h[−1] and h[−2]) are extrapolated linearly from

the layers 1 and 2 above the substrate to impose a given contact angle

h[−1] = h[1] + ∆/ tan θ (12)

where ∆ denotes the cell size. h[−2] is computed in the same way. We note that
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for θ < 45˚, we would compute the height function by the signed distance to

the x axis. It is known that horizontal signed functions are more complicated to

define accurately: anyway, the approach works fine enough with small angles.

θ

x

y

solid 
substrate

h[1]

h[-1]

h[2]

h[-2]

liquid gas

Figure 3: Use of horizontal height functions for the imposed contact angle θ. The height

functions h[1] and h[2] allow to extrapolate the values of the ghost cells h[−1] and h[−2]

which are then used to compute the curvature at the triple contact point and deduce the

contact angle.

135

The classical VOF approach uses staggered grids for the velocity field then

the normal and tangential components of the velocity at the substrate boundary

(y = 0) are equal to zero by imposing the ghost cell values of the layers below

the substrate. A consequence is that implementing an interface pinned configu-

ration is quite complicated, the reason is that in the VOF approach the volume140

fraction f is transported with the staggered velocity field u resulting from the

solution at time t of the Navier-Stokes equations using ∂tf + ∇ · (fu) = 0.

The staggered velocity field u over the 1st cell above the substrate has non-

nul horizontal components ux (for a cell of size ∆, the horizontal components

are placed at ∆/2) given a numerical slip when the volume fractions are trans-145

ported, hence it is very difficult to assure the stability of the pinned point of

the interface at the boundary condition. Refining the numerical grid helps as

the numerical slip scales with ∆. Hooking a fixed point on a boundary con-

dition needs precise handling: in the novel pinned implementation we have to

modify the VOF reconstruction step to take into account specifically the con-150

ditions of constant radius and decreasing contact angle θ as a function of time
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. Figure 4 presents three schematics of a boundary cell containing the triple

x

ti+1

ti

θy

ti+1

ti

ti+1

ti

θθ

xt

xpxp

yt

(a) (b) (c)

Figure 4: Schematics of the two steps VOF reconstruction on a boundary cell with a triple

contact line: (a) is the classical reconstruction where the droplet radius decreases while evap-

orating always at constant contact angle θ, (b) and (c) are two cases of the new pinned mode

depending of the line intersection, where the droplet radius is constant and the contact angle

θ decreases as a function of time.

point (the bottom side represents the substrate): on the left, the classical VOF

reconstruction for an unpinned evaporation mode and in the middle and on the

right, the new pinned reconstruction. Figure 4 (a) shows the slipping of the155

interface along the substrate with a contact angle θ which remains constant.

For the novel pinned reconstruction approach, we proceed as following: once we

compute the volume fraction at the next time step, f(t1) with t1 = t + dt, we

determine geometrically the new angle θ which keeps the mass in the local cell.

This is done by defining the piecewise segment of the interface reconstruction160

passing through the pinned point xp. In the following for sake of simplicity, we

explain the algorithm in a local cartesian basis. The axisymmetrical equivalent

is straightforward. The algorithm is composed of two different cases depending

on the intersection point of the reconstructed piecewise segment with the cell

boundaries. First, we normalize the distance with the cell size ∆, a dynamical165

variable depending on the time and space but fixed for a given time step. Sec-

ondly, we scale the value xp using a local basis, in which the origin is placed at

the left bottom corner of the cell, therefore we have all the lengths in the range

[0, 1] and ∆ becomes equal to one. We have then:

1. the reconstructed segment passing through the pinned point xp crossing170
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the top of the cell at the point xt (Figure 4 (b)), then we have to compute

the surface by a trapeze formule f(t1) = (xp + xt)/2 to find xt. We have

finally: tan θi+1 = 1/(xp − xt).

2. if the reconstructed segment passing through the pinned point xp crosses

first the left side of the cell at the point yt (Figure 4 (c)) we use a triangle175

formula f(t1) = ytxp/2 for the surface and we have simply: tan θi+1 =

2 f(t1)/x2p.

Once the angle θi+1 of the pinned interface is computed we use the contact angle

procedure to impose the boundary condition at the substrate, then θi is set to

θi+1 at each iteration.180

4. Results and discussion

The system is an evaporating droplet of liquid surrounded by air. Both

phases have spatially uniform and constant density and viscosity. The entire

system is at ambient temperature during the simulation. Temperature gradients

are neglected and assuming a constant and controlled temperature during the185

whole simulation appears coherent with experiments [6]. The surface tension

of the liquid-gas interface γ and the temperature are assumed uniform and

constant, as a pure liquid is considered in this study. For the vapor, we have

to verify the following conditions: (i) on the interface of the droplet, the vapor

concentration is the saturated vapor concentration cs and (ii) far away from the190

interface, the vapor concentration is fixed to c∞. For a sessile droplet, we need

to add the following conditions: (iii) the vapor concentration gradient normal

to the substrate is zero because there is no vapor flux and (iv) the fluid does

not penetrate the solid substrate, then u ·n = 0. For all simulations, we assume

that at t = 0, the drop is in an equilibrium shape and that the velocity field is195

set to zero. The dimensionless parameters used in the simulations are: R0 = 1,

Pe = 10−3, cs = 1 and c∞ ranges from 0 to 1 depending on the relative humidity

needed. In order to recover the dimensionalized results, the numerical results

have to be multiplied by the time and the space scales.
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4.1. Validation: spherical droplet in still air200

We first test our model on a simpler case, a spherical droplet motionless in

an infinite uniform medium considering the quasi-steady regime hypothesis [33].

Based on the Equation (2) for the outward evaporation mass flux and recalling

that dm = 4ρlπr
2
0dr, we can obtain as solution the well-known squared radius

relation, the d2 law

r20 − r2(t) = 2
Dv (cs − c∞)

ρl
t (13)

The d2 law is valid for an infinite medium, but the numerical domain has a finite

size, L, where the droplet of size r0 is placed. A parametric study showed that,

for L ∼ 10r0, the finite size L does not affect significatively the results for the

vapor concentration distribution and consequently for the global evaporation of

the droplet. As shown on Figure 5, we obtain a good agreement between our205

numerical results and the analytical law.

Figure 5: Validation case with a spherical droplet. The numerical results (r/r0)2 are plotted

(crosses) and compared with the analytical d2 law (dashed dotted line).
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4.2. Unpinned case

The unpinned mode of evaporation appears for droplets of pure liquid on

perfectly smooth surfaces. The mode parameters of the simulations were chosen

to reproduce the evaporation of a pure water sessile droplet on silicon wafers.210

At t = 0, the droplet is in an equilibrium position and forms a spherical cap

with a contact angle θ as illustrated on Figure 6: the contact radius decrease in

time while the contact angle remains constant.

x

y

t

r(t)

- temperature, 25°C
- contact angle, 90°
- humidity, 20%
- initial volume, 10 µL

Conditions

Figure 6: Interface reconstructed numerically for the unpinned mode during evaporation. The

interface (in blue) slices on the solid substrate (in black), with a constant contact angle as the

time t evolves.

The case presented here represents a sessile droplet with θ = 90˚, a half-

sphere, which is a particular case identical to the case of the spherical droplet in215

air and follows the d2 law from Equation (13). We study the evolution in time

of the droplet volume (V/V0) for different contact angles between 0 and 90˚ and

different relative humidities between 0 and 80%, using the Equation (5). Figure

7 presents the results of the parametric study realized to analyze the influence

of the relative humidity on the evaporation behaviour, for the particular case of220

a half-sphere. We observe that the volume evolves like t3/2 as the evolution of

(V/V0)2/3 as function of (t/tF ) is linear for all the different relative humidities

tested. This is coherent with the d2 law and quite expected with this case

where θ = 90˚. Besides, the inset in Figure 7 shows that the evaporation rate

decreases linearly as the relative humidity increases as expected by comparison225

with the analytical work of [9].

Figure 8 shows that sessile droplets with contact angles between 90˚ and 45˚

15



Figure 7: Numerical study on the influence of the relative humidity on evaporation in the

unpinned mode. The simulations were all performed with a pure liquid sessile droplet of

10µL forming a contact angle of 90˚. The normalized volume is plotted as a function of the

scaled time. The inset shows the variation of the evaporation rate as a function of the relative

humidity.

follow the same typical evaporation profile. The volume evolves again like t3/2,

which means that the d2 law (Equation 13) can be generalized to sessile droplets

with contact angles below θ = 90˚. An accurate measure of the contact angle230

can be hard to achieve especially under 50˚ which explains that some points

do not fit perfectly. The evaporation rate decreases linearly as contact angle

increases which is coherent with the analytical relation of [9].

Considering these results in addition to litterature [34, 9], we can conclude

that the relative humidity does not influence the general form of the droplet235

volume-versus-time curve. But changing the relative humidity influences of

course the total time of evaporation. Finally, we can be established that, without

regard to geometrical parameters, pure liquid sessile droplets evaporate in the

unpinned mode following the same behaviour, which can be described by a

general d2 law.240
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Figure 8: Numerical study on the influence of the contact angle on evaporation in the unpinned

mode.The simulations were all performed with a pure liquid sessile droplet of 10µL forming a

contact angle of 90˚. The normalized volume is plotted as a function of the scaled time. The

inset shows the variation of the evaporation rate as a function of the contact angle.

4.3. Pinned case

The pinned mode usually appears for drops containing particles or when the

substrate is rough. In our simulations, we want to reproduce the evaporation

of a pure water droplet where the interface is pinned due to surface roughness.

This work will be then extended to cases where the pinning results from the245

accumulation of particles at the anchorage point.

To validate our numerical data for the pinned mode, we did experiments in an

airtight glove box of 250 L under hygrometry and temperature control. The rel-

ative humidity, H, can range from 5% and 50% and remains constant during the

whole experiment (±2%). In each experiment, a droplet of 10µL of distilled wa-250

ter is deposited onto a substrate with a micropipette. Both liquid and substrate

are at room temperature, T = 25± 2˚ C at the initial state. The temperature

is continuously measured in the box and can be considered constant. A rough

copper substrate is used to obtain the pinned mode. The height, the radius,
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and the contact angle of the sessile droplet are measured using a Nikon D810255

camera with a Navitar lens recording an image every 30 secondes from the side.

The experimental data are presented on Figure 10.

In the pinned mode, the interface of the droplet is pinned to the substrate during

the evaporation. The contact area and thus the contact radius r are constant

in time whereas the contact angle θ decreases: this ensures that the drop keeps260

a spherical-cap shape as illustrated in Figure 9.

x

y

t

r0

- temperature, 25°C
- contact angle, 70°
- humidity, 20%
- initial volume, 10 µL

Conditions

Figure 9: Interface reconstructed numerically for the pinned mode during evaporation. The

interface (in blue) is pinned to the solid substrate (in black) while the contact angle decreases,

as the time t evolves.

As for the unpinned case, we calculate the volume evolution in time, using

the Equation (5). Figure 10 presents the numerical results compared with the

experimental data for a sessile droplet with an initial contact angle θ = 70˚.

We observe that the non-dimensionalized volume (V/V0) varies linearly with265

the time (t/tF ). When the contact angle becomes small (under 20˚), the re-

construction of the interface and the measure of the contact angle are not well

captured by our implementation: the numerical error increases as the droplet in-

terface is almost horizontal and the calculation with the height functions should

be improved to obtain more accurate results. The experimental data validate270

the numerical model for the pinned evaporation mode.

This means that the d2 is not valid anymore in this case. To explain the

linear dependancy of the volume in time, we can perform a Taylor expansion of

Equation (5). This shows that the volume evolution can be considered linear

with the contact angle which is coherent with the following theoretical law [14]

θ(t) = θ0(1− t/tF ) (14)
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Figure 10: Normalized droplet volume as function of the scaled time for the pinned evaporation

mode. Numerical results (circles) are compared with our experimental data (filled squares)

and with a theoretical law (dashed dotted line).

This is also coherent with the experimental results presented in [23] or [34] and

the numerical results of [24].

5. Conclusions

We presented a numerical approach to simulate the evaporation behaviour of275

pure liquid sessile droplets as a first step toward the study of mixtures evapora-

tion. To validate the numerical approach we proposed to analyse two academic

configurations: the unpinned mode where the contact angle is constant and the

pinned mode where the wetting area is constant.

The numerical results show that the evaporation model gives accurate re-280

sults for both modes when there are compared to analytical solutions and ex-

perimental data. For the unpinned mode, we conclude that irrespective of the

geometrical parameters of sessile droplets, sessile droplets containing a pure liq-

uid evaporates following the same behaviour described by a general d2 law. For
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the pinned case, we developed a new algorithm for the contact angle imple-285

mentation in the framework of the VOF reconstruction which allows to impose

a boundary condition at the substrate and then adapt the contact angle. The

confrontation with experiments and theoretical law is very satisfactory although

the proposed approach presents some limits for contact angles below 20˚ due

to the interface reconstruction inherent to the VOF. Using a mixed height func-290

tion approach for smalls contact angles could be an interesting option. This

contact angle implementation in the pinned case now allows to analyse more

complex problems, as mixture droplets and in particular saline sessile droplets,

when Marangoni gradients of the surface tension and saline transport have to

be taken into account in the numerical model. The pinning of the drop will have295

to consider the concentration of particles near the triple contact line, modifying

in particular the Raoult’s law in the numerical model.
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sis (2019).380
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