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The absence of a conventional association between the cell-cell cohabitation and its emergent dynamics into cliques during development has hindered our understanding of how cell populations proliferate, differentiate, and compete, i.e. the cell ecology. With the recent advancement of the single-cell RNAsequencing (RNA-seq), we can potentially describe such a link by constructing network graphs that characterize the similarity of the gene expression profiles of the cell-specific transcriptional programs, and analyzing these graphs systematically using the summary statistics informed by the algebraic topology. We propose the single-cell topological simplicial analysis (scTSA). Applying this approach to the single-cell gene expression profiles from local networks of cells in different developmental stages with different outcomes reveals a previously unseen topology of cellular ecology. These networks contain an abundance of cliques of single-cell profiles bound into cavities that guide the emergence of more complicated habitation forms. We visualize these ecological patterns with topological simplicial architectures of these networks, compared with the null models. Benchmarked on the single-cell RNA-seq data of zebrafish embryogenesis spanning 38,731 cells, 25 cell types and 12 time steps, our approach highlights the gastrulation as the most critical stage, consistent with consensus in developmental biology. As a nonlinear, modelindependent, and unsupervised framework, our approach can also be applied to tracing multi-scale cell lineage, identifying critical stages, or creating pseudo-time series.

I. INTRODUCTION

In recent years, technological developments in data visualizations, especially the subfield of topological data analysis (TDA), has illuminated the structure of biological data with features like clusters, holes, and skeletons across a range of scales [START_REF] Carlsson | Topology and data[END_REF]. The TDA approach has proven to be especially useful with recent advancements in experimental techniques at the single cell resolution, both in genomics and neuroscience, such as radiomics [START_REF] Crawford | Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis[END_REF] and brain imaging [START_REF] Phinyomark | Resting-state fmri functional connectivity: Big data preprocessing pipelines and topological data analysis[END_REF], [START_REF] Lin | Geometric and topological inference for deep representations of complex networks[END_REF]. The utility of topology comes from the idea of persistence, which extract the underlying structures within data while discarding noisy elements in the single cell data collection. Unlike graphbased data like human connectomes, in most time, the highdimensional data collected from single cell techniques are similarity-based. Under the assumption that these data was sampled from underlying space X , the goal is to first approximate X with a combinatorial representation, and then compute some sort of invariant features to recover the topology of X .

The single-cell topological data analysis (scTDA) is one of the first attempts to apply topology-based computational analyses to study temporal, unbiased transcriptional regulation given the single-cell RNA sequencing data [START_REF] Rizvi | Single-cell topological rna-seq analysis reveals insights into cellular differentiation and development[END_REF]. In order to visualize the most invariant features of the entire gene expression data, scTDA clusters low-dispersion genes with significant gene connectivity according to their centroids in the topological representation, and visualize them in lowdimension space with the Mapper algorithm [START_REF] Carlsson | Topological pattern recognition for point cloud data[END_REF]. Computing the cell complexity as the number of genes whose expression is detected in a cell, scTDA observes a mild dependence of library complexity over the timescale of the single cell data of 1,529 cells collected at 5 time points. This is expected because the number of genes expressed by cells in early stages of a developmental process is larger than in the adult case, as pointed out in [START_REF] Gulati | Singlecell transcriptional diversity is a hallmark of developmental potential[END_REF]. As a result, in scTDA the library complexity is not used for any purpose at the topological data analysis and not related to any topological properties.

Intuitively thinking, if we were to introduce a definition for "cell complexity", that characterizes the behaviors of cell-cell co-expression or interactions, the quantities of cell complexity should be agnostic to the number of genes expressed by the cells, and should be different across differentiated cells and across the developmental process. Can we introduce a better summary statistic for the cell complexity that can capture the developmental trajectory with more distinctions between time points? To clarify, unlike the previous definition of "library complexity", which simply quantifies the number of genes expressed in a cell, we wish to define a cell complexity measure to better model higher-order networks and dynamic interactions in single-cell data. Understanding the cell-cell interactions can help identify intercellular signaling pathways and previous analytical studies have focused on computing a communication score between the ligand-receptor pair of interacting proteins [START_REF] Armingol | Deciphering cell-cell interactions and communication from gene expression[END_REF]. For instance, [START_REF] Arneson | Single cell molecular alterations reveal target cells and pathways of concussive brain injury[END_REF] and [START_REF] Oh | Extensive rewiring of epithelial-stromal co-expression networks in breast cancer[END_REF] infer the intercellular signaling pathways of cell-cell communications by computing the co-expression of all genes or other cell markers. The alternative would be to compute the similarity between gene expression profiles as in [START_REF] Han | Mapping the mouse cell atlas by microwell-seq[END_REF]. In this work, we aim to focus directly on the cell level, and use the similarity between each cell's gene expression profiles as a graph to compute a topological descriptor of the complexity. The more connected a group of cells are in this similarity graph, the higher the complexity of this group of cell is. There are two major quests in this line of research:

A. Quest from topological data analysis.

Existing TDA applications usually focus on the lowdimensional graph visualization and the persistent homology of the data (i.e. computing the Betti numbers or barcodes up to dimension 2), because interpreting the biophysical meaning of the geometry and higher dimensional persistent modules is a conceptual challenge. Others have proposed hybrid approaches to combine the merits of data geometry and topology by adaptively selecting the proper thresholds in the pairwise distance matrix of the data points [START_REF] Lin | Geometric and topological inference for deep representations of complex networks[END_REF], [START_REF] Lin | Adaptive geo-topological independence criterion[END_REF]. Another alternative to these low-dimensional TDA methods is the simplicial analysis. Simplicial architecture was first introduced in biological data through the application on human brain connectomes [START_REF] Reimann | Cliques of neurons bound into cavities provide a missing link between structure and function[END_REF], where each connected pairs of neurons are considered an edge to create a graph and the numbers of Rips-Vietoris simplices in dimensions up to 7 are computed at that static graphs comparing with the random graphs. Likewise in our inquiry, we are interested in the intercellular interaction within the same type of cells, the cell complexity, rather than the relationships between different groups of cell. However, the filtration challenge of deriving a graph from the distancebased data by choosing the best threshold, hinders the practical application of such simplicial analysis in the point cloud data.

B. Quest from single-cell-resolution data.

With the increasingly popular usage of single-cell genomic techniques, it might be possible to infer such cell-cell interaction (or cellular ecology) in a fine resolution. However, as far as we are aware, there are only a few literature exploring the cellular ecology from single-cell RNA sequencing data. For instance, [START_REF] Gallaher | From cells to tissue: How cell scale heterogeneity impacts glioblastoma growth and treatment response[END_REF] and [START_REF] Amend | Ecological paradigms to understand the dynamics of metastasis[END_REF] apply the ecology and multi-agent models to model single-cell systems. We wish to complement this line of work by connecting it to the topological data analysis, where the focus is to model the shape or manifold of the data from the similarity of data points. One challenge of this hybrid direction, is to conceptually understand the biological meaning behind the dissimilarity of the omic data. For instance, what does it mean if two cells have similar gene expression profiles from each other? Does that indicate a homogeneity if the two cells are from the same tissues, or is it an artifact that the manual labeling or classifications are not perfect? Can we measure the "complexity" of the cell populations based on the heterogeneity or diversity within populations? If we can, how to we evaluate and interpret lower-order versus higherorder "complexity"? The other challenge is the scalability and compariablity of the single-cell data. With the advances of multi-channel high-throughput data collection techniques in biological fields, how to compute the pairwise distances of the point clouds efficiently? In different trials of single-cell experiments, how to make sure that the persistent modules are comparable to one another?

C. Framework: single-cell topological simplicial analysis

In this study, we propose a topological simplicial analysis (TSA) pipeline (Figure 1) as an exploratory inquiry to solve these three challenges: (1) with the algebraic geometry's definitions of forming higher-order simplices, we can potentially interpret that cliques of higher orders indicates operational units of higher order; (2) with the bootstrapping techniques to sample from the data points collected at each sub-level, we can scale the analysis to large single cell datasets and compare groups of cells quantitatively; (3) with a time delay constraint on the filtration process, we can sort the projected data points of cells into distinct groups of cells collected from the same time stamps. The framework first takes the measurements of the single-cell RNA sequencing data which generates a similarity matrix among the cells based on their gene expression profiles. Other than performing the persistent homology to obtain lower-order topological descriptors of the data, we compute additional higher-order topological descriptors by counting the number of the simplices emerged from the filtration process. In addition, we introduce a technique to extract the temporal skeleton of the developmental processes, called temporally filtrated TDA, and show that the developmental trajectories of cells can be better revealed in this approach comparing to existing TDA mapping techniques.

We begin our presentation in section II, with a short overview of mathematical definitions of the single cell data visualization problem and introduction of necessary concepts and definitions in the language of computational topology. Section II formulates the topological simplicial analysis pipeline we are proposing as well as numerical tricks applied in the implementation to ensure the scalablity. We apply this single cell Topological Simplicial Analysis (scTSA) to the zebrafish single-cell RNA sequencing data with 38,731 cells, 25 cell types, over 12 time steps [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF]. We select the top 103 genes based on the scTDA pipeline from the high-dimensional highthroughput transcriptomic data. In section III, we introduce the dataset used to benchmark the method and present the analysis results with their mathematical interpretations to the biological insights. In the last section, we discuss the validity of using our framework to understand the higher-order cellular complexity, and conclude our methods by pointing out several future work directions as the next step of this line of research.

II. MATERIALS AND METHODS

A. Single-cell data in the point cloud space

Genomic measurement and analysis at single-cell resolution has enabled new understandings of complex biological phenomena, such as revealing cellular composition of complex tissues and organisms [START_REF] Kalisky | Single-cell genomics[END_REF]. Single-cell RNA sequencing (scRNA-seq) techniques measure the gene expression profiles of individual cells through mechanisms like microfludics. For instance, the benchmark dataset of zebrafish embryogenesis [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF] that we use in this study, applied Drop-seq, a massively In the filtration process, a parameter ϵ is swept from 0 to the maximum pairwise distance within the point cloud, indicating a distance threshold under which the two points can form an edge to become one connected component in the graph. For each value ϵ, we obtain a space Sϵ consisting of vertices, edges formed among the vertices, and higherdimensional polytopes connected by these edges. For instance, a nerve ball of radius ϵ grows around each point cloud, and an edge will form if two nerve balls touch. Homology counts the number of essentially different cycleslinear combinations of simplices that form a cycle (for example a loop formed by a sequence of edges) -that are not the boundary of something that can fill in the hole (for example a combination of 2D simplices or triangles spanning the inside of the loop). We denote Hn as the n-th homology group, i.e. the formation of the simplex complexes of order n, with 0-simplex to be the nodes (or clusters), 1-simplex to be the edges between two nodes, 2simplex to be the triangles, 3-simplex to be the tetrahedrons and so on. We log the existence of a n-simplex if and only if all of its components (e.g. (n-1)-simplex, (n-2)-simplex, • • • , 1-simplex, and 0-simplex) are all in Sϵ, and mark their demises when some of these topological cavities are filled with the additions of new edges (and potentially, nodes). Each colored line indicates the "lifespan" of a simplex, with its starting point to be its "birth" (or first appearance) and ending point to be its "death" (or disappearance due to the two nerve balls fully overlapping). In this example, the persistent homology of the data cloud can be presented in the form of a "barcode" representation, which is a finite collection of intervals. The birth and death of the simplicial complexes up to the order 2 are recorded when the filtration process gradually sweeps the distance threshold. The barcode representation is often replaced with the visualization of a 2d persistence diagram, in which the x-axis indicates the birth time (the distance threshold a filtration appears) and the y-axis indicates its death time (the distance threshold the filtration disappears).

parallel scRNA-seq method to profile the transcriptomes of tens of thousands of embryonic cells [START_REF] Macosko | Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[END_REF]. These single cell data are usually point clouds in a finite metric space, a finite point set S ⊆ R d . Let d(•, •) denote the distance between two points in metric space Z. The assumption is that data was sam-pled from underlying space X . The goal is to recover topology of X . To accomplish the goal, one needs to first approximate X with a combinatorial representation (e.g. with the simplicial complex), and then compute a topological invariant summary statistics (e.g. with the persistent homology).

B. Definition of the simplicial and temporal filtration

Given the point cloud data, we then construct a continuous shape on top of the data to highlight the underlying topology and geometry. The process to build such a shape is through a mathematical filtration, which is often a simplicial complex or a nested family of simplicial complexes, that reflects the innate structure of the point cloud data at different scales [START_REF] Chazal | An introduction to topological data analysis: fundamental and practical aspects for data scientists[END_REF]. Simplicial complexes are high dimensional objects or generalizations of neighboring graphs to represent the cliques of data points, and in another word, a notion of ecology. If we consider all the points in the point cloud data each with a coordinate of their locations in certain embedding, they each occupy a spherical space with the same radius ϵ around them, which are called nerve balls. If the two nerve balls overlap or contact each other, we consider an edge to be formed between them in this graph. The filtration is a process to tune the parameter ϵ from 0 to ∞ and record the families of simplicial complexes generated through the increasingly connected (or "complex") graph.

Usually, the challenge is to extract relevant and useful information about the shape of the data through defining such simplicial complexes from the graph (generated through the filtration process). Rips-Vietoris complex is one of the common choices in practice to compute topological invariants of point clouds, defined as follows: given the vertex set Z, for each pair of vertices a and b edge a-b is included in Rips-Vietoris complex C(Z, t) if d(a, b) ≤ t, and a higher dimensional simplex is included in C(Z, t) if all of its edges are included. Since C(Z, t) ∈ C(Z, t ′ ) whenever t ≤ t ′ , the filtered Rips-Vietoris complex is a filtered simplicial complex, and also the maximal simplicial complex that can be built on top of its 1-skeleton, thus a clique complex or a flag complex. Unlike conventional low-dimensional topological data analysis, we computed simplices into high dimension (up to 7) during the entire filtration process. To record the number of cliques, we compute the filtered simplicial complexes and record their cumulative counts across the entire filtration process.

Since the topological data analysis usually only consider the graph constructed by the spatial proximity (i.e. the distance matrix) between the data points in the low-dimensional embedding, it is not clear how to incorporate timestamp information for meaningful inference and visualization when facing the time-series data streams. One approach would be to simply consider the time stamp as the meta data for post hoc labeling of the topological representations. Another alternative would be to consider time as an additional dimension in the filtration process. We present the Temporal Filtration as the following: alongside the conventional sweeping of the parameter ϵ from 0 to ∞, we set another parameter τ to indicate a hard constraint in edge forming between two points. In another word, only if the time stamp difference between the two data points is within the time delay limit τ , can two nerve balls, if spatially proximal enough (less than ϵ), form an edge in between. On the other hand, if the time stamp difference between the two data points is larger than τ , even if they are spatially proximal enough (less than ϵ), they cannot form an edge. Given the problem settings, one can either set a reasonable time delay limit τ given the domain knowledge, or tune τ from 0 to ∞, similar to the filtration process on the spatial filtration parameter ϵ. The later approach can extract temporally invariant topological summary statistics.

C. Topological data analysis with persistent homology

Following the definition above, an abstract simplicial complex is given by a set Z of vertices or 0-simplices, for each k ≤ 1 a set of k-simplices σ = [z 0 , z 1 , . . . , z k ] where z i ∈ Z, and for each k-simplex a set of k + 1 faces obtained by deleting one of the vertices. A filtered simplicial complex is given by the filtration on a simplicial complex Y, a collection of subcomplexes {Y(t)|t ∈ R} of Y such that Y(t) ⊂ Y(t ′ ) whenever t ≤ t ′ . The filtration value of a simplex σ ∈ Y is the smallest t such that σ ∈ Y(t).

Topological data analysis methods usually involve computing the persistent homology [START_REF] Silva | Topological estimation using witness complexes[END_REF]. The Betti numbers help describe the homology of a simplicial complex Y. The Betti number value BN k , where k ∈ N, is equal to the rank of the k-th homology group of Y. The Betti intervals over the filtration process help describe how the homology of Y(t) changes with t. A k-dimensional Betti interval, with endpoints [t start , t end ), corresponds to a k-dimensional hole that appears at filtration value t start , remains open for t start ≤ t < t end , and closes at value t end . Figure 2 is a schematic diagram outlining how to perform a filtration process (by sweeping the ϵ), document the "birth" and "death" of each complexes (the colored lines of various length in the chart), and generate this as a "barcode" representation [START_REF] Ghrist | Barcodes: the persistent topology of data[END_REF] for the downstream analyses.

D. Low-dimensional topological data visualization

To build and visualize the topological representation of the point cloud data, we use the Mapper algorithm [START_REF] Singh | Topological methods for the analysis of high dimensional data sets and 3d object recognition[END_REF] through the implementations provided by Kepler-Mapper2 with modifications for temporal filtration. In brief, a dissimilarity matrix is computed from the preprocessed RNA-seq data by taking the pairwise correlation distance. This metric space was then reduced to a low-dimensional embeddings with the multidimensional scaling [START_REF] Mead | Review of the development of multidimensional scaling methods[END_REF]. Given this embedding, the point cloud data are chopped into coverings of hypercubes with a 50% percentage of overlapping between the cubes 3 . Then for each hypercube, the data points within the cube are then clustered with single-linkage rule. This step further aggregates all the points into a network in which each vertex corresponds to a cluster and each edge corresponds to a nonvanishing intersection between the clusters. As defined in section II-B, If temporal filtration is applied, then edge forming is also controlled by the additional time delay constraint that the clusters are formed with both spatial and temporal proximity, and the edges would only exist between two clusters if all points in the two clusters are within the time delay limit τ . Once we reach a network representation, the network can then be visualized with force-directed algorithms for insights.

E. Simplicial computation with lazy witness complex

As single cell data has different noise granularity across cell types and data collection procedures [START_REF] Faure | Systematic analysis of the determinants of gene expression noise in embryonic stem cells[END_REF], the number of cells collected in each time points and different cell types (as in the analyzed developmental study [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF]) can vary in different magnitude, making direct simplicial computation incomparable. For these larger datasets, if we include every data point as a vertex, the filtrated simplicial complexes can quickly contain too many simplices for efficient computation. To solve this numerical inconsistency issue, we instead extract the lazy witness complexes by sampling m data points [START_REF] Silva | Topological estimation using witness complexes[END_REF] with a sequential maxmin procedure [START_REF] Adams | On the nonlinear statistics of range image patches[END_REF], setting a nearest neighbor inclusion of 2 (as in the term "lazy") 4 . The computation of the witness complex in high dimensions is implemented with the JPlex software [START_REF] Sexton | Jplex[END_REF] and Matlab. The codes to reproduce the empirical results can be accessed at https://github.com/doerlbh/scTSA.

F. Control models for the topological simplicial analysis

Usually for binary connectivity data (like brain connectome), Erdős-Rényi random graph [START_REF] Erdős | On the evolution of random graphs[END_REF] can be used as control models. However, in similarity-based data, the average connectivity probability is entirely dependent on the filtration factor. To avoid this caveat, we take a different approach by permuting the pairwise distances of the data points, which is equivalent to a weighted version of the Erdős-Rényi random graph. In this way, the low-dimensional embeddings computed by Fig. 3. Simplicial dynamics across developmental stages. In (A) and (B), we sample 100 data points in each time point of the single cell data, apply the multidimensional scaling (MDS) to reduce its dimension to 2, and compute the simplicial complexes up to dimension 7. The color and the surface height in the z-axis indicates of the size of the computed topological summary statistics. (A) The number of n-simplices is computed from the sampled data points in each time points. (B) The normalized n-simplicial complexity, i.e. the normalized number of n-simplices, is computed as the ratio of the number of the n-th order simplicial complexes from the data over the number of those from the null models. The normalized simplicial complexity of higher order appears to be well above 1 in certain developmental stages with a distinctive separation between the 5th and 6th time points.

the multidimensional scaling can form different connectivity profiles while maintaining the same distance distribution. Then we apply the same topological data analysis pipelines to the embeddings computed from the pairwise distance matrices from both the actual data and the control models.

To this point, we propose a formal definition of cellular complexity, as the normalized n-simplicial complexity, SC n , a family of summary statistics with an increasing order n:

SC n = #simplex data n #simplex null n (1)
where SC n is computed by taking the ratio between the number of the simplicial complexes for a certain order n computed from the actual data, and the number of those computed from the control models. Empirically, we compute the SC n with the order n from 1 to 7, as the summary statistics characterizing the ecology among the data points with cliques and cavities of increasing modularities.

III. RESULTS

We benchmark the scTSA method on the zebrafish singlecell RNA sequencing data with 38,731 cells, 25 cell types, over 12 time steps [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF]. The data has dimension of 103 corresponding to the expression levels of 103 significant genes selected by the scTDA pipeline [START_REF] Rizvi | Single-cell topological rna-seq analysis reveals insights into cellular differentiation and development[END_REF]. For each time points, we sample 100 data points, and embed them with multidimensional scaling (MDS) of dimension 2 to preserve their distance information 5 . Upon the MDS embedding, we compute the filtrated simplicial complexes up to the dimension of 7.

The TSA pipeline identifies the simplicial complexity to vary over the time, suggesting a potential better summary statistic with better distinction (Figure 3). The normalized simplicial complexity (computed as the ratio of the number of simplicial complexes discovered within the data over the number of those discovered within the null model) suggests an abundance of high-dimensional simplices over the null models. The existence of a significant number of high-dimensional simplices is observed for the first time in the single cell level. In all time points, the number of simplices of dimensions larger than 1 in the null model was far smaller than those found in the actual data. In addition, we observe this relative differences between what we discover in null models and the actual data increase drastically when the dimensions are higher. Furthermore, the number of low-dimensional simplices (up to dimension 3) of the data appears to be equal or smaller than the null models (with normalized complexity less than 1), suggesting a possible transfer from lower order clique structure to a higher-order structure.

In order to investigate the tradeoff between the higher-order and the lower-order simplicial complexity in the developmental stages, we map the normalized 3-simplicial complexity against the normalized 1-simplicial complexity. Figure 4 suggests an overall above-null higher-order complexity starting from the 5th time point, and an overall below-null lower-order complexity in a monotonically increasing direction since the 2nd time point. Comparing to the null model, the presence of a much larger numbers of cliques across a range of dimensions in the single cell data suggests that the connectivity between these cells might be highly organized into numerous fundamental building blocks with increasing complexity.

The scTSA approach has the flexibility to different lowdimensional embeddings and sample sizes. To demonstrate, we sample 80 data points in each time point and apply the principal component analysis (PCA) to extract the first two component. Figure 5 demonstrate the log scale of the number of n-simplices. It shows that the gastrulation stage is a very critical stage in vertebrate development, matching the established understanding in the developmental biology that it is a process where the embryo begins the differentiation process to develop into different cell lineages [START_REF] Gilbert | Developmental biology[END_REF]. Before gastrulation, the embryo is a continuous epithelial sheet of cells. After the gastrulation stage, organogensis starts where individual organs develop within newly formed germ layers.

This observation is further supported by the visualization of topological data analysis mapping. Figure 6 compares the network visualizations with and without the temporal filtration. We observe that, when color-labelled with the time points, the conventional topological data analysis outlines a progression of cellular development, but there are many subsequent time points in the middle of earlier timesteps. For instance, we see there are many dark blue nodes from the 11th or 12th time points in the middle of web where the majority of the nodes are earlier stages from the 5th to 7th. When using the temporal filtration (with τ set to be just 1 time step), we observe that the network has much more skeleton and branches, where each branching nodes consist only of points of the same time stamp. The gastrulation stage, which happens between the 5th and 6th time points, appears to belong to two separate tracks, supporting the hypothesis that after the notochord and prechordal plate territories become transcriptionally distinct, Fig. 4. Simplicial dynamics across developmental stages. To investigate the tradeoff between the higher-order and the lower-order simplicial complexity in the developmental stages, the normalized 3-simplicial complexity is mapped against the normalized 1-simplicial complexity. The color indicates different time points. The arrow indicates the transition between the centroids in each groups of time points. A transition of lower-order and higher-order normalized cell complexity is marked with the white trajectories across sequential time points. the gastrulation process refines the boundary between the two cellular populations [START_REF] Farrell | Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis[END_REF].

These filtrated simplicial architectures may also offer insights in cell lineage tracing. As in the previous analyses, we sample 50 cells from each cell types and apply scTSA over the PCA embedding. We perform the hierarchical clustering of the summary statistics computed from the transcriptome data of different cell types. We compare the result using the proposed normalized simplicial complexity versus the one using the Betti numbers (which is more conventionally used in many downstream topological data analyses). As shown in Figure 7, the normalized simplicial complexity offers a Fig. 6. Temporal filtration identifies the critical stage of cellular complexity change. The color indicates the time points and each node corresponds to a small cluster of cells collected at the same time points. The conventional TDA mapping (the left panel) identifies a bifuraction structure, but there are spatial locations that has a mixture of clusters that belong to non-consecutive time points. This makes the identifications of a developmental pathway challenging. When applying the temporal filtration (the right panel), the mapping identifies a cleaning separation of two tracks, or two subpopulations of cells that evolves in the gastrulation stage, matching the observation in our summary statistics from the algebraic topology. more reasonable clustering performance as a more distinctive summary statistics than the Betti numbers by themselves.

IV. DISCUSSION

What is cellular complexity and what does the higherorder complexity mean? As an inquiry to this question, we explore the possibility of introducing the mathematical notion of higher-order simplicial complexes into analyzing distance-based single cell data. Benchmarked on a single cell gene expression data with multiple developmental stages, we propose the single-cell Topological Simplicial Analysis, and demonstrate that the simplicial complexity can be a welldefined summary statistic for celluar complexity. This investigation provides a scalable, parameter-free, expressive and unambiguous mathematical framework to represent the cellular complexity with its underlying structure. Locally, these structures are characterized in terms of the simplicial complexes. Globally, these structures are characterized in terms of the cavities formed by these simplices. This framework reveals an intricate topology of cellular similarity which includes a vast number of cliques of cells and of the cavities that bind these cliques together. These topological summary statistics that captures the relationships among the high-dimensional cliques uncover the transcriptional differences in the connectivity of cells of different types during the graph reconstructions process.

From the scTSA visualization, we discover, for the first time in any single cell data, an abundant number and variety of higher-order cliques and cavities. Comparing to the control models, the framework measures a much higher number of high-dimensional cliques and cavities in the graph construction filtration process. The critical stage identified by the framework matches the current understanding in the developmental biology. Comparing with the statistics of Betti numbers, the normalized simplicial complexity demonstrates better distinctions between time points and cell types.

There are potentially different questions we can explore: Can we determine developmental stages without physiological features? Can we generate pseudo-time series based on single cell sequencing data? And most importantly, does the vast presence of high-dimensional cliques suggest that the interaction between these cells is organized into fundamental building blocks of increasing complexity? Through this inquiry with topological simplicial analysis, we can form such hypothesis that the cells organize themselves into high-dimensional cliques for certain functional or developmental reasons. Further research includes developing mechanistic theories behind the emergence of such high-dimensional cellular cliques and experimentally testing these hypotheses to reveal the missing link between functions and cellular complexity.

V. CONCLUSIONS

Our work describes a novel scalable and unsupervised machine learning method that facilitate the understanding and solutions three main technical challenges in bioinformatics:

(1) A lack of time-series analytical methods in quantifying the underlying temporal skeleton within the manifold of the similarities among data points. In persistent homology and mapper visualization, our temporal filtration uses a userspecified time separation parameter τ , which can be either discrete (consecutive time steps) or continuous (by a time delay quantity). This enables the computation of persistent components that is computed only on data points that are temporally proximal, and thus, provides a temporal skeleton representation. In the simplicial analysis, we can group the data points by time steps, and compute the normalized simplicial complexity as a quantity to inform the ecology of cells in the transcriptomic feature space.

(2) A lack of scalable computational methods to characterize single-cell sequence signals in the scale of 10k+ data points, while the single-cell sequencing data are dominating the bioinformatics in recent few years. The usage of witness sampling and dimension reduction enable the computation of persistent homology to large numbers of high-dimensional data points. Sampling is also a required step to compare the topological features in groups of data points with different count numbers. The normalization against null distribution of the data sample partly corrects for the amplification effect of higher-order topological quantities. The usage of dimension reduction techniques such as PCA help with data management and computation without a significant loss of performance.

(3) A lack of insight and interpretation that connects the mathematical language of algebraic topology to the physical references to the biological phenomena. In the introduction and discussion, we initiate the discussion of the interpretations of the topological properties. More specifically, we point out how the temporally directed relationships among data points can be related to functionally separating groups of homogeneous agents in the feature space, and thus, potentially informative to their interactions. With our temporal-directed treatment of filtration or grouping techniques, our study is a small but first step to use topological data analysis as not only a descriptor tool for static manifold, but also, in the future, a discovery tool of dynamic or mechanistic components. Our goal in this work is not to fully answer the question of interpreting the biological insights topological properties, but to further motivate and facilitate our understanding to the question. As more techniques of topological data analysis are applying to biological problems, we wish to encourage the discussion and critique from the biology and machine learning research community.

Summary. In summary, we propose a new family of filtrations for longitudinal time-series multidimensional data along with auxiliary data analysis tools. We demonstrate our application to the temporal inference problems using a set of time-resolved gene expression data. The key technique, called temporal filtration, substitutes a conjunctive distance and time threshold for the conventional distance threshold for point cloud data augmented with time stamps. In addition to persistent homology, mapper constructions, and the use of witness sampling with this technique, an original set of standardized summary statistics, the normalized simplicial complexities, are proposed. These techniques are used to conduct an exploratory analysis of zebrafish embryonic development through the lens of longitudinal single-cell RNA sequencing data. The applications showcase clear improvements in the interpretability of visualizations compared with a cross-sectional approach and suggest that the key events in the evolution of a biological system can be more effectively detected using normalized simplicial complexity than using Betti numbers. Other than the biological application in single-cell genomics, the time-series problem is especially a topic that is applicable beyond the application proposed in our work, and thus a major interest in the unsupervised machine learning communities dealing with high-dimensional time series signals.
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 1 Fig. 1. The analytical framework of the single-cell topological simplicial analysis (scTSA).
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 2 Fig.2. Persistent homology via mathematical filtration. In this schematic diagram, a point cloud of 19 data points are presented in a low-dimensional embedding space. In the filtration process, a parameter ϵ is swept from 0 to the maximum pairwise distance within the point cloud, indicating a distance threshold under which the two points can form an edge to become one connected component in the graph. For each value ϵ, we obtain a space Sϵ consisting of vertices, edges formed among the vertices, and higherdimensional polytopes connected by these edges. For instance, a nerve ball of radius ϵ grows around each point cloud, and an edge will form if two nerve balls touch. Homology counts the number of essentially different cycleslinear combinations of simplices that form a cycle (for example a loop formed by a sequence of edges) -that are not the boundary of something that can fill in the hole (for example a combination of 2D simplices or triangles spanning the inside of the loop). We denote Hn as the n-th homology group, i.e. the formation of the simplex complexes of order n, with 0-simplex to be the nodes (or clusters), 1-simplex to be the edges between two nodes, 2simplex to be the triangles, 3-simplex to be the tetrahedrons and so on. We log the existence of a n-simplex if and only if all of its components (e.g. (n-1)-simplex, (n-2)-simplex, • • • , 1-simplex, and 0-simplex) are all in Sϵ, and mark their demises when some of these topological cavities are filled with the additions of new edges (and potentially, nodes). Each colored line indicates the "lifespan" of a simplex, with its starting point to be its "birth" (or first appearance) and ending point to be its "death" (or disappearance due to the two nerve balls fully overlapping). In this example, the persistent homology of the data cloud can be presented in the form of a "barcode" representation, which is a finite collection of intervals. The birth and death of the simplicial complexes up to the order 2 are recorded when the filtration process gradually sweeps the distance threshold. The barcode representation is often replaced with the visualization of a 2d persistence diagram, in which the x-axis indicates the birth time (the distance threshold a filtration appears) and the y-axis indicates its death time (the distance threshold the filtration disappears).

Fig. 5 .

 5 Fig. 5. scTSA identifies the critical stage of cellular complexity change. To showcase the flexibility of the scTSA approach with different low-dimensional embeddings and sample sizes, we sample 80 data points in each time point of the single cell data and apply principal component analysis (PCA) to extract the first two component before apply the scTSA. (A) The number of nsimplices in the log scale to highlight the drastic change of cellular complexity between the 5th and 6th time points. (B) The heatmap of the normalized nsimplicial complexity across the time points supports the observation. To draw insights on the developmental trajectories, we perform a visualization of the network extracted from the topological data analysis (TDA) with the Mapper algorithm. This type of visualization aims to identify subpopulations of cells that form modular clusters and sparse connections between the clusters.

Fig. 7 .

 7 Fig. 7. Cell lineage tracing with the simplicial statistics. In this analysis, the hierarchical clustering is performed on the summary statistics of transcriptomic data of different cell types. (A) The heatmap and clustering result using the Betti numbers as the clustering features. (B) The heatmap and clustering result using the normalized simplicial complexity as the features for the hierarchical clustering.

For an extended version of this work and a systematic evaluation of our approach, please refer to[START_REF] Lin | Topological data analysis in time series: Temporal filtration and application to single-cell genomics[END_REF] for more details.

https://github.com/scikit-tda/kepler-mapper

The choice of 50% is empirically determined by our dataset. We vary the overlap parameter among 25%, 50% and 75%, and 50% gives the best clustering effect.

The selection of m depends on the scale of the dataset. The bigger the sample size m is, the better the estimate. However, since different partitions of the data points have varying sizes. For instance, if there are only

data points collected in time step 1, while there are more than 100 points in other times steps, then the maximum of m that can be picked is 50.

The choice of two dimensions is an empirical consideration. The computation of mathematical filtration can be expensive, while MDS is known to preserve the geometric information well even with two dimensions.